
Distribution Models for Falsification and
Verification of DNNs

APPENDIX

In this section we describe the DNN properties used in our
study.

A. FashionMNIST

The properties for Fashion MNIST consists in comparing
different pieces of clothes in a way that the difference be-
tween clothes with similar shapes are smaller that others with
different shapes. E.g. the difference between a t-shirt/top and a
shirt should be smaller than the difference between a t-shirt/top
and a sneaker. There are two types of properties:

(A) Specify that the output class must be one of the classes
being compared.

a) Property φA,0.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 7))→
(|N (x)7 −N (x)6| > |N (x)7 −N (x)5|)

b) Property φA,1.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 6))→
(|N (x)6 −N (x)9| > |N (x)6 −N (x)2|)

c) Property φA,2.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 5))→
(|N (x)5 −N (x)8| > |N (x)5 −N (x)7|)

d) Property φA,3.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 4))→
(|N (x)4 −N (x)1| > |N (x)4 −N (x)6|)

e) Property φA,4.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 3))→
(|N (x)3 −N (x)7| > |N (x)3 −N (x)0|)

f) Property φA,5.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 9))→
(|N (x)9 −N (x)0| > |N (x)9 −N (x)7|)

g) Property φA,6.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 2))→
(|N (x)2 −N (x)1| > |N (x)2 −N (x)4|)

h) Property φA,7.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 5))→
(|N (x)5 −N (x)2| > |N (x)5 −N (x)9|)

i) Property φA,8.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 0))→
(|N (x)0 −N (x)8| > |N (x)0 −N (x)6|)

j) Property φA,9.:

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 1))→
(|N (x)1 −N (x)7| > |N (x)1 −N (x)3|)

(B) Do not specify any output class.
k) Property φB,0.:

∀x.(x ∈ [0, 1]n)→ (|N (x)7 −N (x)6| > |N (x)7 −N (x)5|)

l) Property φB,1.:

∀x.(x ∈ [0, 1]n)→ (|N (x)6 −N (x)9| > |N (x)6 −N (x)2|)

m) Property φB,2.:

∀x.(x ∈ [0, 1]n)→ (|N (x)5 −N (x)8| > |N (x)5 −N (x)7|)

n) Property φB,3.:

∀x.(x ∈ [0, 1]n)→ (|N (x)4 −N (x)1| > |N (x)4 −N (x)6|)

o) Property φB,4.:

∀x.(x ∈ [0, 1]n)→ (|N (x)3 −N (x)7| > |N (x)3 −N (x)0|)

p) Property φB,5.:

∀x.(x ∈ [0, 1]n)→ (|N (x)7 −N (x)2| > |N (x)7 −N (x)9|)

q) Property φB,6.:

∀x.(x ∈ [0, 1]n)→ (|N (x)6 −N (x)5| > |N (x)6 −N (x)4|)

r) Property φB,7.:

∀x.(x ∈ [0, 1]n)→ (|N (x)5 −N (x)1| > |N (x)5 −N (x)7|)

s) Property φB,8.:

∀x.(x ∈ [0, 1]n)→ (|N (x)4 −N (x)8| > |N (x)4 −N (x)2|)

t) Property φB,9.:

∀x.(x ∈ [0, 1]n)→ (|N (x)3 −N (x)9| > |N (x)3 −N (x)0|)

B. DroNet

The network used for the GHPR-DroNet benchmark is
the DroNet network1 [1] for autonomous quadrotor control.
This network is based on a ResNet type architecture, with 3
residual blocks. It is comprised of 475131 neurons and 320226
parameters.

The properties for DroNet codify the desired behavior that,
if the probability for collision is low, the system should not
make sharp turns. The DroNet properties are of the form: for
all inputs, if the probability of collision is between pmin and
pmax, then the steering angle is within d degrees of 0.

a) Property φ0.:

∀x.((x ∈ [0, 1]n) ∧ (0 < N (x)P ≤ 0.1))→
(−5◦ ≤ N (x)S ≤ 5◦)

b) Property φ1.:

∀x.((x ∈ [0, 1]n) ∧ (0.1 < N (x)P ≤ 0.2))→
(−10◦ ≤ N (x)S ≤ 10◦)

c) Property φ2.:

∀x.((x ∈ [0, 1]n) ∧ (0.2 < N (x)P ≤ 0.3))→
(−20◦ ≤ N (x)S ≤ 20◦)

d) Property φ3.:

∀x.((x ∈ [0, 1]n) ∧ (0.3 < N (x)P ≤ 0.4))→
(−30◦ ≤ N (x)S ≤ 30◦)

e) Property φ4.:

∀x.((x ∈ [0, 1]n) ∧ (0.4 < N (x)P ≤ 0.5))→
(−40◦ ≤ N (x)S ≤ 40◦)

f) Property φ5.:

∀x.((x ∈ [0, 1]n) ∧ (0.5 < N (x)P ≤ 0.6))→
(−50◦ ≤ N (x)S ≤ 50◦)

g) Property φ6.:

∀x.((x ∈ [0, 1]n) ∧ (0.6 < N (x)P ≤ 0.7))→
(−60◦ ≤ N (x)S ≤ 60◦)

h) Property φ7.:

∀x.((x ∈ [0, 1]n) ∧ (0.7 < N (x)P ≤ 0.8))→
(−70◦ ≤ N (x)S ≤ 70◦)

i) Property φ8.:

∀x.((x ∈ [0, 1]n) ∧ (0.8 < N (x)P ≤ 0.9))→
(−80◦ ≤ N (x)S ≤ 80◦)

1https://github.com/uzh-rpg/rpg public dronet

TABLE III: A count of the results produced by each tool when
running on properties without DFV.

Result
Tool sat unsat unknown timeout error

DeepFool 74 0 26 0 0
BIM 73 0 27 0 0
FGSM 71 0 29 0 0
PGD 85 0 0 15 0
Neurify 59 0 0 40 1
nnenum 61 0 0 0 39
VeriNet 49 0 0 51 0

TABLE IV: A count of the results produced by each tool when
running on properties with DFV.

Result
Tool sat unsat unknown timeout error

DeepFool 56 0 44 0 0
BIM 53 0 47 0 0
FGSM 48 0 52 0 0
PGD 71 0 0 29 0
Neurify 7 0 0 93 0
nnenum 64 0 25 0 11
VeriNet 2 0 0 98 0

j) Property φ9.:

∀x.((x ∈ [0, 1]n) ∧ (0.9 < N (x)P ≤ 1.0))→
(−90◦ ≤ N (x)S ≤ 90◦)

In this section we present additional results and data from
the experiments for our first research question. Table III shows
the number of results of each type produced by each tool on the
FashionMNIST model alone, without using DFV. Similarly,
Table IV shows the number of results of each type produced
by each tool on the FashionMNIST when DFV is used with
a simple VAE as the environment model. As expected, DFV
reduces the number of sat results as it restricts tools to report
counter-examples within the distribution.

In this section we report additional plots and data from the
experiments executed to address our second research question.

Fig. 13 shows the mean reconstruction similarity of each
counter-example found by PGD across all of the latent space
sizes, number of layers, and number of neurons per layer
explored. Each latent space size is shown in a different plot,
with a latent space of dimension 1 in the top plot and
dimension 32 in the bottom plot.

We also show the same plots but using the encoder stochas-
tic reconstruction error (ESRE) in Fig. 14. This value is
computed as the mean of the mean squared error of 100
reconstructions of each counter-example using VAEMRS .

In addition to the quality measures for each counter-
example, we present the times to find each counter-example
across the 90 VAE configurations explored in RQ2 in Fig. 15.

Finally, Figure 16 presents the times to find each counter-
example across the 16 different radii explored in the second
part of RQ2.

In this section we report addition plots and data from the
experiments run to address our third research question.

Fig. 13: MRS of counter-examples found using PGD across all
latent space sizes, number of layers, and number of neurons
per layer. The MRS was computed with the VAEMRS model
using SSIM similarity.

Fig. 14: MRS of counter-examples found using PGD across all
latent space sizes, number of layers, and number of neurons
per layer. The error was computed with the VAEMRS model
using the Mean Squared Error (MSE).

Figure 17 presents the encoder stochastic reconstruction
error (ESRE) for each counter-example found. This value is
computed as the mean of the mean squared error of 100 recon-
structions of each counter-example using Conv-VAEDroNet.

We also present all of the counter-examples found for the
DroNet properties, both with (Figures 19 and 20) and without
(Fig. 18) DFV.

Fig. 15: Time spent by PGD to find counter-examples for each
model explored in RQ2.

Fig. 16: Time spent by PGD to find counter-examples using
different radii.

Fig. 17: A plot of the reconstruction error for each counter-
example found. The Mean Squared Error (MSE) is used to
measure reconstruction error, and we take the mean of 100
reconstructions using Conv-VAEDroNet.

Fig. 18: The counter-examples found by PGD for each of the
10 properties of the DroNet DNN without using DFV. Each
row corresponds to one property and each column is a separate
run of PGD on the property and DroNet network.

Fig. 19: The counter-examples found by PGD for each of
the 10 properties of the DroNet DNN using DFV with FC-
VAEDronet. Each row corresponds to one property and each
column is a separate run of PGD on the property and DroNet
network.

Fig. 20: The counter-examples found by PGD for each of
the 10 properties of the DroNet DNN using DFV with
GANDroNet. Each row corresponds to one property and each
column is a separate run of PGD on the property and DroNet
network.

REFERENCES

[1] A. Loquercio, A. I. Maqueda, C. R. D. Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, 2018.

