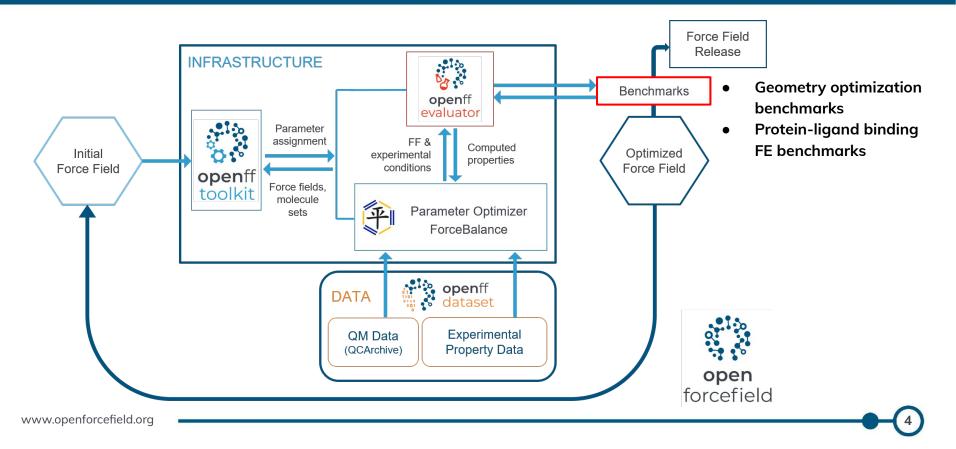
Workshop Schedule

- Presentations (45 minutes)
 - Protein-ligand benchmarking
 - Small molecule conformer benchmarking
- Q&A Time
- Break (5 min)
- Interactive session (45 minutes)
- Q&A Time

- @openforcefield
- www.openforcefield.org

5th open force field follow-up workshop Sept. 1, 2021 | Benchmarking + interactive session

Workshop Schedule



- Presentations (45 minutes)
 - Protein-ligand benchmarking
 - Small molecule conformer benchmarking
- Q&A Time
- Break (5 min)
- Interactive session (45 minutes)
- Q&A Time

How the Open Forcefield framework is drawn up

Large scale benchmarking of force fields in protein-ligand free energy calculations The protein-ligand benchmark set consists out of 22 targets, 599 ligands and 1150 alchemical perturbations

Target	# Ligands	#Perturbations	Target	# Ligands	#Perturbations
jnk1	21	31	bace_p2	12	26
pde2	21	34	tyk2	16	24
thrombin	11	16	ros1	28	63
p38	34	56	eg5	28	65
ptp1b	23	49	cdk8	33	54
galectin	8	7	hif2a	42	92
cdk2	16	25	pfkfb3	40	66
cmet	24	74	pde10	35	36
mcl1	42	71	shp2	26	56
bace	36	58	syk	44	101
bace_hunt	32	60	tnks2	27	60
			total	599	1150

https://github.com/openforcefield/protein-ligand-benchmark

Content/preparation of Benchmark set might change in the future.

- → What is the purpose for changing (better quality, new chemistries, ...)?
- → How do we ensure that we always compare calculations with the same input structures?

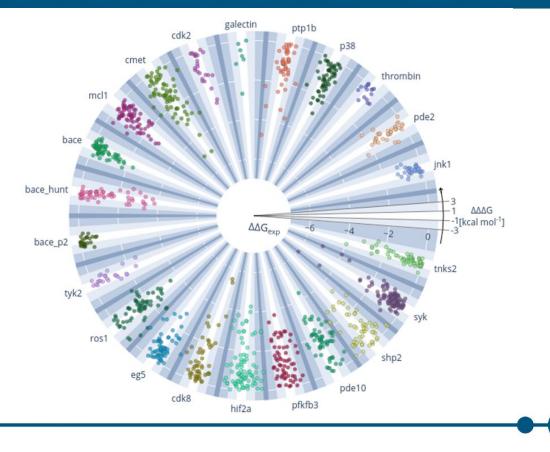
Sources

- Schrodinger JACS
 L. Wang et al., J. Am. Chem. Soc., 2015, 137, 2695 2703
- Merck KgGA

Christina E. M. Schindler et al., Large-Scale Assessment of Binding Free Energy Calculations in Active Drug Discovery Projects, J. Chem. Inf. Model, 2020, 60, 11, 5457–5474

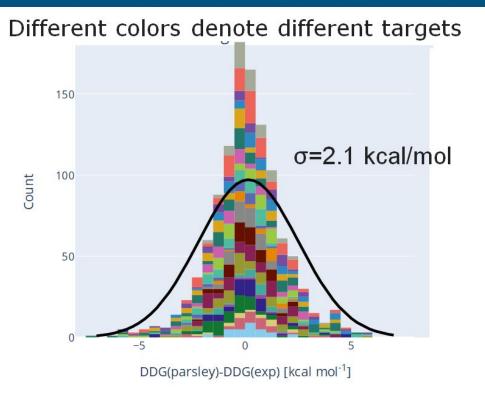
• Janssen/Other:

V. Gapsys et al., Large scale relative protein ligand binding affinities using non-equilibrium alchemy, Chem. Sci., 2020,11, 1140-1152 Laura Perez Benito et al., Predicting Activity Cliffs with Free-Energy Perturbation, J. Chem. Theory Comput. 2019, 15, 3, 1884–1895


• Best practices:

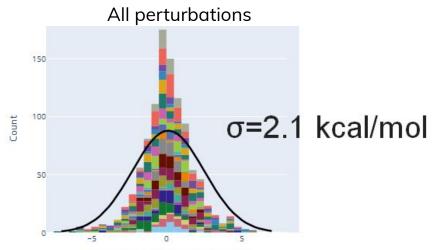
Hahn DF et al., Best practices for constructing, preparing and evaluating protein-ligand binding affinity benchmarks.arXiv:210506222 [physics.g-bio].2021 May:

Results for all perturbations using pmx and Parsley (OpenFF 1.0.0)



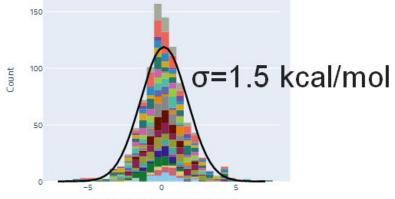
- Overview over all calculations performed
- Radial: exp. ∆∆G in kcal/mol
- Polar: difference between calc. and exp. ΔΔG, ΔΔΔG in kcal/mol

Most perturbations ($\Delta\Delta G$) deviate less than 1 kcal/mol from experiment


Abs. Error [kcal/mol]	# Perturbations	% of total
< 0.5	322	29
<1.0	592	52
<2.0	911	79
<3.0	1052	92
total	1149	100

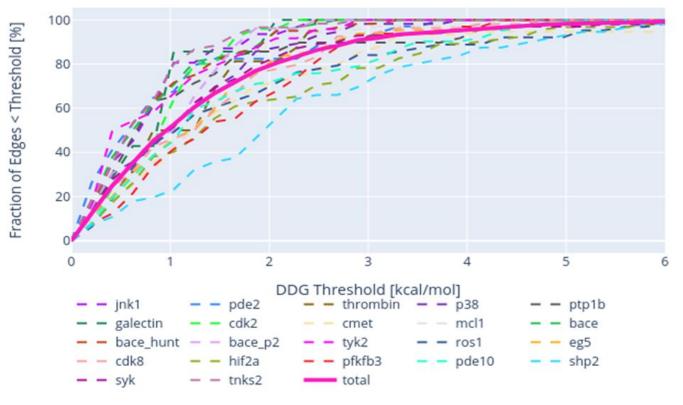
Origin of errors:

- Set-up (poses, charges)
- Sampling (simulation time)
- Model accuracy (Force Field)
- Experimental data


Results can be filtered based on different convergence metrics

DDG(parsley)-DDG(exp)[kcal mol⁻¹]

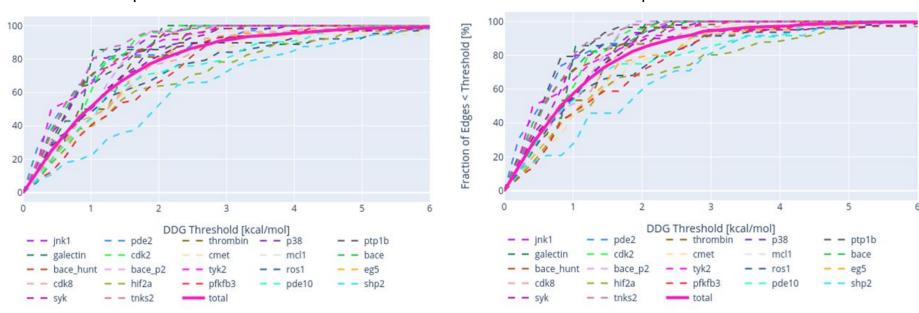
Abs. Error [kcal/mol]	# Perturbations	% of total		
< 0.5	322	29		
<1.0	592	52		
<2.0	911	79		
<3.0	1052	92		
total	1149	100		


Filtered perturbations

DDG(parsley)-DDG(exp) [kcal mol⁻¹]

Abs. Error	# Perturbations	% of total		
[kcal/mol]				
< 0.5	383	32		
<1.0	508	57		
<2.0	748	85		
<3.0	835	94		
total	885	100		

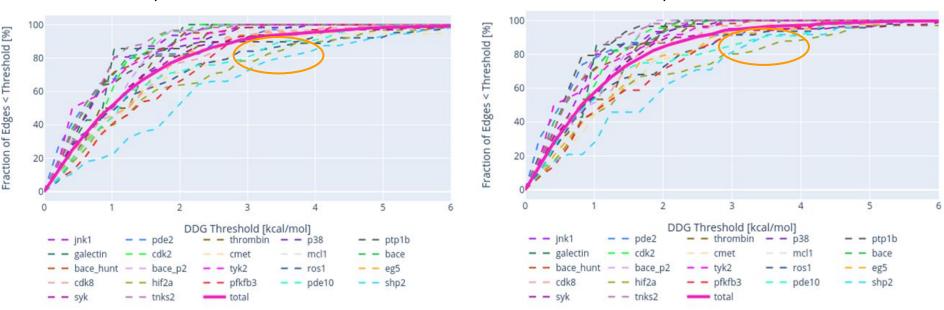
Number of outliers vary strongly per target



Filtering reduces outliers and are a good diagnostic tool

All perturbations

Filtered perturbations

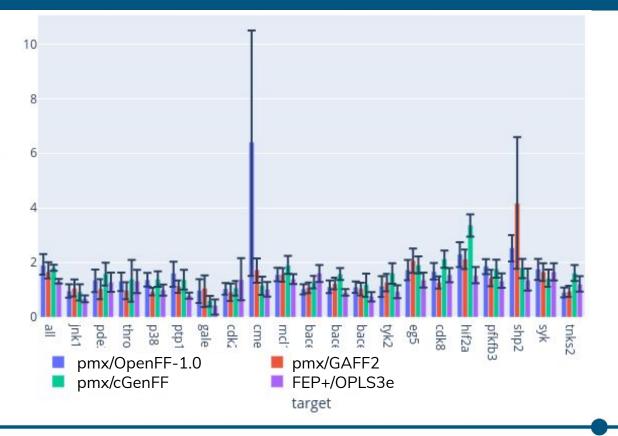


Filtering reduces outliers and are a good diagnostic tool

All perturbations

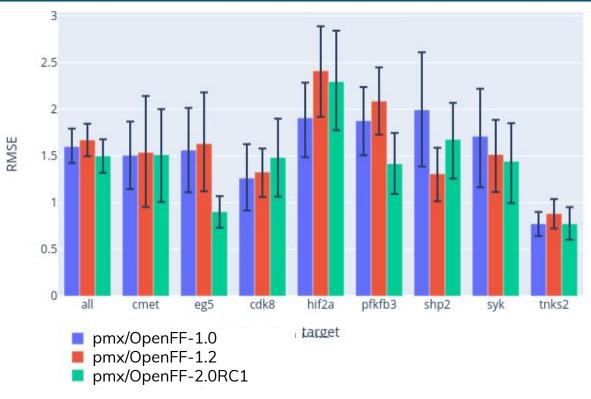
Filtered perturbations

HIF2a: set-up error (wrong poses, tautomers, charges, FF parameters) SHP2: convergence error (too short simulation time, too difficult perturbations)

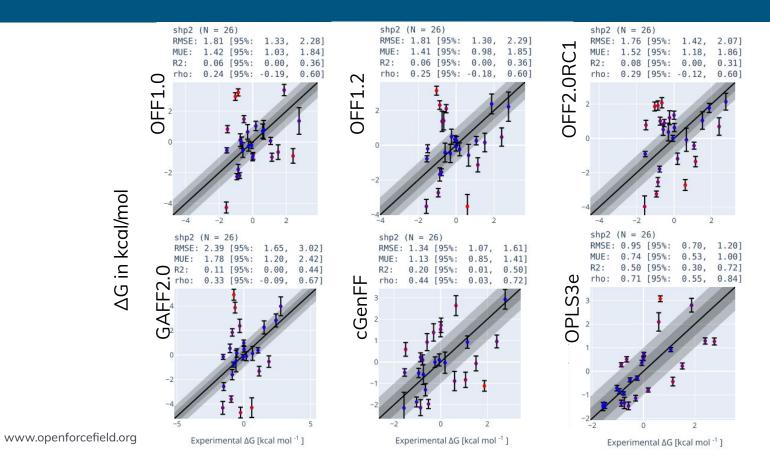

OpenFF-1.0 offers similar performance as other force fields

- RMSE based on ΔΔG in kcal/mol
- Error bars are 95% Cl
- OPLS3e is generally slightly, but non-significantly better

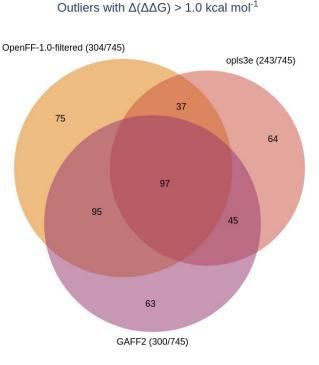
Vytas Gapsys

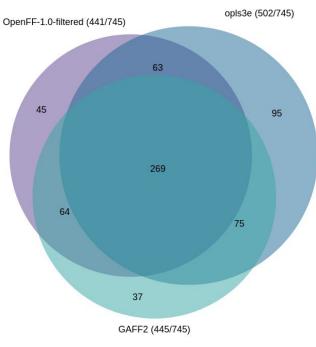

OpenFF-2.0-RC1 improved results over OpenFF-1.0

- RMSE based on ΔΔG in kcal/mol
- Error bars are 95% Cl
- OpenFF2.0RC1 is generally slightly, but non-significantly better

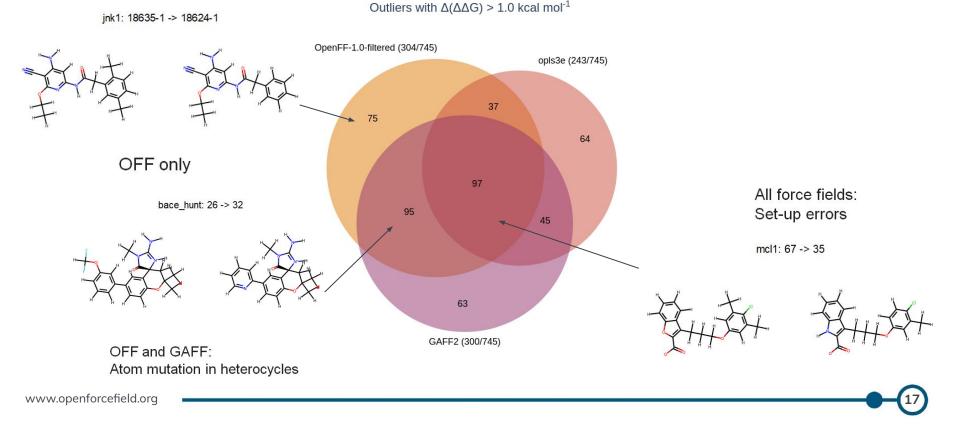


Vytas Gapsys


AG statistics might give a different perspective



Comparing the calculated sets to experiments shows that outliers are specific to force fields

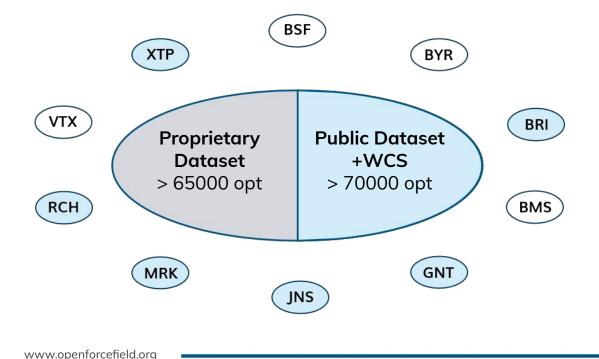


Successes with $\Delta(\Delta\Delta G) \le 1.0$ kcal mol⁻¹

Comparing the calculated sets to experiments can help finding issues

Conclusions/Discussion

Encouraging OpenFF results across all versions FF differences are often in the noise **FF** parameters of calculations Post Processing Analysis led to more observations perimental Analysis and detection of issues (e.g. structures Improved structure preparation) Binding FE Further work is needed to calculations automatize and increase reproducibility of RBFE calculations Simulation planning FF development should be alongside development of other aspects What other analyses/calculations \rightarrow would you like to see in future work?


Pharma Partners Small Molecule Benchmarking Season 1

Geometry Optimization Benchmarking Season 1 is complete

Geometry Optimization Benchmark - Season 1 has been officially kicked of on Jan. 22

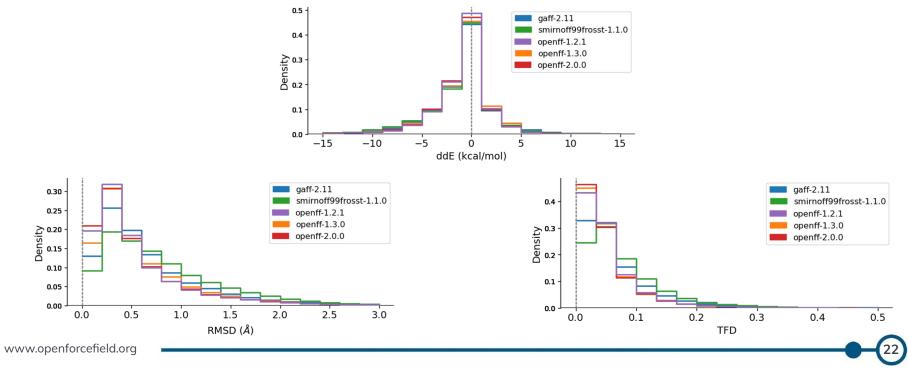
4 developers

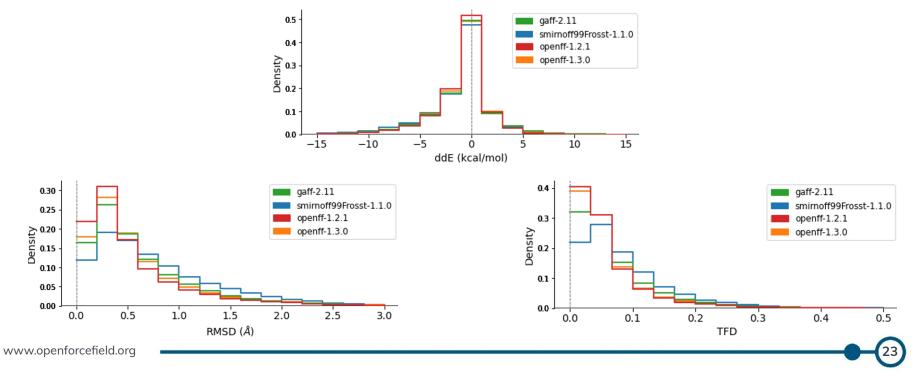
- David Dotson (OpenFF)
- David Hahn (OpenFF, Janssen)
- Jeff Wagner (OpenFF)
- Josh Horton (OpenFF, Cole Lab)

4 subject-matter experts

- Josh Horton (OpenFF, Cole Lab)
- Bill Swope (representing Genentech)
- Lee-Ping Wang (OpenFF, Wang Lab)
- Lorenzo D'Amore (OpenFF, Janssen)

OpenFF-2.0.0 (Sage) - the next generation of OpenFF force field


• OpenFF **Sage** commences the next generation of OpenFF force fields


Public Dataset Aggregated Results

• OpenFF-2.0.0 (SAGE) showed excellent performance when benchmarked against the Public OpenFF Industry Dataset

Parsley has been a significant improvement over Smirnoff

• OpenFF-1.2.1 showed good performance when benchmarked against the Proprietary OpenFF Industry Dataset

The workflow now supports optimizations with OPLS

During Season 1 thanks to David Hahn we rolled out the ability to execute optimization benchmarks with OPLS.

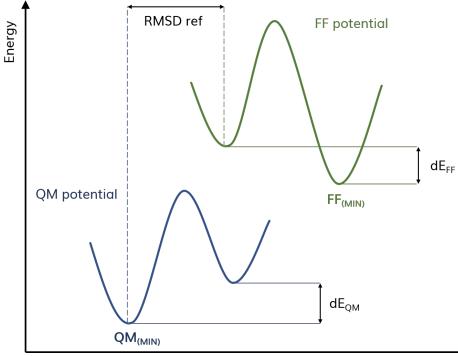
- The **openff-benchmark schrodinger** command tree allows the execution of optimizations using:
 - OPLS4 (Schrödinger release 2021-1 and later)
 - OPLS3e (Schrödinger release 2020-4 and earlier)
- Both custom and default parameters
- Same input/output behavior as **openff-benchmark optimize execute**
- **Requires Schrödinger binaries** (ffbuilder, macromodel) and an **active license**

Disclaimer: Every partner/client of Schrödinger has to independently get approval from Schrödinger before publishing the results.

Season 1 is complete

Manuscript

• Janssen will lead the manuscript development effort


Requested

• Optimizations with OpenFF-2.0.0 on proprietary dataset

Strongly encouraged

- OPLS4 (Schrödinger 2021-1) optimizations with both custom and default parameters on proprietary dataset
- OpenFF-2.0.0 results have been received from 2/10 partners.
- OPLS4 results have been received from 1/10 partners (+1 with default parameters)

Feature proposed were made available during Season 1

Energy comparison

- swope
 - $dE = (E_{FF,i} E_{FF,min})$
- lucas
 - $dE = (E_{FF,ref} E_{FF,min})$
- compare-forcefields

 $ddE = (E_{FF,i} - E_{FF,min}) - (E_{QM,i} - E_{QM,min})$

• match-minima

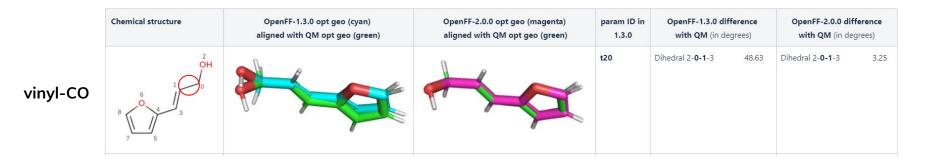
 $ddE = (E_{FFj} - E_{FF,ref}) - (E_{QM,i} - E_{QM,min})$

Conformational coordinate

Feature requested were made available during Season 1

0

• Code refactor now allows to run the analyses on different methods as separate task with a remarkable improvement in time consumption


done

It ran on the OpenFF Industry Public Dataset approx. 22 hours for 5 different FFs rather than 22*5 hours

Partners independently developed custom analyses

• Thomas Fox identified structural shortcomings (bonds, angles, torsion) for specific chemical groups optimized with openFF-1.3.0

Partner independently developed custom analyses

Chemical structure	OpenFF-1.3.0 opt geo (cyan) aligned with QM opt geo (green)	OpenFF-2.0.0 opt geo (magenta) aligned with QM opt geo (green)	param ID in 1.3.0	OpenFF-1.3.0 diffe with QM (in deg		OpenFF-2.0.0 diffe with QM (in degr	
			t47, t48	Dihedral 8- 9-10 -12 Dihedral 8- 9-10 -11	35.56 34.50	Dihedral 8- 9-10 -12 Dihedral 8 -9-10 -11	18.26
A D L D L D L D L D L D L D L D L D L D		Hà	t20	Dihedral 5- 6-7 -8 Dihedral 5- 6-7 -10	34.92 39.45	Dihedral 5- 6-7 -8 Dihedral 5- 6-7 -10	19.48 24.30

Partner independently developed custom analyses

Chemical structure	OpenFF-1.3.0 opt geo (cyan) aligned with QM opt geo (green)	OpenFF-2.0.0 opt geo (magenta) aligned with QM opt geo (green)	param ID in 1.3.0	OpenFF-1.3.0 dif with QM (in de		OpenFF-2.0.0 dif with QM (in de	
			196	Dihedral 3- 8-9 -10 Dihedral 7- 8-9 -10	23.39 24.53	Dihedral 3- 8-9 -10 Dihedral 7- 8-9 -10	4.9 5.3
		tit	t86, t96	Dihedral 1- 3-4- 5 Dihedral 3- 4-5 -6 Dihedral 3- 4-5 -10	31.07 44.78 42.26	Dihedral 1- 3-4- 5 Dihedral 3- 4-5 -6 Dihedral 3- 4-5 -10	10.5 10.4 8.7

aryl-methoxy

Partner independently developed custom analyses

Chemical structure	OpenFF-1.3.0 opt geo (cyan) aligned with QM opt geo (green)	OpenFF-2.0.0 opt geo (magenta) aligned with QM opt geo (green)	param ID in 1.3.0	OpenFF-1.3.0 di with QM (in d		OpenFF-2.0.0 di with QM (in de	
			t86, t96	Dihedral 0- 1-2 -3 Dihedral 0- 1-2 -7	49.55 47.50	Dihedral 0- 1-2 -3 Dihedral 0- 1-2 -7	4.66
12 CI 5 6 7 8 8 4 7 0 9 10 CI CI 10 CI 10 CI 10 CI CI CI CI CI CI CI CI CI CI CI CI CI	- Ale a		t86, t96	Dihedral 1- 0-2 -3 Dihedral 1- 0-2 -7	39.20 38.11	Dihedral 1- 0-2 -3 Dihedral 1- 0-2 -7	12.94

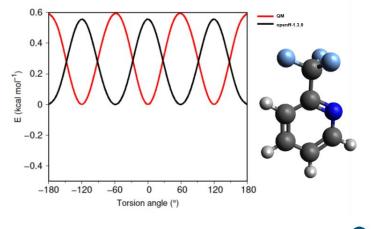
- Benchmarking is an essential part within the OpenFF infrastructure
- Geometry optimization benchmarking almost fully automated
- OpenFF-2.0.0 Sage shows promising results
- Important insights shared by the OpenFF community

- Q&A Time
- Break (5 min)
- Interactive session (45 minutes)
- Q&A Time

- @openforcefield
- www.openforcefield.org

5th open force field follow-up workshop Sept. 1, 2021 | Interactive session

Interactive session



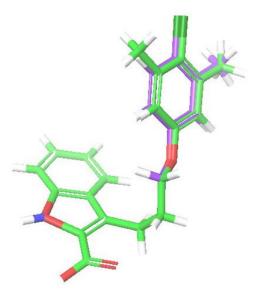
- Download the material: <u>https://github.com/openforcefield/2021-benchmarking-workshop</u>
- Follow the installation instructions:
 - 1. Clone the repository

git clone git@github.com:openforcefield/2021-benchmarking-workshop.git cd 2021-benchmarking-workshop

- 2. Install and activate the conda environment conda env create -f env.yml conda activate 2021-benchmarking-workshop
- 3. Start up the jupyter notebook

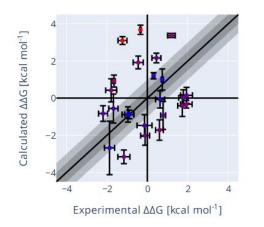
jupyter notebook workshop.ipynb

Currently still a home-brewed version: <u>github.com/dfhahn/pmx/tree/py3</u> It misses protein/ligand preparation and docking/alignment The OpenFF & OpenFE communities are working towards a industry-standard solution for the community

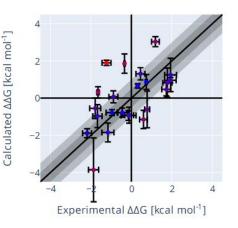

- OpenFF-1.X.X parameterization and conversion to GROMACS topologies
- Creation of hybrid molecules/topologies with pmx package
- Protein FF: AMBER ff99sb*ILDN [1]
- Solvation / 150 nM NaCl with GROMACS gmx
- Run times:
- 6 ns per end state in water/complex
- Extraction of 80 frames per end state and 50 ps non-equilibrium runs from A->B and B->A (total 8 ns in water/complex)
- 3 repeats (20 ns each) of the above = 60 ns sampling per perturbation
- Analysis of work distributions (MBAR) with pmx

[1] Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins 2006, 65 (3), 712–725. https://doi.org/10.1002/prot.21123.

Inspection leads to better agreement with experiment: MCL-1

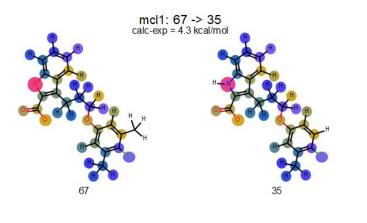


Ambiguous poses: meta-substituted phenyl rings

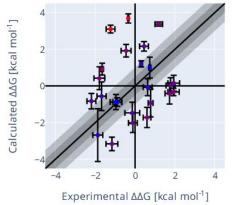

Original

mcl1 (N = 24)
RMSE: 2.03 [95%: 1.59, 2.45]
MUE: 1.74 [95%: 1.35, 2.18]

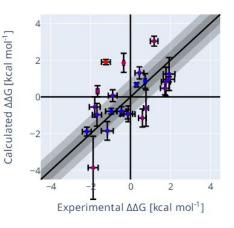
Flipped rings


mcll_alt (N = 23)
RMSE: 1.33 [95%: 0.98, 1.67]
MUE: 1.11 [95%: 0.83, 1.42]

Inspection leads to better agreement with experiment: MCL-1

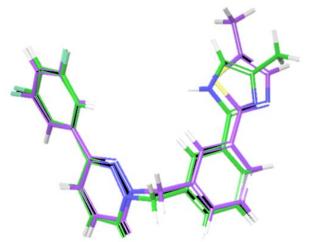


Ambiguous poses: meta-substituted phenyl rings

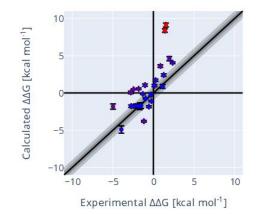

Original

mcl1 (N = 24)
RMSE: 2.03 [95%: 1.59, 2.45]
MUE: 1.74 [95%: 1.35, 2.18]

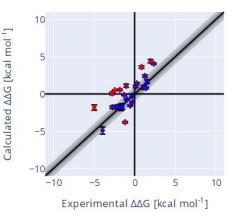
Flipped rings


mcl1_alt (N = 23)
RMSE: 1.33 [95%: 0.98, 1.67]
MUE: 1.11 [95%: 0.83, 1.42]

Inspection leads to better agreement with experiment: c-MET



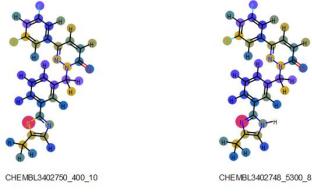
Ambiguous poses: rotation of 5-ring/tautomeric state


Original

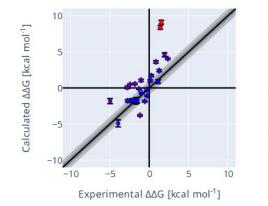
cmet (N = 25)
RMSE: 2.66 [95%: 1.60, 3.73]
MUE: 1.90 [95%: 1.21, 2.73]

Different tautomer and ring flip

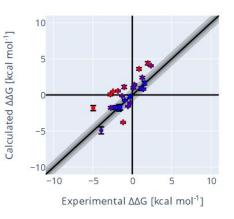
cmet (N = 25)
RMSE: 1.66 [95%: 1.27, 1.99]
MUE: 1.32 [95%: 0.93, 1.72]



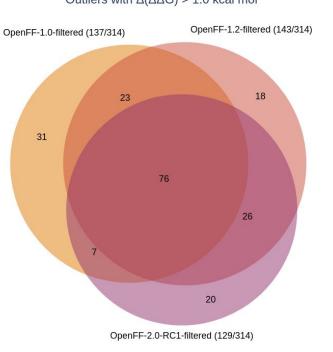
Inspection leads to better agreement with experiment: c-MET


Ambiguous poses: rotation of 5-ring/tautomeric state

cmet: CHEMBL3402750_400_10 -> CHEMBL3402748_5300_8


 $\Delta\Delta G(exp)=1.5 \text{ kcal/mol}$ $\Delta\Delta G(original)=9.1 \text{ kcal/mol}$ $\Delta\Delta G(improved)=1.7 \text{ kcal/mol}$ Original

cmet (N = 25)
RMSE: 2.66 [95%: 1.60, 3.73]
MUE: 1.90 [95%: 1.21, 2.73]

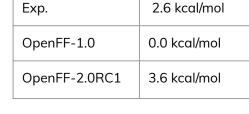

Different tautomer and ring flip

cmet (N = 25)
RMSE: 1.66 [95%: 1.27, 1.99]
MUE: 1.32 [95%: 0.93, 1.72]

OpenFF versions have mostly same outliers and successes

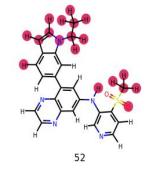
Outliers with $\Delta(\Delta\Delta G) > 1.0$ kcal mol⁻¹

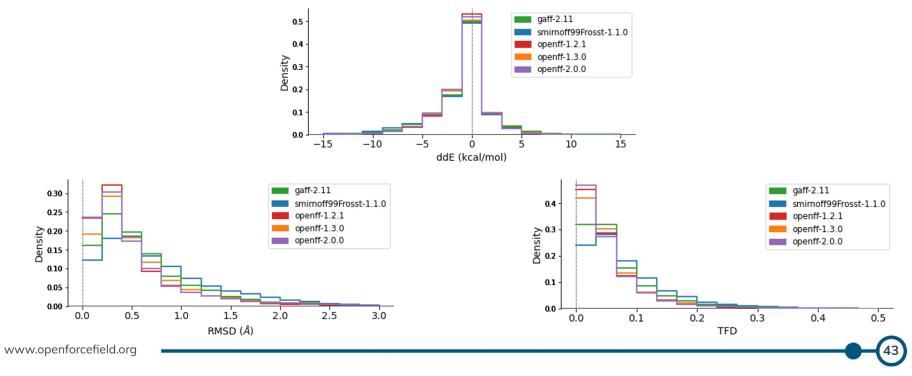
OpenFF-1.0-filtered (177/314) OpenFF-1.2-filtered (171/314) 20 26 113 31 18 23 OpenFF-2.0-RC1-filtered (185/314)

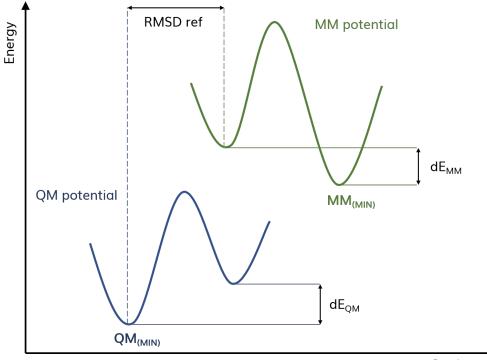

Successes with $\Delta(\Delta\Delta G) \le 1.0 \text{ kcal mol}^{-1}$

Differences between OpenFF-1.0 and OpenFF-2.0RC1

Exp.	0.3 kcal/mol
OpenFF-1.0	-3.3 kcal/mol
OpenFF-2.0RC1	0.3 kcal/mol






Proprietary JNS+RCH Dataset including OpenFF-2.0.0

• OpenFF-2.0.0 shows similar performance compared to benchmarks against the Public Openff Industry Dataset

Feature requested were made available during Season 1

Geometry comparison

- compare-forcefields
 RMSD, TFD [FF_i / QM_{min}]
- match-minima
 - RMSD, TDF [FF_j / QM_{min}]
 - swope RMSD [FF_i / QM_{min}]
- lucas
 - RMSD [FF_{ref} / FF_{min}]