Abstract

FPGA devices used in the HPC context promise an increased energy efficiency, enhancing the computing
systems Flop/W rate. This work compares an FPGA, a GPU implementation and a CPU implementation of a
conjugate gradient solver in terms of both time to solution and energy to solution metrics.

The starting point is MetalWalls, a molecular dynamics code developed at Sorbonne University in Pr. M,

Salanne's team, capable of computing accurately the charge and discharge cycles of supercapacitors
(energy storing devices) [11. In the context of the H2020 EXA2PRO project, a miniapp has been derived from
the F90 pure MPI production code, extracting the core of the electrostatic computation.

The FPGA version has been implemented with the Data Flow Engine (DFE) software toolchain developed by
Maxeler. Additionally, since FPGAs can perform arithmetic operations with any number of bits instead of the
standardized IEEE 32 and 64 bits floating point format, the miniapp could be further accelerated using
optimised custom number formats. Thanks to an accuracy analysis based on comparisons with quadruple
precision runs, this acceleration could be achieved without decreasing the computed solution accuracy.
Finally, the original CPU, the original GPU and the developed FPGA implementations could be compared on
Juelich Computing Centre's computing systems and the Piz daint system from CSCS.

Context

METALWALLS is a
production  code  [2]  dedicated to
electrochemical systems simulation. In  this
contexte electrostatic forces play an important
role and their computations are based on an
ewald summation. The heart of the code is the
computation of a matrix-free conjugate
gradient that finds the charge distribution on
electrodes such their respective potentials
remain constant.
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the number of atoms and M the number of
Modes. At each iteration of the conjugate
gradient, every kernel contribution are summed
to compute the electrostatic potential. This
process is repeated until the target residue is
reached. This application is mostly CPU bound
with a 60MB memory footprint. A miniapp was
extracted from this production code, keeping
only the computing kernels and the conjugate
gradient algorithm. The CPU implementation

[[sera o

OpenACC

Intel Haswell 12 cores on a cray machine (PIZDAINT

Average power requirement

Time per CG iteration (s)

Average Power consumpti

Haswell Skylake FPGA P100

Haswell
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In terms of raw performance, the FPGA implementation is faster than
both CPUs and is not far from the GPU's performance. The P100 is
better by 50% while the FPGA is faster than both tested CPUs by a

factor of 3 ( vs Skylake) and 18 (vs Haswell).

Conclusion

This work compares the original CPU and GPU implementations of a matrix free conjugate gradient that
minimises the total energy of a realistic electrochemical system with FPGA implementations.

The FPGA implementations use the Maxeler software environment and make extensive use of the on-chip
memory such that the code is not limited by the memory bus between the FPGA and its attached DDR
memory.

A numerical accuracy study has enabled the usage of an intermediate floating point number representation
using 40 bits, lying between the standard single and double IEEE754 representations, without damaging the
result of the algorithm.

The comparisons have been performed with a production test case (42508 atoms). Time and energy
measurements have been performed for all CPU, GPU and FPGA runs. PizDaint, a Cray machine at CSCS in
Switzerland, has been used for CPU and GPU runs. Jumax, a Maxeler machine at JSC in Germany, has been
used for FGPA runs. These tests reveal that the FPGA is faster than both CPUs and since it also requires a lot
less electrical power to deliver the same results, these two features leads to a better efficiency, here the
number of iterations per second and per Watt metric. This better efficiency holds true compared to a GPU with
the same transistor size technology. This factor is even more impressive taking into account it was compared
against highly optimised production code. FPGA technology is, in our opinion, a clear candidate to be part of
exascale systems.

FPGA

Numerical accuracy analysis

The physical model used in Metalwalls uses a parameter to determine which computations are done in the
Fourier space or in the real space. Theoreticallyit should not impact the result but in practice it does. In
order to estimate the numerical accuracy required by the physical model, a quadruple precision run was
done at the reference parameter. The solutions computed in Double Precision (DP) and single precision (SP)
were then compared to it. An average of the error at
different parameter values was also done to give an
estimate of the physical model numerical accuracy.
As expected SP is not accurate enough whereas the
accuracy from DP is more than what is needed by
the model which is around 1e-7. With the FPGA
implementation, the number of bits used to
represent floating numbers could be trimmed from
64 (11 bits exponent ,53 mantissa) down to 40
(8,32) while leaving a large margin of error even if it
plateaus around 1e-11. This raises an interesting
problem as to what bit size is optimal and how much
the target residue, the stop criterion of the CG,
should be changed since with the FPGA, one can
optimize this parameter while on a CPU one would
be limited to SP and DP.
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FPGA Implementation

Each kernel takes one SLR (super logic region) in order for the design to fit on one chip

This implies a lower denominator approach where the most ressource hungry of the kernels will limit the
other kernels ressource usage. Indeed since all kernels are running at the same time on the chip, they need
tousea similar number of clock ticks to be synchronized.

On chip memory is heavily used in order to avoir using the external memory as it makes it harder to meet
timings. A balance between the degree of parallelism and the frequency used is needed as a higher
frequency makes meeting timing at compile time harder while increasing the parallelism increases the
amount of chip resources used which also makes it harder for timings to be met.

The balance was found in our case at 300 MHz.
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We introduce the number of iteration per second per Watt as a metric
for the power efficiecy of the computations done. Indeed the good
performance of the FPGA implementation combined with its low
power consumption makes it a lot more energy efficient by a factor of
three compared to the P100, by a factor over 14 compared to the
skylake processor and by a factor over 66 compared to the Haswell
processor.

Future works and perspectives

- Publish the results from the multiple FPGAs implementations.
- New test case: Acceleration of a hydrodynamic code

- Hybrid (CPU + FPGA) implementation with STARPU

- Comparison to other platforms of development (oneAPI, VITIS)
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