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ABSTRACT 

This work is a part of a drastic revolution in the classical signal 
processing chain required in mobile systems. The system must be 
low power as it is powered by a battery. Thus a signal driven sam-
pling scheme based on level crossing is adopted, delivering non-
uniformly spaced out in time sampled points. In order to analyse the 
non-uniformly sampled signal obtained at the output of this sam-
pling scheme a new spectral analysis technique is devised. The idea 
is to combine the features of both uniform and non-uniform signal 
processing chains in order to obtain a good spectrum quality with 
low computational complexity. The comparison of the proposed 
technique with General Discrete Fourier transform and Lomb’s 
algorithm shows significant improvements in terms of spectrum 
quality and computational complexity. 
 

1. CONTEXT OF THE STUDY 

This work is part of a large project aimed to enhance the signal 
processing chain required in mobile systems. ADC is an essential 
component of the digital signal processing chain. Most of the sys-
tems using ADCs operate signals with interesting statistical prop-
erties, but Nyquist signal processing architectures do not take its 
advantage. Actually, these signals (such as temperature, electro-
cardiograms, speech signals...) are almost always constant and 
may vary significantly only during brief moments. Thus classical 
sampling systems are highly constrained, due to the Shannon the-
ory, which is to ensure for the sampling frequency to be at least 
twice of the input signal bandwidth. This condition causes a large 
number of samples without any relevant information, a useless 
increase of activity, and so a useless increase of the power con-
sumption. The idea is to realize a signal driven sampling scheme 
of the analog input signal based on its amplitude variations. This 
sampling scheme is based on “level-crossing” that provides a non-
uniform time repartition of the samples. This sampling scheme 
drastically reduces the activity of the processing chain because it 
only processes the relevant information. In this context an AADC 
(Asynchronous Analog to Digital Converter) based on LCSS 
(Level Crossing Sampling Scheme) [4] has been designed by the 
CIS group of the TIMA Laboratory. Asynchronous filter algo-
rithms have also been developed for this sampling scheme [8]. 
The aim of this work is to develop an efficient spectrum analysis 
technique devoted to the cross-level sampling scheme which pro-
vides a high quality spectrum at low computational complexity. 
 

2.  PREVIOUS WORKS 

According to Fourier’s theory any continuous signal can be ex-
pressed as a combination of properly chosen sinusoidal waves. The 
most common discrete technique for detecting these components of 
a signal is the Discrete Fourier transform. Classical methods to es-
timate the spectrum of non-uniformly sampled signal require over-
sampling at uniform intervals. Techniques like GDFT (General 

Discrete Fourier Transform) [1] or Lomb’s algorithm [2] have also 
been developed. They are able to perform frequency domain analy-
sis directly on non-uniformly sampled signals but they suffer from a 
problem of noise on the spectrum [3]. In this article, a new spectrum 
analysis technique – which does not require oversampling and pro-
vides the spectrum with a higher accuracy – is presented in Section 
3. The idea is to exploit the respective advantages of both uniform 
and non-uniform signal processing chains. 
 
2.1. LCSS and Sampling Criteria 
 
The LCSS has already been studied by Jon W. Mark and Terence D. 
Todd in [5]. In [6], authors have shown that ADC using this tech-
nique has a reduced activity and thus allows power saving and noise 
reduction compared to Nyquist ADCs.  
An M-bit resolution AADC have 2M - 1 quantization levels which 
are disposed according to the input signal amplitude dynamic (in the 
studied case, the levels are regularly spaced). A sample is captured 
only when the analog signal x(t) crosses one of these predefined 
levels. The samples are not uniformly spaced in time because they 
depend on the signal variation as it is clear from Figure 1.  
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Figure 1: Level-crossing sampling scheme  

 
A condition for proper reconstruction of non-uniformly sampled 
signals was developed by Beutler [7]. He showed that the recon-
struction of an original continuous signal is possible, if the average 
sampling frequency F  of the non-uniformly sampled signal is 
greater than twice of the signal bandwidth Fmax. This condition can 
be expressed mathematically by

max2FF > . According to [4], in the 
case of LCSS, the number of samples is directly influenced by the 
resolution of the AADC. For M-bit resolution AADC the average 
sampling frequency of a signal can be calculated, by exploiting its 
statistical characteristics. Then a proper value of M can be chosen in 
order to respect the Beutler’s criterion. 
 
2.2. GDFT (General Discrete Fourier Transform) 
 
The GDFT is a technique for the spectrum analysis of non-
uniformly sampled signals [1]. It is defined by Equation 1. 
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In Equation 1 xn  and tn   represent the amplitude and the time instant 
of the nth non-uniform sample respectively. 
 
2.3. LOMB’S ALGORITHM 
 
Lomb’s algorithm [2] is defined by Equation 2. 
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According to Lomb in Equation 2 parameter xn represents the ampli-
tude and tn represents the time instant of the nth non-uniform sample. 
The total number of samples is N. x represents the mean of these 
samples (see Equation 3). Parameter σ2 represents the variance of 
these samples (see Equation 4) and τ is an offset proposed by Lomb, 
defined by Equation 5. 
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3.  SPECTRUM ANALYSIS BASED ON ASA AND RFFT 

This technique mainly consists of two steps which are called ASA 
(Activity Selection Algorithm) and RFFT (Re-sampling + Fast Fou-
rier Transform). In ASA, the active part of the non-uniformly sam-
pled signal is selected. The RFFT transforms the selected part of 
non-uniformly sampled signal to uniformly sampled signal by ap-
plying NNR (Nearest Neighbour Re-sampling) interpolation and 
then the spectrum is obtained by applying a standard FFT.  
 
3.1. ASA (Activity Selection Algorithm) 
 
For a non-uniformly sampled signal obtained at the output of an 
AADC, the sampling instants (according to [5]) are defined by the 
following equation. 
 
(6)  nnn dttt += −1 . 
 
In Equation 6, tn is the current sampling instant, tn-1 is the previous 
one and dtn is the time delay between current and previous sampling 
instant, as shown in Figure 1.  
Let δ be the processing delay of AADC for one sample point, for 
proper signal capturing the incoming signal must satisfy the “track-
ing condition” given by Equation 7. 
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In Equation 7, q is the quantum of AADC and is defined as: 
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In Equation 8, ∆Vin represents the amplitude dynamic of x(t) and M 
represents the resolution of AADC. In order to respect the Beutler’s 
criteria and tracking condition we have employed a B.P.F (band 
pass filter) with pass band Fmin ~ Fmax. The process is clear from Fig 
2.  
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Figure 2: Band limiting the analog signal in order to respect tracking 
condition and Beutler’s criterion 

 
The appropriate value of pass band can be chosen for a specific 
signal. By employing a B.P.F we are able to calculate the fundamen-
tal period T0 = 1/Fmin of the filtered signal activity which plays an 
important role in the activity selection process, as discussed below. 
 
From Figure 1 it is clear that variable dtn is a function of the varia-
tion of the input signal. For a high slope signal the values of dtn will 
be smaller and vice versa [4].  By using the values of dtn , an algo-
rithm is applied to select the active part of the non-uniformly sam-
pled signal. The algorithm used is defined as follows. 
 
 While (dtn <= T0/2 and Ti <= T)  
  Ti = Ti + dtn  
  Ni = Ni + 1  
 end 
 
The parameter dtn is defined by Equation 6 and T0 is the fundamen-
tal period of the filtered signal activity. These two parameters define 
the activity detection threshold. It is interesting to note that in the 
case of low activity signals – which mostly remain constant and 
may vary significantly only during short moments like electrocar-
diograms, electroencephalograms, speech signals, etc [8] – if the 
LCSS fulfills Beutler’s condition, it also satisfies locally the Nyquist 
criterion for each selected window, as it is illustrated in Section 4. 
So the condition on dtn is chosen to follow the Nyquist criterion for 
the minimum frequency component Fmin of the incoming signal, 
when sampling the incoming signal non-uniformly with LCSS. The 
parameter Ti  represents the length of the ith selected window, lying 
on the ith active part of the non-uniformly sampled signal and T 
represents the largest window length in second. The choice for T 
depends on the input signal characteristics (T ≥ T0) and system re-
sources (maximum time frame which yields an upper bound on T) 
used to process the incoming signal. The parameter Ni represents the 
total number of non-uniform samples lying in the ith selected win-
dow. The above described loop repeats for each active part of the 
non-uniformly sampled signal, occurs during the whole signal 
length. Every time before starting the next loop ‘i’ is incremented by 
one and Ti and Ni are initialized to zero. 
ASA displays interesting features with LCSS which are not avail-
able in the uniform case. It dynamically adapts the length of the 
selected window according to the signal activity (see Section 4). In 
addition, it also provides an efficient reduction of the phenomenon 
of spectral leakage in case of transient signals (signals which start 
and finish at zero). Usually appropriate smoothening window func-
tions are used to reduce spectral leakage. In the ASA case, as long 
as the length of signal active part remains ≤ T, the problem of leak-
age is solved by applying a simple and efficient algorithm instead of 
a smoothening window function. Indeed, spectral leakage occurs 
when FFT is processed on a fractional number of cycles of the cap-
tured signal. In order to avoid the fractional number of cycles, two 
points, one at the beginning and one at the end of the selected win-
dow, are added. These two points are considered as first and last 
sample point of the selected window and are placed by using the 
following Equations:  
 
(9)   t1 = t2 – dt2 , 
(10)   tNi = tNi-1 + dtNi-1 . 
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Equation 9 is applied on the nearest left edge point to the selected 
window here dt2 is the delay between the sampling instants t2 and t3. 
Similarly, Equation 10 is used for the nearest right edge point to the 
selected window and dtNi-1 is the delay between the two last samples 
of the window. So these points are placed using the neighbouring 
distances dtn on both edges in order to maintain the signal slope at 
the window edges. The process is illustrated in Figure 3. 
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Figure 3: Shifting process of nearest edge points 
 

3.2. RFFT (Re-sampling + Fast Fourier  Transform) 
 
The main interest of using ASA is that only the interesting part of 
the sampled signal can be selected and then its spectrum can be 
computed with a suitable quality by just resampling the data lying in 
each selected window. In order to resample the windowed data, the 
NNR interpolation is used. The reasons to choose this technique are 
detailed in Section 6. The NNR is an interpolation method where the 
value of an interpolated sample Xrn corresponding to a re-sampling 
instant trn is set according to the algorithm defined and shown in 
Figure 4. 
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Figure 4: Re-sampled time and amplitude values according to NNR 
interpolation 

 
The resampling rate Frsi is specific for each selected window, de-
pending on the window length (seconds) and the number of non-
uniform samples lying in the window. The resampling frequency for 
the ith selected window can be calculated by using the following 
equations. 
 
(11)    Ti = tmaxi – tmini  , 
(12)   Frsi = Ni / Ti. 
 
In Equation 11, tmaxi and tmini are the final and the initial times of 
the ith selected window. The next step is to apply FFT on the resam-
pled data in order to obtain its spectrum.  

 
4.  ILLUSTRATIVE EXAMPLE 

In order to illustrate this new spectrum analysis technique and make 
its performance comparison with GDFT and Lomb’s algorithm, an 
input signal presented on the top-left part of Figure 5 is used. It 

consists of three active parts each one of duration 2, 1 and 0.5 sec-
onds respectively. As the total signal length is 20 sec so this signal 
has 17.5 % activity.  
The non-uniformly sampled signal obtained at the output of the 
AADC is shown in the top-right part of Figure 5. Here 373 points 
for a 20 second signal are sampled. The average sampling frequency 
is thus 18.6 Hz, which is greater than twice the Fmax of the signal i.e. 
8 Hz. So this signal sampling is satisfying the Beutler’s criterion. 
From the bottom-left part of Figure 5, it is evident that the Nyquist 
criterion is also satisfied. It is obvious that in the case of low activity 
signals discussed in section 3.1, Beutler’s condition leads to locally 
over-sample the active parts of the signal. This over-sampling adds 
to the accuracy of interpolation process, employ to resample the 
selected non-uniform data. 
In this example the pass band of the B.P.F is chosen between 2Hz ~ 
8Hz. The value of T is chosen equal to 1 second. This value satisfies 
the limiting conditions discussed in Section 3.1. For this value of T 
ASA has generated 4 selected windows for the whole signal length 
(20 sec). The numbers of selected windows generated for first, sec-
ond and third active part of the signal are 2, 1 and 1 respectively.  
The result obtained through ASA is shown on bottom-right part of 
Figure 5.  
 

 
Figure 5: Input signal to the AADC (top-left), 373 non-uniformly 
sampled data points obtained at the output of the 4 bit AADC (top-
right), zoom of third active part of the non-uniformly sampled signal 
(bottom-left) and four selected windows obtained by applying ASA 
(bottom-right) 
 
Table 1 summarizes the parameters of selected windows obtained at 
the output of ASA. The values of Ti exhibit the dynamic feature of 
ASA which is to adapt the window length according to the signal 
activity lying in the window. The values of T1 and T3 are slightly 
greater than the value of T which is due to the process of adding two 
points at both edges of the selected window discussed in section 3.1. 
On the other hand in the classical case during the windowing proc-
ess we are not able to select only the active part of the signal. More-
over the window length remains static and is not correlated to the 
signal activity in the window. For this studied example a 1 second 
window length leads to 20 1-second windows for the whole signal 
duration (20 sec). It follows that the system has to process more than 
the relevant part of the signal.  

 
Table 1: Summery of the parameters of each selected window 

 
The spectra obtained by applying RFFT, GDFT and Lomb’s algo-
rithm on data lying in the first selected window are shown on Figure 

Selected 
Window 

Signal Components Situated in 
Each Selected Window 

   Length Ti 
(Sec) 

Samples 
Ni 

First 0.6 sin(2×2πt)+ 0.3 sin(8×2πt) 1.016 88 
Second 0.6 sin(2×2πt)+ 0.3 sin(8×2πt) 0.998 85 
Third 0.45 sin(3×2πt)+ 0.45 sin(7×2πt) 1.0001 116 
Fourth 0.9 sin(6×2πt) 0.5001 92 

   If (dtr1n < = dtr2n) 
Xrn = Xn-1  

     else 
Xrn = Xn  

           end  
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6. It shows that the quality of spectrum obtained by RFFT is better 
than those obtained by GDFT or Lomb’s algorithm. For RFFT, the 
spectrum peaks corresponding to the signal components at funda-
mental frequency f0 and periodic frequencies fp ± f0 are visible on 
Figure 6. In this case value of fp = Frs1 is 86.6 Hz. Here Frs1 is the 
resampling frequency of first selected window calculated by using 
Equation 12. By zooming the spectrum, we have found that the 
components corresponding to 2 Hz and 8 Hz lie at frequencies 
1.9997 Hz and 7.9989 Hz respectively. The relative error is 0.03 % 
and 0.11% respectively. This error is due to the minor leakage pro-
duces by the approach based on ASA and RFFT. On the contrary, 
the spectra obtained by GDFT and Lomb’s algorithm display noise 
peaks with an amplitude which can be higher than the peaks of the 
analyzed signal components. As in this example the relevant infor-
mation is buried into the noise. The noise level on the spectrum 
obtained by Lomb’s algorithm is however lower than that obtained 
by the GDFT, but this noise will always cause problems in signal 
analysis. 
 

 
 

Figure 6: Spectra obtained by applying RFFT (top), GDFT (middle) 
and Lomb’s algorithm (bottom) 

   
Moreover, it is also possible to perform the time-frequency analysis 
of the time varying signal by this new approach. The 3-D plot of 
Figure 7 gives a time-frequency representation of each selected 
window. Here the spectrum peaks of each selected window are plot-
ted with respect to the central time of each selected window. This 
representation helps us to visualize the different signal components 
lying at different times. 
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Figure 7: 3-D time-frequency representation of the spectra obtained 
by applying RFFT for all four selected windows 

5.  ALGORITHM EFFICIENCY 

This section compares the efficiency of proposed ASA-RFFT 
technique with GDFT and Lomb’s algorithm in terms of the com-
putational complexity. The complexity evaluation is analyzed for 
RFFT, GDFT and Lomb’s algorithm (considering the number of 
operations executed to perform the algorithm).  
 
 
 
 
 
 

 
 

Figure 8: Signal Flow Diagram 
 
For simplicity, it is assumed that each operation like addition, mul-
tiplication and division has equal complexity. Figure 8 shows that 
the comparison is applied on selected data obtained with the ASA. 
In the case of RFFT, the data lying in each selected window is re-
sampled with a NNR interpolation and padded (in order to have a 
number of samples as a power of 2) before applying the FFT. The 
NNR interpolation only requires a comparison operation. So the 
total computational complexity of RFFT is Ni +Ni log2Ni, which is 
sum of the computational complexities of NNR interpolation and 
FFT respectively. This is less than the computational complexity of 
GDFT which is Ni

2. Here Ni is the number of samples in the ith se-
lected window. In Lomb’s algorithm there are not only additions 
and multiplications but also four trigonometric functions. The opera-
tion count can easily reach several hundred times of Ni

2 [9]. The 
processing gain of RFFT over GDFT or Lomb’s algorithm can be 
calculated by using the following equation. 
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In Equation 13, ρ is a multiplying factor whose value is 1 for GDFT 
and is in range of hundreds for Lomb’s algorithm. Parameter i = 
1,…, K is the index of the selected windows. 

6.  INTERPOLATION ERROR 

The interpolation process changes the properties of resampled signal 
compared to the original signal. The interpolation error depends 
upon the interpolation technique used to resample data. In [10], the 
authors have made a distinction between simple and complex inter-
polation methods. Simple interpolation methods use only one non-
uniform sample for one resampled observation, such as Sam-
ple&Hold (S&H) and Nearest Neighbor Resampling (NNR). Where 
as complex interpolation methods such as Linear interpolation and 
Cubic Spline interpolation use more than one non-uniform samples 
for one resampled observation.          
As the simple interpolation methods use only one non-uniform ob-
servation for each resampled observation so they are efficient in 
terms of computational complexity. Moreover they provide us an 
unbiased estimate of the variance of original signal [11], due to this 
reason they are also known as robust interpolation methods. The 
complex interpolation methods have higher computational complex-
ity as compare to simple methods. Another disadvantage of complex 
interpolation methods is that the variance can be estimated errone-
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ously. As the variance of resampled (estimated) signal obtained by 
employing Linear interpolation is lower as compare to the variance 
of the original signal. This can be understood by considering the fact 
that linear interpolation is a weighted average of two non-uniform 
observations. Similarly Cubic Spline interpolation results in a higher 
variance resampled signal as compare to the original one [11]. 
These facts justify paying more attention to the simple interpolation 
methods.   

In case of S&H interpolation the value of re-sampled observation is 
set equal to the non-uniform sample prior to it. Where as in case of 
NNR interpolation method the value of resampled observation is set 
equal to the nearest non-uniform sample.  As we are resampling the 
data uniformly, the interval Trn between two consecutive resampled 
data points is constant. The value of Trn  is different from the various 
intervals Tnj between the non-uniformly spaced samples used for 
resampling as shown in Figure 9. Here j = 1 for NNR and 2 for 
S&H interpolation method respectively. This difference between the 
values of Trn and Tnj causes deviation between the properties of 
original and resampled signal. Higher will be the difference more 
will be the deviation and vice versa.  

Xn-1

Xrn

Tn1

Trn

Xrn-1
Xrn+1

Xn-2

Xn

Xn+1

Tn2

Xn-1

Xrn

Tn1

Trn

Xrn-1
Xrn+1

Xn-2

Xn

Xn+1

Tn2  

Figure 9: Trn is the interval between two resampled data points, Tn1 
is the interval between the non-uniform samples used for NNR in-
terpolation and Tn2 is the interval between the non-uniform samples 
used for S&H interpolation. ‘o’ symbol is used for the non-uniform 
data and ‘+’ symbol is used for the resampled data. Here the signal 
is resampled with NNR interpolation  

With NNR, the mean square deviation between Trn and Tn1 is 
smaller than the mean square deviation between Trn and Tn2 for S&H 
[11]. This fact is also shown by the following simulation results 
presented in Table 2. 

 
Table 2: Comparison of the values of mean square deviation be-
tween Trn and Tnj for NNR and S&H, for each selected window 

From above discussion it is clear that among simple interpolation 
methods NNR performs better than S&H. It tries to keep the proper-
ties of resampled signal more close to real signal; this is the reason 
of our inclination towards NNR interpolation. Although the exact 
value of interpolation error for resampled data is not straight for-
ward to calculate. But the upper bound for the interpolation error 
can be calculated. Figure 1 shows that in the studied case the quanti-
zation levels of the AADC are uniformly spaced, the quantum, q 
between two consecutive quantization levels is constant as is given 
by Equation 8. The maximum possible interpolation error is there-

fore bounded by the value of q and can be expressed mathematically 
as “ qE M = ”. This is the error which occurs in the worst case.  

7.  CONCLUSION 

A new technique for spectral analysis of non-uniformly sampled 
signals has been proposed. This approach is especially well-suited to 
analyze the signals coming from the AADC which is based on a 
cross-level sampling scheme. This technique exploits an algorithm 
(ASA) to extract and window the active parts of the signal. Then 
each selected part is uniformly resampled by employing NNR inter-
polation before processing a classical FFT. This approach is ex-
tremely well-adapted for the signals which remain constant most of 
the time and vary sporadically as electro-cardiograms, seismic sig-
nals, etc. The dynamic features of ASA have been discussed. The 
ASA is a new tool to reduce the processing activity. Moreover, 
RFFT overperforms GDFT and Lomb’s algorithm in terms of spec-
trum quality and processing costs. Finally, the error caused by the 
NNR interpolation is bounded by the amplitude quantum of the 
AADC.  
The ASA-RFFT technique has already been used to characterize the 
frequency response and the SNR of the AADC designed at the 
TIMA Laboratory [4]. This technique can also be applied to real life 
signals in order to exploit them. Further works are focused on the 
enhancement of the technique in order to reduce the interpolation 
error and increase the spectral accuracy. 
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Selected 
Window 

  Mean Square Deviation 
between Trn & Tn1 (NNR) 

 Mean Square Deviation 
between Trn & Tn2 (S&H) 

First 3.5887 e-5 1.8433 e-4 

Second 3.6065 e-5 1.70008 e-4 

Third 1.0711 e-5 4.932 e-5 

Fourth 9.8907 e-6 2.6254 e-5 
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