
An Action Interface Manager for ROSPlan

Stefan-Octavian Bezrucav,1 Gerard Canal,2 Michael Cashmore,3 Burkhard Corves1

1 Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University
2 Department of Informatics, King’s College London

3 Department of Computer and Information Sciences, University of Strathclyde

Abstract

Task planning and task execution are two high-level robot
control modules that often are working with representations
of the scenario at different levels of abstraction. Thus, a
further mapping module is required to connect the abstract
planned actions to the robot-specific algorithms that must be
called in order to execute these actions.
We present a novel implementation of such a module that al-
lows a user to define this mapping for all actions through a
single configuration file. This greatly reduces the amount of
effort that is required to integrate an automated planner with
a robotic platform.
This module has been integrated as an Action Interface of the
automated task planning framework ROSPlan, and includes a
Graphical User Interface though which the configuration file
can be easily generated and updated. The use of the interface
is demonstrated in two scenarios: with robot actors possess-
ing only a single action, and a more complex scenario with
multiple agents and types of actions.

1 Introduction
Task planning is the process of determining the actions that
must be executed, the order in which they should be dis-
patched, and the actors that should carry them out in order
to achieve the set goals. This process is usually done on an
abstract and simplified representation of the considered sce-
nario. A complete representation of the environment, the ac-
tors, and their possible actions is not feasible for the plan-
ning process as the solvers are not capable of handling that
much information. On the other hand, the execution of the
planned actions, whether in a real or simulated scenario,
must consider these features and interactions. Thus, a flex-
ible, but yet robust mapping between the abstract planned
actions and their execution is required.

In this paper, we present the description of such a mapping
interface for actions of plans generated with automated plan-
ning approaches and written in the Planning Domain Defi-
nition Language (PDDL) (McDermott et al. 1998). Further-
more, we describe how it has been integrated in the state-of-
the-art task planning framework ROSPlan (Cashmore et al.
2015). The strength of this interface is that the mapping can
be completely defined through a single configuration file, re-
ducing the need for a hard-coded interface between PDDL
action and action implementation. Moreover, this configura-

tion can be generated through the use of a Graphical User
Interface.

In the next section we provide some background on the
Robot Operating System (Quigley et al. 2009) (ROS) that
is necessary to understand the particulars of interfacing ac-
tions. In Section 3, we analyze how different frameworks
handle this mapping process in simulated or real robotic ap-
plications working with ROS. In Sections 4 and 5 we present
the implementation of our action interface. The aim of this
interface is to reduce the effort required to interface PDDL
actions with a ROS action implementation, while maintain-
ing flexibility in plan execution. This benefit is demonstrated
in two simulated robotic scenarios described in Section 6.
The Graphical User Interface is presented in Section 7.

2 Background
The Robot Operating System (ROS) (Quigley et al. 2009)
is one of the standard meta-operating systems used in the
robotic community. It sustains the integration of differ-
ent algorithms in so-called ROS nodes and provides dif-
ferent structures for communicating data between these
nodes. The basic communication structures are the top-
ics, over which messages are routed according to the pub-
lish/subscribe paradigm, and the services that are based
on the request/reply paradigm (ROS.org 2021). In ad-
dition, actionlibs are a complex communication strategy
based on topics, that provide long-term non-blocking re-
quest/feedback/reply structures.

The robotic software realising the action execution con-
sidered in this paper is implemented in ROS as nodes,
each of which offers either a service or actionlib interface.
Through these communication structures, the algorithms in-
tegrated in each ROS node can be called or triggered and
responses can be received and further processed. If it is re-
quired to call or trigger multiple ROS nodes in a given se-
quence, this can be realized through a Moore Finite State
Machine (FSM) (Moore 1956), whose states represent such
calls or triggers and whose transitions are dependent on the
obtained responses.

Different task planning frameworks integrated in ROS use
the above presented communication structures to trigger the
concrete execution of the planned actions on each involved
actor. The ROSPlan framework (Cashmore et al. 2015) is
composed itself of different ROS nodes. The Plan Parsing



node is responsible for parsing the generated plan file in an
internal C++ representation and for sending it to the Dis-
patcher node. The latter selects actions to be executed and
sends them over a topic to Action Interface nodes that inter-
pret the command and then interface with the corresponding
robotic algorithms through services or actionlibs. Once the
respective executions have finished, the interface passes this
information to the dispatcher in form of an action feedback
message. The dispatcher then decides how to continue.

Action interfaces are typically implemented per robotic
algorithm with which they interface. Given the breadth of
different actions offered by different robots within ROS,
applying a framework for task planning such as ROSPlan
might require the implementation of many such interface
nodes. The contribution of this paper is a single light-weight
node that is able to interface any action through the use of a
configuration file.

3 Related Work
In this section we discuss how different frameworks handle
the mapping of planned actions to their implementations in
ROS. While there are many approaches to plan representa-
tion and execution discussed here, they must all handle the
problem of interfacing with the services and actionlibs pro-
vided by ROS libraries.

In the modified ROSPlan framework developed by Sanelli
et al. (2017) the generated plan is transformed into a Petri-
Net Plan (PNP) and then passed to the PNP executor. The
latter communicates with the software of the robot over the
PNP Service and PNP Action Server modules, through ser-
vices and actionlibs. Another modified version of the ROS-
Plan is presented in Harman et al. (2017). The authors have
adapted the framework to communicate not only with the
ROS nodes of the integrated robots, but also with IoT de-
vices from the environment. They have replaced the ROS-
Plan Action Interfaces nodes with Action Executor nodes,
but use the same communication strategies to the robots and
the IoT devices, over ROS actionlibs.

In other works, as in the MaestROB framework (Munawar
et al. 2018), the communication to the low-level robot con-
trollers is done over the Intu middleware and corresponding
ROS-Bridges. The communications structures are similar, as
they are based on the publisher/subscriber concept. PLAT-
INUm is another framework that uses the ROS-Bridges to
send commands to the Motion Planning module of the se-
rial manipulator and to receive the execution feedback from
it (Cesta, Orlandini, and Umbrico 2018). ROS-TiPlEx (Vi-
ola et al. 2019), is a tool that allows the interaction between a
planning and an expert in robotics for designing the planning
problem and corresponding low-level control strategies for
dispatching the planned actions. ROS-TiPlEx uses a time-
line planning approach, while the orchestration of the low-
level controls to ROS modules is based on FSMs. The tool
comes with a GUI that simplifies the configuration process
and improves the information sharing between the experts.

In Darvish et al. (2018), the FlexHRC architecture is pre-
sented. Similar to the above frameworks, it has a Robot Ex-
ecution Manager that receives the high-level plan and sends
individual actions to the Controller. The latter sends further

low-level commands to the robot itself, which returns sen-
sory data in form of a feedback, using similar communica-
tion structures to ROS. Furthermore, the Controller maps the
received actions to one low-level command or to a sequence
of low-level commands, similar to a FSM action interface. A
similar approach for grouping atomic actions in compound
skill, which are hierarchical and concurrent state-machines,
is utilized in (Johannsmeier and Haddadin 2017). In a sim-
ilar manner, in (Munawar et al. 2018) they refer to the exe-
cution triggered by only one call as a gesture, while the ex-
ecution of a sequence of such calls integrated in a structure
equivalent to an FSM is named a skill.

The contribution of this paper is a general solution, in
ROS, for the action interface component that all of these re-
lated approaches must implement. Specifically we present a
highly flexible action interface node for the ROSPlan frame-
work. Through the new action interface the concrete imple-
mentation of planned actions can be easily and intuitively
configured. The interface allows the creation and the modi-
fication of execution strategies, including complex ones such
as hierarchical finite state machines, in a user-friendly man-
ner. Only a configuration file is required, which can be cre-
ated through user interface, and no code must be generated.

4 ROSPlan Action Interface
In this section, we discuss the limitations of the existing
action interface used in ROSPlan. The initial implementa-
tion of the mappings between the abstract PDDL actions and
the low-level concrete ROS modules is through C++ code.
Users could also implement such custom interfaces between
ROSPlan and lower-level executors in the language of their
choice (i.e., Python) handling all the updates to the knowl-
edge base and planning state, which are handled in ROS-
Plan’s abstract C++ interface. For each action defined in the
PDDL domain file of the planning instance, one action in-
terface had to be defined as a ROS node. This action in-
terface integrates the concrete implementation that interacts
with the different ROS modules. For example, consider the
action interface of a move PDDL action. This contains the
generation of a ROS goal message and a call to the MOVE
BASE actionlib of the actor, which achieves that goal. Fur-
ther strategies, as cleaning the map in case that the first ex-
ecution command to MOVE BASE has failed, must also be
hard-coded into this interface.

Each planned PDDL action is a grounded action. This
means that it should be executed for the specific values of its
parameters. For example, the move action might have as pa-
rameters the actor agent, the starting pose from and the goal
pose to. This implies that the move action interface must be
able to interpret this and generate the correct ROS action-
lib goal for all possible variations of these parameters. This
challenge is also tackled in the hard-coded implementation,
often with the definition and the integration of an action-
specific configuration file. In the example case, the move ac-
tion interface takes as input a poses configuration file, where
all possible values of the to parameter are mapped to specific
coordinates required to generate the corresponding MOVE
BASE goal.



Although the actual action interfaces are apparently easy
to generate, they actually have some important limitations.
The most relevant one is in scalability. For each new PDDL
action defined in the domain file, a new ROS node must be
generated. Moreover, if the PDDL action has one or more
parameters whose values are relevant for the execution, a
specific configuration file must also be created.

Other issues are the reusability and readability. Each ac-
tion interface may require an implementation that is unique
to both the action implementation and the planning domain,
as well as a configuration file that is unique to the plan-
ning instance. Thus, it is hard to define and maintain a clear
structure that can be easily understood and modified by new
users, or reused in case new PDDL actions are defined. As a
consequence, code replication is common among interfaces
for similar actions. This also complicates the code maintain-
ability.

5 Action Interface Manager
The issues presented in the previous section motivated the
remodelling of the ROSPlan action interfaces. Their new
structure and the advantages that they bring with them are
detailed in the following.

Implementation
This new action interface has been implemented in Python.
Similar to ROSPlan’s sensing interface (Canal et al. 2019),
we have exploited the Python’s language reflection capabil-
ities to load at run-time all the required modules to run the
low-level controllers.

As depicted in Figure 1, we developed an action interface
manager (AIM) that loads the single configuration file and
creates the corresponding interfaces to different low-level
modules for each of the actions. This object is also in charge
of receiving the action dispatch messages that indicate which
(grounded) PDDL action should be executed, and starting
the corresponding interface. When the action execution fin-
ishes, the interface informs the dispatcher about the outcome
of the execution.

We have developed three action interface types: Action-
lib, Service, and FSM. However, our architecture has been
designed such that it is easy to extend to handle other types
of interfaces in a similar manner, such as to IoT devices, pro-
vided users write ROS wrappers for those APIs. In addition
to specifying the type of each interface, the configuration
file describes how each interface should construct service
requests and actionlib goals, as well as their expected feed-
backs or results. In this specification, PDDL parameters and
values stored in the ROS parameter server can be accessed
using the syntax ($pddlparam x) and ($rosparam
x). This allows the same action interface configuration to
scale to actions with many possible parameter variations
without requiring additional lines. The interface types are
described at a high-level below, followed by example con-
figurations. The complete specification of the configuration
file is presented in Appendix A.

Service and Actionblib action interfaces We provide in-
terface implementations to the basic ROS communication

Action
interface
Manager

Base Action
interface

Service
Action

interface

Action Lib
Action

interface

FSM
Action

interface

0,n

1

1,n

1

Figure 1: UML Diagram of the the Action Interface classes

protocols: actionlibs and services. They are both provide re-
quest/reply interaction, the former non-blocking and the lat-
ter blocking.

Both mechanisms require a request or goal to be achieved,
and send back a response with the result once finished.
The configuration file describes (a) the address of the ser-
vice/actionlib, (b) how the default requests are constructed
based on the PDDL parameters of the action, possibly us-
ing data from the ROS Parameter Server, (c) how these de-
fault requests may be overridden for specific combinations
of PDDL parameters, for which a different request may be
required, and (d) a description of the expected response to
a service or actionlib call that indicates the action has been
successfully executed.

When a planned action is dispatched, the AIM retrieves
the configuration to run the action, and passes it to the corre-
sponding interface. Then, the corresponding interface builds
the request message, calls the underlying interface, checks
its response when the action execution is completed, and re-
turns the result to the AIM. If it has been defined, the ex-
pected response is used to determine whether the PDDL ac-
tion has succeeded.

FSM action interface The third interface describes ac-
tion executions as a Finite State Machine (FSM), allowing
for more complex action definitions. The action interface
defines a set of named states that could be executed, each
linked to an action interface, including another nested FSM.
Each state defines the transitions to other states in the case of
successful or failed execution. Each transition defines both
the next state that will be executed (by name or to the special
state “goal state” that completes the FSM), and the PDDL
effects that will be applied before transitioning to the next
state. The formulation of an FSM action is described fully
by Bezrucav and Corves (Bezrucav and Corves 2020). The
use of the composite design pattern allows the reuse of ex-
isting interfaces, while remaining powerful enough to create
complex hierarchies of state machines.



Integration in ROSPlan
Figure 2 depicts the interactions with different components
of the ROSPlan framework. The new action interface is an
independent node subscribed to the ROSPlan Dispatcher
topics to be informed when actions need to be executed, and
publishes feedback with the result of the execution.

The new node is fully compatible with existing action in-
terfaces, which can be run alongside the new action interface
manager. The dispatch message of an action will be ignored
by the AIM if it is not in the configuration file, and will be
picked by the corresponding legacy action interface, which
will start the action execution.

PDDL
Plan

ROSPlan
Dispatcher

Action
Interfaces

Config

Action
Interface
Manager

ROS
Param Server

ROS
Module 1

ROS
Module n

...

Figure 2: Interactions between the the ROSPlan framework,
involved robots, ROS Parameter Server, plan file, and action
interface configuration.

6 Configuration Examples
All task planning frameworks for robotics created so far con-
tain a module through which the planned actions are mapped
to their concrete execution. Because there is no standard for
the development process of such a module, the implemen-
tations are diverse. This issue makes it hard to determine a
set of indicators with respect to which such modules from
different projects can be compared. With this motivation,
in this section we demonstrate exactly what is required to
map between the PDDL actions and their concrete execu-
tion with the AIM. Namely, the user needs to generate the
configuration file. Two examples of the configuration files
are presented:

1. The Navigation Scenario is a relatively simple scenario
with only one PDDL action.

2. In the Factory Scenario, the execution of seven different
complex actions are configured, for two different types of
actors in a factory.

Navigation Scenario
In the navigation scenario, one or more mobile base robots
are tasked with navigating around a known map. The goal

1 ;; Move between any two waypoints, avoiding terrain

2 (:durative-action goto_waypoint

3 :parameters (?v - robot ?from ?to - waypoint)

4 :duration ( = ?duration (distance ?from ?to))

5 :condition (and

6 (at start (robot_at ?v ?from)))

7 :effect (and

8 (at end (visited ?to))

9 (at start (not (robot_at ?v ?from)))

10 (at end (robot_at ?v ?to)))

11 )

Listing 1: The goto waypoint PDDL action of the Naviga-
tion Scenario.

1 actions:

2 - name: goto_waypoint

3 interface_type: actionlib

4 default_actionlib_topic: /($pddlparam

v)/move_base↪→
5 default_actionlib_msg_type:

move_base_msgs/MoveBase↪→
6 default_actionlib_goal:

7 target_pose.header.frame_id: "map"

8 target_pose.pose.position.x: ($rosparam

/wp/($pddlparam to))[0]↪→
9 target_pose.pose.position.y: ($rosparam

/wp/($pddlparam to))[1]↪→
10 target_pose.pose.orientation.w: 1

Listing 2: Complete configuration for the navigation sce-
nario.

of the automated planning problem is that each waypoint
has been visited once by any robot, and from a planning per-
spective is very simple. The single PDDL action is named
goto waypoint, and is depicted in Listing 1.

The execution of this action is carried out by the MOVE
BASE module. Listing 2 shows the complete configuration
file for the scenario, which connects the goto waypoint ac-
tion with MOVE BASE. The action configuration specifies
the actionlib topic for the action, based on the robot PDDL
parameter (line 4). The target coordinates of the MOVE
BASE action are set from values stored in the ROS parame-
ter server, using the PDDL parameter to as key (lines 8-9).
This is everything a user needs to supply to connect ROS-
Plan with MOVE BASE. As an informal comparison, the pre-
existing C++ interface to MOVE BASE consists of 192 lines
of code across two files and must be configured separately
for each robot.1 This stark contrast illustrates the utility of
the new interface: it is fast and low effort (in this case 10
lines) to interface actions and assemble an automated plan-
ning system for ROS.

1The preexisting MOVE BASE interface in the ROSPlan reposi-
tory https://github.com/KCL-Planning/rosplan demos/tree/master/
rosplan demos interfaces/rosplan interface movebase.



Factory Scenario
The AIM is demonstrated in the simulated Factory Scenario2

developed as part of the Sharework3 project. In this scenario
there are two agents, a human and an Autonomous Guided
Vehicle, which can execute seven different complex actions:
move, load, unload, attach tool, detach tool, manipulation
action 1 and manipulation action 2. For the move action only
one PDDL durative-action is defined, while for the other
six actions two PDDL durative-actions are created, one for
each type of actor. Furthermore, each of these actions re-
quires a multiple-step execution with failure-catching struc-
tures. Multiple-step execution means that the execution of
the planned action requires calling multiple ROS module
in sequence to successfully execute. Failure-catching struc-
tures means that for the safe and robust execution of the ac-
tion, failed execution of any step requires additional steps to
return the system to a safe state from which further planning
can occur. Given these requirements, a FSM action interface
is configured for each PDDL action.

An excerpt of the configuration for the move PDDL action
is depicted in Listing 3. As mentioned above, a finite state
machine is required to describe the sequence of basic actions
that need to be executed in order to reach the goal state or
to prevent error situations. In Listing 3 the first two states
of that FSM are presented. The execution of the first state
(lines 5-17) is independent on the grounding of the PDDL
move action. Therefore, the default values for the message
type, topic, goal and result are set (lines 7 - 12). The default
behaviour is to call a service named “action failure”. Such
services are helpful in simulations, where failures may need
to be generated on purpose.

Upon success of the first state (lines 14 - 15), the ex-
ecution is continued with the state ba1. The execution of
state ba1 (lines 18 - 31) is dependent on the grounded agent
and to parameters of the move PDDL action (line 21). This
state performs an actionlib call to MOVE BASE for a given
set of parameters. For example, given specific parameters of
the PDDL action (line 23) the goal description is generated
with coordinates corresponding to to and sent on topic cor-
responding to the agent (lines 26 - 28).

This is only a snippet of the entire configuration for the
move PDDL action that shows the high flexibility of the
new action interfaces in describing complex and robust be-
haviours for different execution variants. In order to bet-
ter comprehend this complexity, Figure 3 shows half of the
FSM action interface for the move PDDL action. In this
graph, states are represented as nodes and transitions be-
tween them are represented as edges. This picture also il-
lustrates the failure-catching behaviour. For example, in the
last displayed state move to goal reverse the entire PDDL
action is reversed to attempt to return the robot from an ob-
structed state to the initial position.

The implementation without the new AIM requires the
creation of 13 different Action Interface ROS nodes, each
with a specialized C++ class that contains the implementa-
tion of the function concreteCallback. In this function

2https://youtu.be/8Onh9SKF1yk
3https://sharework-project.eu/

1 actions:

2 - name: move

3 interface_type: fsm

4 states:

5 - name: start_state

6 interface_type: service

7 default_service_msg_type:

action_failure_srvs/ActionFailureSimulator↪→
8 default_service:

/action_failure/action_failure_simulator↪→
9 default_service_request:

10 probability: 0.0

11 default_service_response:

12 response: "success"

13 transitions:

14 succeeded:

15 - to_state: ba1

16 failed:

17 - to_state: error_state

18 - name: ba1

19 interface_type: actionlib

20 default_actionlib_msg_type:

move_base_msgs/MoveBase↪→
21 pddl_parameters: [agent, to]

22 parameter_values:

23 - values: [summit_xl_1, workbench11]

24 actionlib_topic: /summit_xl_1/move_base

25 actionlib_goal:

26 target_pose.header.frame_id:

"summit_xl_1/map"↪→
27 target_pose.pose.position.x: 0.6

28 target_pose.pose.position.y: -0.6

29 - values: [summit_xl_2, workbench12]

30 actionlib_topic: /summit_xl_2/move_base

31 actionlib_goal:

32 ...

Listing 3: Excerpt of the configuration file for the Factory
Scenario.

both the sequence of the required actions for a successful
execution of the planned PDDL action, as well as all the
recovery procedures must be hard coded. Furthermore, the
complex actions of the Factory Scenario, (i.e., move, load
or manipulation action 1) interface with both standard ROS
modules (i.e. MOVE BASE or MOVE IT) and also custom
modules. Each such module requires an unique implementa-
tion within the action interface. Last, in order to consider the
configurations for all possible grounded parameters, a con-
figuration file must be created for each of these 13 PDDL
actions. In comparison, using the AIM no code was written
outside of the main configuration file.

7 Graphical User Interface
While the AIM offers a low-effort approach to configure new
actions, and offers the ability to set up more complex FSM
actions, it can still require a very long configuration file. In
the configuration file for the 13 PDDL actions of the Factory
Scenario, almost 130 states are defined and the description
of each one can have up to 15 lines. To intuitively manage
this high amount of information, a Graphical User Interface



Figure 3: Part of the FSM Action Interface for the move ac-
tion represented as a graph. After one failed attempt to move
to goal, the navigation is retried. After two failed attempts
the navigation map is cleared and the agent attempts to re-
turn to the initial position.

(GUI) was also developed. It sustains the generation and the
maintenance of these configuration files and it is already in-
tegrated in the ROS ecosystem, as an rqt plug-in.

New action interfaces for the PDDL actions can be con-
figured with the GUI. For each the user can select its type
(FSM, actionlib or service). The actionlib and service inter-
faces can be directly configured by setting the default values
and, if required, the values for the specific grounded param-
eters. The FSM interfaces require first to define its states.
The states can be once again of type FSM, actionlib or ser-
vice, can be individually configured and, for each of them,
the transitions must be defined.

A screenshot of the GUI is depicted in Figure 4a. The
main window of the GUI displays the overview of the action
interfaces on the left. Those that are defined as FSMs may be
expanded in a tree view. On the right side, the fields for the
configurations are presented. Figure 4b presents the second
window of the GUI, used to set the configuration values for
the specific PDDL parameters.

Further functionalities of the GUI are the Import and
Export options, through which configuration files can be
loaded into the GUI and new or modified ones can be saved
on disk. In order to assist the development process of the
configuration for FSMs action interfaces, their structures can
be printed out directly from the GUI. For example, Figure 3
was generated with this functionality.4

4A video demonstration of the user interface is available online

(a) Main window

(b) Second window for the parameter-specific configuration

Figure 4: The two windows of the GUI through which the
different action interfaces can be configured

Execution Monitor
The AIM provides a single node from which to monitor the
progress of different action executions. A tool that monitors
this execution progress was created in the ROS ecosystem as
an rqt plug-in. It displays all the action interfaces, indepen-
dent of their type, and highlights which of them are active.
It also supports the asynchronous tracking of the execution
of different planned PDDL actions of the same type. This
feature is depicted in Figure 5, where the execution status of
two move PDDL actions, carried out by two different actors
from the Factory Scenario is shown.

8 Conclusion
In this paper we have introduced a new tool for the the map-
ping of planned PDDL actions to concrete execution strate-
gies and integrated it into the ROSPlan framework. The orig-
inal implementation requires the generation of many hard-
coded C++ files and configuration files. The new implemen-

https://youtu.be/7-nrpOe7hlg.



Figure 5: Monitoring of the PDDL actions execution through
the configured action interfaces: the execution of one
grounded PDDL action has reached the second state of the
corresponding FSM action interface (orange), while the par-
allel execution of another PDDL action of the same type, but
with different grounded parameters, has reached the fourth
state of the FSM action interface (cyan).

tation is much more flexible and user-friendly, as it only re-
quires the setup of a configuration file. In order to further
improve this process, we developed different tools already
integrated in the ROS ecosystem such as a GUI and Execu-
tion Monitor. The benefits the AIM have been illustrated on
two scenarios of different complexity.

The aim of this work is to lower the barrier for inexperi-
enced users of ROS and ROSPlan to build new scenarios that
integrate automated planning and robotics. In future work
we will continue to expand upon these tools to allow the user
to define more complex interfaces, for example that account
for durative constraints or non-deterministic effects.

Acknowledgements
The industrial scenario simulation used for the experimen-
tal demonstration was developed as part of the Sharework
project, that is funded through the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 820807. This work has also been partially
supported by the EPSRC grant THuMP (EP/R033722/1).

References
Bezrucav, S.-O.; and Corves, B. 2020. Improved AI
Planning for Cooperating Teams of Humans and Robots.

In International Conference on Automated Planning and
Scheduling workshop on Planning and Robotics (PlanROB).
Canal, G.; Cashmore, M.; Krivić, S.; Alenyà, G.; Maga-
zzeni, D.; and Torras, C. 2019. Probabilistic Planning for
Robotics with ROSPlan. In Towards Autonomous Robotic
Systems, 236–250. Springer International Publishing. ISBN
978-3-030-23807-0. doi:10.1007/978-3-030-23807-0\ 20.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Rid-
der, B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Car-
reras, M. 2015. ROSPlan: Planning in the Robot Operating
System. In Brafman, R., ed., Proceedings of the Twenty-
Fifth International Conference on Automated Planning and
Scheduling, 333–341. Palo Alto, Calif.: AAAI Press. ISBN
9781577357315.
Cesta, A.; Orlandini, A.; and Umbrico, A. 2018. A Dy-
namic Task Planning System for Advanced Manufacturing
Scenarios. In Finzi, A.; Karpas, E.; Nejat, G.; Orlandini, A.;
and Srivastava, S., eds., International Conference on Auto-
mated Planning and Scheduling workshop on Planning and
Robotics (PlanROB), 65–74.
Darvish, K.; Bruno, B.; Simetti, E.; Mastrogiovanni, F.; and
Casalino, G. 2018. Interleaved Online Task Planning, Sim-
ulation, Task Allocation and Motion Control for Flexible
Human-Robot Cooperation. In 2018 27th IEEE Interna-
tional Symposium on Robot and Human Interactive Commu-
nication (RO-MAN), 58–65. IEEE. ISBN 978-1-5386-7980-
7. doi:10.1109/ROMAN.2018.8525644.
Harman, H.; Chintamani, K.; and Simoens, P. 2017. Ar-
chitecture for incorporating Internet-of-Things sensors and
actuators into robot task planning in dynamic environments.
In 2017 IEEE International Symposium on Robotics and In-
telligent Sensors (IRIS), 13–18. IEEE. ISBN 978-1-5386-
1342-9. doi:10.1109/IRIS.2017.8250091.
Johannsmeier, L.; and Haddadin, S. 2017. A Hierarchi-
cal Human-Robot Interaction-Planning Framework for Task
Allocation in Collaborative Industrial Assembly Processes.
IEEE Robotics and Automation Letters 2(1): 41–48. doi:
10.1109/LRA.2016.2535907.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. URL https://
homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf.
Moore, E. F. 1956. Gedanken-experiments on sequential
machines. Automata studies 34: 129–153.
Munawar, A.; Magistris, G. D.; Pham, T.-H.; Kimura, D.;
Tatsubori, M.; Moriyama, T.; Tachibana, R.; and Booch, G.
2018. MaestROB: A Robotics Framework for Integrated Or-
chestration of Low-Level Control and High-Level Reason-
ing. URL http://arxiv.org/pdf/1806.00802v1.
Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;
Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009. ROS: an
open-source Robot Operating System. In IEEE, ed., Inter-
national Conference on Robotics and Automation Workshop
on Open Source Software, volume 3.
ROS.org. 2021. ROS Concepts. URL http://wiki.ros.org/
ROS/Concepts.



Sanelli, V.; Cashmore, M.; Magazzeni, D.; and Iocchi, L.
2017. Short-Term Human-Robot Interaction through Condi-
tional Planning and Execution. In Barbulescu, L., ed., Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling. Palo Alto, California,
USA: AAAI Press. ISBN 978-1577357896.
Viola, C. L.; Orlandini, A.; Umbrico, A.; and Cesta, A.
2019. ROS-TiPlEx: How to make experts in A.I. Planning
and Robotics talk together and be happy. In 2019 28th
IEEE International Conference on Robot and Human Inter-
active Communication (RO-MAN), 1–6. doi:10.1109/RO-
MAN46459.2019.8956417.

Appendix A. Action Interface Configuration
The BNF for the configuration file is given below in four
parts: the top-level structure of the file, and then the details
of the three action interface types (actionlib, service, and
FSM).



Top-level Structure
<configuration> ::= actions:

<action>*
<action> ::= - name: <var>

<service-action>|<actionlib-action>|<fsm-action>
<var> ::= <string>|<rosparam>|<pddlparam>|<var>*
<rosparam> ::= ($rosparam <var>) /* Use value from ROS param server */
<pddlparam> ::= ($pddlparam <var>) /* Use value from PDDL parameter */

Actionlib Interface
The actionlib interface configuration is defined below, and an example is shown in Listing 2. Optionally, a default actionlib
topic, message type, goal, and result can be set. If no default is set, then it is expected that these will be set per PDDL parameter
instead. The optional parameter list params is a set of variables matching the parameter labels of the PDDL operator. Each
parameter configuration then specifies the objects bound to those parameters, and a topic, message type, or goal that will
override the default configuration.

<actionlib-action> ::= interface_type: actionlib
[default_actionlib_topic: <var>]
[default_actionlib_msg_type: <var>]
[default_actionlib_goal: <ros-msg>]
[default_actionlib_result: <ros-msg>]

::= pddl_parameters: [<var>*] /* PDDL parameters */
parameter_values:
<al-param-config>*

<al-param-config> ::= - values: [<var>*] /* PDDL objects */
[actionlib_topic: <var>]
[actionlib_msg_type: <var>]
[actionlib_goal: <ros-msg>]
[actionlib_result: <ros-msg>]

<ros-msg> ::= <ros-msg-assign>|<ros-msg>*
<ros-msg-assign> ::= <var>: <var>

Service Interface
The configuration for service action interfaces is described below. Similar to the actionlib interface, a default service, service
type, request, and result can be set. These defaults can be overridden by specified action parameters.

<actionlib-action> ::= interface_type: service
[default_service: <var>]
[default_service_type: <var>]
[default_service_request: <ros-msg>]
[default_service_result: <ros-msg>]
pddl_parameters: [<var>*] /* PDDL parameters */
parameter_values:
<srv-param-config>*

<srv-param-config> ::= - values: [<var>*] /* PDDL objects */
[service: <var>]
[service_type: <var>]
[service_request: <ros-msg>]
[service_result: <ros-msg>]

FSM Interface
<fms-action> ::= interface_type: fsm

states:
<fsm-state>*

<fsm-state> ::= - <service-action>|<actionlib-action>|<fsm-action>
transitions:

succeeded:
- to-state: <fsm-transition>
failed:
- to-state: <fsm-transition>

<fsm-transition> ::= <var>|start_state|goal_state|error_state


