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ABSTRACT
We introduce a method for detecting downbeats in musical
audio given a sequence of beat times. Using musical knowl-
edge that lower frequency bands are perceptually more im-
portant, we find the spectral difference between band-limited
beat synchronous analysis frames as a robust downbeat indi-
cator. Initial results are encouraging for this type of system.

1. INTRODUCTION

Numerous approaches exist for the problem of beat tracking
(e.g.[1, 2, 3, 4]), that of replicating the human ability of tap-
ping in time to music. However much less attention has been
given to higher level metrical analysis. One such problem is
the extraction of downbeats from musical audio i.e. finding
thefirst beat of each bar.
A robust downbeat extractor could be of considerable use
within the context of music information retrieval: to enable
fully automated rhythmic pattern analysis for genre classifi-
cation [5]; to indicate likely temporal boundaries for struc-
tural audio segmentation [6]; and to improve the robustness
of beat tracking systems by applying higher level knowledge
[7].
The principal difficulty appears not in finding the number of
beats per bar, thetime-signature, but resolving the phase of
the bar-level periodicity [7]. While this might appear a sim-
ple task, very few techniques have been found effective for
solving this particular problem.
Goto [2] presents two approaches to downbeat estimation:
for percussive music, automatically detected kick and snare
drum events are compared to pre-defined rhythmic tem-
plate patterns; for non-percussive music, short-term spectral
frames (band-limited to 1kHz) are peak-picked and then his-
togrammed into beat length segments, where chord changes
are used to infer higher level metrical structure. The two
methods are combined within a single rhythm tracking sys-
tem [2] which is shown to be highly accurate and operates in
real-time. Goto’s system however, has only been fully tested
on a popular music database and restricted to music in 4/4
time with a constant tempo between 61 and 120 beats per
minute (bpm).
Klapuri, Eronen and Astola [7] propose a meter tracking
system which uses comb filter analysis within a probabilis-
tic framework to simultaneously track three metrical levels:
the tatum, tactusand measure. The phase of measure-level
events, i.e. downbeats, are identified by matching rhythmic
pattern templates to a mid-level representation calculated in
four parallel sub-bands, where most emphasis is given to the
lowest of these bands. Klapuri et al present results over a
more varied test database than Goto’s algorithm [2] and in-
clude cases which exhibit tempo variation. We therefore con-

sider this approach the current state of the art for downbeat
estimation.
In this paper we introduce a spectral difference approach to
downbeat estimation. Although related to Goto’s approach
[2], we propose that percussive events and harmonic change
can be used implicitly within a single spectral representation
to infer downbeats. We require a sequence of beat times and
the time-signature of the input signal to be known a priori –
both of which are detected within our previously developed
beat tracking system [1]. We partition an input signal into
band-limited beat length frames and use the musical knowl-
edge that lower pitched events are perceptually more impor-
tant [4] by preserving spectral information within the range
0–1.4kHz. We calculate the Kullback-Leibler divergence be-
tween successive beat frames to form a spectral difference
function. Downbeats are selected as those beats which glob-
ally lead to most spectral change.

We evaluate our downbeat model against that of Klapuri et
al [7], with initial results indicating better performancefor
our model. However, current analysis is restricted to cases
where the time-signature does not change and the tempo is
approximately constant.

Figure 1:Overview of downbeat extraction model

The remainder of this paper is structured as follows. In sec-
tion 2 we describe our approach to downbeat extraction. Sec-
tion 3 contains results from an objective and subjective eval-
uation of our system with discussion and conclusions in sec-
tions 4 and 5.
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2. APPROACH

Our approach requires that the beat locations and time signa-
ture of the input signal are known a priori. We use the output
of our beat tracker as the front end to our system (fig 1), and
provide a brief overview in the following section. A more
detailed description can be found in [1].

2.1 Beat Tracker Overview

The first stage in the beat tracking algorithm is the transfor-
mation of an input audio signal (fig 2(a)) into a mid-level
representation from which beat times can be robustly identi-
fied. We use thecomplex spectral differenceonset detection
function [8] (fig 2(b)). A sequence of beat timesγm is recov-
ered by passing the autocorrelation function of the detection
function through a shift-invariant comb filterbank to extract
the beat period. This is then used to identify the phase of
the beats by cross-correlating the detection function withan
impulse train with impulses at beat period intervals.
We classify the time-signatureτ of the input by comparing
the energy at integer multiples of the beat period in the auto-
correlation function of the detection function

r(2τb)+ r(4τb) > r(3τb)+ r(6τb) (1)

wherer is the autocorrelation function andτb is the beat pe-
riod. If the above condition holds, we infer duple time and
setτ = 4, else we assume triple time and setτ = 3.
Our model is able to follow local expressive timing variations
and detect tempo changes, and uses context-dependent infor-
mation to enforce contextual continuity with a single tempo
hypothesis. Results in [1] indicate comparable beat tracking
performance to the current state of the art [7].

2.2 Detecting Downbeats

Given the beats and time-signature, we partition an input sig-
nal x(n) sampled atfs = 44.1kHz into beat length segments
xm(n). To retain the perceptually important lower end of the
spectrum we resample the beat segments atf2 = ( fs/16) ≈
2.8kHz. Experiments suggest that the precise spectral range
is not critical, so for convenience we downsample the audio
by a factor of 16. We then find the spectrumXm(ω) of the
mth band-limited beat segment

Xm(ω) =
1
N

N/2

∑
n=1

w(n)xm(n)e− j 2πnω
N (2)

where, to account for varying beat length segments, we fix
N = 512. To reduce the contribution of the least signif-
icant spectral components we apply an adaptive threshold.
The threshold is defined as the convolution of the magnitude
spectrum of themth beat frame|Xm(ω)| with an empirically
derived smoothing kernel,

H(ω) =
{ 0.2 ω = 1, . . . ,5

0 otherwise (3)

This is then subtracted from|Xm(ω)| to leave a modified
spectral framêXm(ω) (fig 2(c))

X̂m(ω) = |Xm(ω)|− |Xm(ω)| ∗H(ω) (4)

∗ refers to the convolution operator.X̂m(ω) is half-wave rec-
tified to set any negative valued elements to zero.

We derive a spectral difference functionD(m) using the In-
formation Theoretic measure, Kullback-Leibler (K-L) diver-
gence [9] (fig 2(d)). To ensure a real-valued output we add a
negligible non-zero constant to each spectral frame and then
normalise it to sum to unity

D(m) =
N/2

∑
ω=1

X̂m(ω) loge
X̂m(ω)

X̂m+1(ω)
(5)

Initial experiments showed K-L divergence to be more effec-
tive than using Euclidean distance, a result also observed by
Hainsworth and Macleod [10] who detect harmonic change
for note onset detection.
Given the number of beats per barτ, we calculate a signal
η(ϕ) as the measure of spectral change at each downbeat
candidateϕ = 1, . . . ,τ

η(ϕ) =
M

∑
m=1

D(τ(m−1)+ ϕ) (6)

whereM is the number of complete bar length segments. We
then extract the beat leading to most spectral changeϕd as
the index of the maximum value inη(ϕ)

ϕd = argmax
ϕ

η(ϕ) (7)

Assuming a steady tempo, we may then extract the down-
beatsγd from the beat indicesγm, by setting
d = (m−1)τ + ϕd.

Figure 2: Top to bottom: (a) input audio signal; (b) onset detec-
tion function with vertical lines indicating beat locations ; (c) band-
limited spectrum beat frames and (d) spectral difference function
with extracted downbeat indices.

3. RESULTS

We evaluate our approach to downbeat estimation in two
stages. First we present results from objective analysis,
where extracted downbeats are compared to manually an-
notated values from a test database [3]. We then perform
a subjective evaluation (on cases where the beat tracking is
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Downbeat Accuracy Accuracy
Algorithm (181 files) (72 files)
KEA 40.8 % 69.9 %
DP B 52.6 % 81.2 %
DP A 72.4 % 76.4 %

Table 1:Results for proposed approach using manual annotations:
(DP A), beat tracker output: (DP B) and the Klapuri et al [7] al-
gorithm: (KEA). Column 2 contains results across the full 181 file
database, with results for a subset of 72 accurately beat tracked files
in column 3.

accurate) to characterise the types of errors made by the sys-
tem. In both stages we compare the output of our algorithm
in a fully automatic setting, using our beat tracker [1] to pro-
vide the beat indices, labelled DP B, with a semi-automatic
approach DP A which uses the manual beat annotations. We
also include results from the Klapuri et al model [7], which
we refer to as KEA.

3.1 Objective Analysis

The objective approach to evaluation compares the output
downbeat indicesγd to downbeatsa j annotated by a trained
musician from a beat tracking test database [3]. The com-
plete database contains 222 files across six musical genres
(rock, dance, jazz, folk, classical and choral). Each excerpt
is between 30 and 60 seconds, mono and sampled at 44.1kHz
with 16 bit resolution. We listened to the annotations for each
example and removed those cases where the downbeat an-
notations were ambiguous (predominantly the classical and
choral examples) or contained changes in time-signature or
tempo. We retained a total of 181 files upon which we tested
our algorithm.
For the automatic approaches (DP B and KEA) we define a
downbeatγd to be accurate if it falls within a specified al-
lowance window around the annotated valuea j , such that

a j −θ∆−
j < γd < a j + θ∆+

j (8)

where ∆−
j and ∆+

j are the previous and subsequent inter-
annotation intervals andθ is the allowance window. In these
experiments we setθ = 0.1 as used by Klapuri et al in their
recent study [7]. We recognise that when using the annotated
beats and time-signature for DP A, the accuracy for each file
will either be 0 or 100%, results are included to indicate an
upper limit for accuracy of DP B. Results comparing DP B,
DP A and KEA are shown in column 2 of Table 1.
An accuracy of 72.4% for the proposed system DP A sug-
gests that spectral difference is an appropriate measure for
extracting the downbeat. The overall accuracy is lower for
the fully automatic system DP B. This is as expected, since
errors in beat tracking and time-signature extraction are nat-
urally carried over. However our approach is still more suc-
cessful than that of Klapuri et al [7].
An intuitive observation from the results across the 181 file
database is that the downbeat accuracy is only as good as
the beat tracking performance. To further analyse the au-
tomatic approaches we extracted a subset of files from the
test database retaining only those in which our algorithm and
Klapuri et al’s [7] were found to beboth95% accurate in beat
tracking (further details comparing the beat tracking perfor-
mance can be found in [1]). Results shown in column 3 of

Table 1, confirm that accurate beat tracking significantly in-
creases downbeat accuracy.

3.2 Subjective Analysis

An unexpected outcome of the objective evaluation (shown
in Table 1) revealed the downbeats to be more accurate in the
fully automatic case (DP B) than when using the annotated
data (DP A), 81.2% compared to 76.4%. This was confirmed
through subjective audition of the 72 subset files in which we
identified accurate downbeat assignment in 55, 61 and 53 in-
stances for the DP A, DP B and KEA respectively. A graphi-
cal representation of the successes and failures of the models
are shown in fig 3, where ‘1’ indicates a correct downbeat,
‘2’,‘3’ and ‘4’ represent the perceived location of erroneous
downbeats and ‘W’ refers to an incorrect time-signature es-
timate.
Across many cases we also observed perceptually more con-
sistent beat timing for the automatic models than for the an-
notated data, most evident in cases where the tempo was con-
stant. From this we infer that inaccuracies in the localisa-
tion of the beats (the result of human annotation) are signifi-
cant when comparing beat length analysis frames, as spectral
changes can become blurred across beat boundaries, making
them harder to detect, thus explaining why DP A was less
successful than DP B. We intend to investigate this in greater
detail within our future work.
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Figure 3: Subjective classification of downbeat locations. KEA
- Klapuri et al [7], DP B - proposed model using beats, DP A -
proposed model using annotations. W refers to incorrect time sig-
nature.

4. DISCUSSION

Our initial results have shown that, for the test database used,
our spectral difference approach is able to correctly inferthe
downbeat more reliably than Klapuri et al’s [7] rhythmic tem-
plate approach. We should note, however, that the most com-
mon error made by the KEA method is in selecting the down-
beat as the ‘3’ rather than the ‘1’, i.e. the downbeat offset
by two beats. This behaviour is not replicated by our ap-
proach which has a more uniform distribution of bad down-
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beat choices (fig 3). While selecting the ‘3’ is clearly not
correct, it is potentially more desirable than picking either
‘2’ or ’4’, as this is more likely to correspond to a strong beat
than a weak beat. This suggests that a combination of our
approach with the KEA model [7] might yield better perfor-
mance than either one individually, using the KEA model to
reliably select either the ‘1’ or ‘3’ beats followed by our spec-
tral difference approach to discern which is the most likely
downbeat. At present this is left as a topic for future work.
In addition to a possible combined rhythmic pattern ap-
proach, we plan to extend our model to overcome its present
limitations – most notably that any omitted beats or changes
in tempo or time-signature cause errors from which our pro-
posed downbeat extraction model cannot recover. To allow
for variation in tempo and time-signature, we intend to track
spectral changes within the spectral difference function,re-
placing the current ‘winner takes all’ strategy where a single
downbeat candidate is used to extract all bar lines. We also
plan to investigate methods for deriving the time-signature
automatically from the spectral difference function. In a
similar approach to Gouyon and Herrera [11] we could take
the autocorrelation function of the spectral difference signal
and detect the time-signature as the beat lag with highest en-
ergy. This would then enable the analysis of songs in time-
signatures other than 3/4 or 4/4. Deriving the time-signature
directly from the beat spectral difference function in thisway,
would also allow our downbeat estimator to operate directly
with the output of any beat tracking system.
In evaluating our downbeat model, we plan to incorporate
a larger test database in addition to comparing performance
against other published approaches to downbeat extraction.
These include the approaches of Jehan [12] and Allan [13]
who present notably different formulations of the problem to
those of Goto [2] and Klapuri et al [7]. Jehan [12] provides
style specific training data to his model which is able to pre-
dict downbeat locations without the need for a beat tracker.
Allan [13] has a more generic approach to metrical analysis.
Given manual annotations at one metrical level, he uses spec-
tral similarity of varying segment lengths to extract spectral
patterns and infer the metrical level above that of the annota-
tions. His approach can be used recursively from the sub-beat
level to give bar lines and segment boundaries.

5. CONCLUSIONS

We have presented a simple algorithm for the extraction of
downbeats in musical audio. We evaluate our algorithm by
comparing extracted bar lines to human annotated data with
an overall accuracy of 53% rising to 81% for cases where
beat tracking is accurate. Under both conditions our ap-
proach is more accurate than a reference state of the art meter
analysis system.
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