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Abstract

Plastics have been invented as a durable, reusable alternative to other organic materials. Their
mass production started only in the 20th century, but plastic pollution is already now one of
humankind’s most enduring legacies, penetrating virtually every ecosystem on this planet. Marine
plastics are especially persistent and hard to clean up, as they often sink down to the seafloor
or fragment into smaller pieces that are called microplastics if they are smaller than 5 mm in size,
accounting for over 90% of all floating plastic particles. In order to protect the marine environment,
it is therefore essential to understand the sources, transport and sinks of floating debris. Only this
way, a comprehensive evaluation of the risk caused by plastic pollution to the marine ecosystem
can be achieved. To do so, observations of plastic samples are interpolated with predictions from
ocean general circulation models to create maps of the regions that are most vulnerable to plastic
pollution, for instance the surface accumulation zones in the center of the subtropical gyres.

This thesis focusses on the surface accumulation zone of microplastics in the North Atlantic
subtropical gyre, where previous modelling efforts have failed to agree with the observed accu-
mulation pattern derived from microplastic samples. With the Lagrangian particle tracking tool
Parcels, virtual particle distributions are generated in the North Atlantic, based on the hydrody-
namic fields from four different ocean general circulation models: GlobCurrent, NEMO, SMOC (a
CMEMS product) and HYCOM. The outcomes of these models are compared against each other,
predicting the maximum of the surface accumulation in the North Atlantic subtropical gyre to
lie between 25 and 55 °W. The models’ prediction powers are tested against the most complete
data set of microplastic samples in the North Atlantic yet, building up on the data set used in
the global inventory of small floating plastic debris aggregated by van Sebille et al. (2015). Still,
observations in the eastern part of the North Atlantic remain too sparse to show the true zonal
extent of the surface accumulation zone. A linear regression between the observed concentrations
and the kernel density estimate of the virtual particle distributions generated by a model measures
the correlation between a model and the observations. Generally, the most realistic release scenario
of virtual particles in the Lagrangian simulations, which includes a repeated coastal release and a
sinking timescale, results in a surface accumulation zone that matches best to the observations in
the North Atlantic subtropical gyre. Because observations are still lacking around the predicted
maxima of the surface accumulation zone, it is too early to claim that one model corresponds best
to the observations.
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Chapter 1

Introduction

1.1 A shallow dive into floating plastics

In the early 1960s, the Swedish engineer Sten Gustaf Thulin invented a method to produce a
shopping bag from one simple, flat piece of plastic, shortly after the start of plastic mass production
after World War II. Thulin intended for the plastic bag to become a reusable, durable alternative
to the paper bag (Weston 2019), the production of which required chopping down forests and is to
this day four times as energy intensive as the production of a plastic bag (Bell and Cave 2011). It
was the advent of the “plastic age”, when the possibilities of industrial plastic use seemed endless
and the environmental repercussions negligible.

Fast forward 30 years further into the “plastic age” to 1997, when the American oceanographer
Charles J. Moore set out on a cruise into the Pacific Ocean, where he discovered the consequences of
the post-war plastic optimism: the Great Pacific garbage patch, an accumulation of slowly degrad-
ing, floating plastic debris between Hawaii and California. Today, it has an extent of 1.6 million km2

(Lebreton et al. 2018) with more than 79 thousand tons of plastic floating inside it. Almost half
of this mass stems from fishing nets, but microplastics – plastic pieces smaller than 5 mm in size
– account for 94% of all floating plastic particles. On average, about 0.7 items float in one square
meter of the Great Pacific garbage patch, which is therefore not really a plastic “island”, as it is
sometimes referred to, but more of a plastic soup. The Pacific, Atlantic and Indian Oceans all
contain garbage patches, but none of those match the one in the North Pacific. The North Atlantic
equivalent is considerably smaller because the ocean basin itself is smaller and the amount of plastic
entering to ocean from the coastline does not compare to the immense amount released from the
East Asian coastline. Early samples of microplastics in the Atlantic were mostly confined to the
Western part of the North Atlantic (Law et al. 2010) where the highest concentrations reached
about 0.2 particles per m2. Summing up all ocean basins, van Sebille et al. (2015) estimated that
the total amount of small, floating plastic debris lies between 15 and 51 trillion particles, weighing
together about 93 to 236 thousand metric tons.

There are different types of marine plastic debris: On one hand, floating fishing debris, macroplas-
tics and large microplastics down to sizes of 1 mm can be captured during efforts to clean up marine
debris, according to The Ocean Cleanup, an organization that aims to remove plastic debris from
the ocean surface. Smaller micro- and nanoplastics on the other hand, that are often fragments
of the larger pieces, still evade these efforts. Microplastics are usually classified according to their
generation, distinguishing between primary and secondary microplastics. Primary microplastics are
produced as such, for example as small resin pellets intended for industrial use, microfibres from
synthetic clothing, abrasive particles in cleaning agents or microbeads in cosmetics. After usage,
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they often enter waste management plants where they should be filtered out, but a fraction still
escapes (Talvitie et al. 2017). Secondary microplastics are fragments of larger pieces that break
down in the marine environment because of mechanical abrasion from wind and waves or from the
action of small organisms such as microbes, from the exposure to sunlight or heat or from hydrolysis
in contact with water, as Andrady (2011) notes (see also Kaandorp, Dijkstra, and Sebille 2021).
Larger pieces of plastic are often carried into the drainage systems and rivers by wind and rain,
before they reach the oceans as mismanaged waste.

But microplastics are not only found in the ocean waters. They have been contaminating
Antarctic glaciers (González-Pleiter et al. 2021), the sediments of remote deep sea trenches (Jamieson
et al. 2019) and even pristine Tibetan glaciers (Zhang et al. 2021), since winds can transport land-
borne particles to these remote places. Even now, humankind may never get rid of the microplastic
pollution that has reached the planet’s most remote corners in the last decades.

While some organisms adapt to the presence of microplastics to form the “plastisphere” (Zettler,
Mincer, and Amaral-Zettler 2013), such as the sea skater who uses the small particles to deposit
its eggs (Goldstein, Rosenberg, and Cheng 2012), micro- and nanoplastics in ocean waters remain
mostly a threat to marine life, especially when they are ingested (Andrady 2011). They can be
retained in the tissue of filter feeders like mussels and barnacles, altering their feeding behaviour
and reducing their resilience. Often coated in toxins and absorbing other marine pollutants, mi-
croplastics also modify the brain structure of seabirds and the fetal development of other marine
mammals upon consumption (Kühn, Bravo Rebolledo, and Franeker 2015).

Ultimately, micro- and nanoplastics can reach higher trophic levels, up until their ingestion by
humans in sea food, where we are left with health hazards quite similar to what marine organisms
are facing. The human hormonal balance is highly sensitive to the introduction of tiny particles in
the bloodstream, which has led among other things to a decrease in human fertility rates (D’Angelo
and Meccariello 2021). Microplastics have also been found in the human placenta where they impact
embryonic development (Ragusa et al. 2021).

The urgency of these issues becomes even more evident considering that the global plastic
production and the amount of plastic entering the oceans alike are still increasing exponentially
(Wilcox, Hardesty, and Law 2019; Ostle et al. 2019), like many human activities as part of the
so-called “Great Acceleration” of the Anthropocene (Brandon, Jones, and Ohman 2019). These
challenges can only be tackled if the sources, the transport and the fate of microplastics are well
understood, so that the marine plastic budget can be closed (Hardesty et al. 2017). Ocean general
circulation models are valuable tools for studying and predicting the transport and accumulation
of microplastics by modelling the physical processes that govern the ocean currents. Comparing
transport routes and accumulation zones to environmental sensitivity maps or to distributions of
marine wildlife (such as the microbial maps studied in AtlantECO) allows researchers to grasp the
extent of the risks that microplastics pose to marine ecosystems. After all, healthy oceans play
a key role in Earth’s climate system due to their ability to absorb heat and dissolve atmospheric
carbon dioxide.

But studying the transport of microplastics with ocean general circulation models is a two-way
street: Observational records of floating particles can help validate the quality of a model or point
out its shortcomings, thus aiding in better understanding the physical processes that govern the
ocean circulation. The records of any kind of small flotsam act as a proxy for convergence zones of
surface currents, where their buoyancy prevents them from downwelling. The most common tracers
are microplastics and together with any other small, buoyant plastic particles that are heavy enough
not to be affected by windage, they make up 99.9% of all debris counts (Lebreton et al. 2018).

Still, these small floating particle account for less than 1% of the estimated plastic reservoir in
the oceans (Eriksen et al. 2014; Jambeck et al. 2015; Lebreton, Egger, and Slat 2019). Around 77%

2



Figure 1.1: Illustration of the physical processes governing the transport of marine plastic debris (pink
particles). The width of the pink line in the lower panel indicates the importance of a physical process in
different regions, while the green line signifies that the transport by organisms is not a physical process.
Figure taken from van Sebille et al. (2020).

of the global marine plastic is expected to beach at the continental shores or circulate in coastal
waters (Onink et al. 2021; Olivelli, Hardesty, and Wilcox 2020). Another share is estimated to be
suspended in the water column due to turbulent mixing (Kooi et al. 2016). Finally, many plastic
particles lose their buoyancy when their hydrophobic surface is coated in a film of organic material
or when particles aggregate with denser organic particles. They then sink to the seabed, where
the particles are increasingly deposited in deep-sea sediments (Brandon, Jones, and Ohman 2019),
especially in the Atlantic Ocean (Woodall et al. 2014).

1.2 Transport of tracers by surface currents in the North Atlantic

The transport of floating marine debris is governed by different processes at different scales (see
Figure 1.1). In the open ocean, floating particles mainly accumulate inside the subtropical gyres.
These gyres form in every major ocean basin where the Ekman transport associated with the
easterly trade winds around the equator and with the westerlies in the mid-latitudes leads to
converging water masses in the subtropics. The sea level as well as the hydrostatic pressure rise
in the subtropics and a pressure gradient force develops, directed from high to low pressure areas.
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Deflected by the Coriolis force, the resulting geostrophic current flows along the isobars, forming
an anticyclonic gyre.

This is why the accumulation zone of floating particles is mainly determined by the wind-driven
Ekman drift at the surface, converging at the same latitudes as the integrated Ekman transport
around 30 °N and trapping the particles inside the gyre. Kubota, Takayama, and Namimoto (2005)
have used satellite altimetry and wind data to study the large-scale circulation pattern in the
North Atlantic and found that marine debris is first moved into the Ekman convergence zone by
the Ekman surface currents, where it is then picked up by the geostrophic currents and transported
eastwards. At the same time, Kubota, Takayama, and Namimoto (2005) wondered whether the
Ekman drift associated with meridional winds along the basin boundary may be responsible for
shifting the center of the accumulation zone towards the center of the basin.

Even though the geostrophic and the Ekman currents are the most well-studied contributions
to the large-scale circulation, at the surface, the magnitude of the Stokes drift might be comparable
to the Ekman drift (Maximenko, Hafner, and Niiler 2012). The Stokes drift is the net horizontal
transport induced by surface waves as tracers move faster over wave crests than through the troughs.
For light microplastics like polystyrene, windage is considered to be one of the main responsible
factors for microplastic transport in addition to the Stokes drift (Chubarenko et al. 2016). Cardoso
and Caldeira (2021) also found that wind plays a considerable role in the transport of surface
particles over basin-scale distances.

The surface transport of buoyant debris also depends on the local eddy activity. Brach et al.
(2018) note that in the North Atlantic, anticyclonic mesoscale eddies accumulate (and potentially
transport) microplastics in their downwelling core. In the South Pacific, floating marine debris
tends to accumulate in regions of lower eddy kinetic energy (Martinez, Maamaatuaiahutapu, and
Taillandier 2009), but Onink et al. (2019) were not able to reproduce this finding in the North
Atlantic, possibly because of the smaller basin size and consequently weaker eddy activity.

Finally, it is important to remember that the ocean basins are interconnected on a global scale.
Therefore, an important sink for plastics released into the North Atlantic is the Arctic Ocean, the
terminus of particles transported via the North Atlantic branch of the thermohaline circulation
(Cózar et al. 2017) and by Stokes drift (Onink et al. 2019). Wichmann, Delandmeter, and Sebille
(2019) found that the vertical shear of ocean currents also affects the horizontal distribution of
microplastic transport, transporting submerged particles from the North Atlantic to the Arctic, as
they do not accumulate in the surface convergence zones.

1.3 Review of tracer accumulation models in the North Atlantic

Ocean circulation models are often used to interpolate spatial distributions of microplastic obser-
vations in the oceans, in order to construct maps of the most vulnerable regions. The surface
currents in the Pacific Ocean have been modelled in a number of studies (Lebreton, Greer, and
Borrero 2012; Maximenko, Hafner, and Niiler 2012; van Sebille, England, and Froyland 2012; Kub-
ota, Takayama, and Namimoto 2005; Martinez, Maamaatuaiahutapu, and Taillandier 2009; Onink
et al. 2019) and generally agreed well with the patterns observed during extensive surface trawls for
small, floating plastics (van Sebille et al. 2015). However, in the North (and South) Atlantic, the
outputs of recent modelling experiments (Lebreton, Greer, and Borrero 2012; Maximenko, Hafner,
and Niiler 2012; van Sebille, England, and Froyland 2012; Onink et al. 2019) did not seem to match
the accumulation patterns inferred from micro- and mesoplastics surface trawls (van Sebille et al.
2015).

Law et al. (2010) were the first to present a systematic survey of plastic concentrations in the
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North Atlantic, albeit limited to the Western North Atlantic and to the Caribbean Sea. They found
a latitudinal band at 30 °N of high concentrations up to 0.2 particles per m2, but did not make any
estimates about the zonal extent of this accumulation zone, because they did not take any samples
in the central or eastern part of the North Atlantic.

The pattern derived from these observations, stemming from more than 6000 surface trawls
over a period of 22 years, was compared to trajectories from the Global Drifter Program, as well as
to a numerical model based on these trajectories. After advecting an initially uniform distribution
of virtual particles for a period of 10 years, Law et al. (2010) found that drifters passing through
the Western North Atlantic around 30 °N, where observed plastic concentrations were highest, also
tended to stay in this area, indicating an attractor of floating particles in this part of the subtropical
gyre. Law et al. (2010) did not make any claims about where floating particles ended up that did
not cross this region of highest concentrations.

Maximenko, Hafner, and Niiler (2012) also worked with drifter data from the Global Drifter
Program to set up a probabilistic model of the ocean circulation using transition matrices. A
transition matrix is often used to describe Markov chains, i.e. stochastic models in which the
probability of an event only depends on the state of the system at the previous time step. Even
though individual drifters may not always follow the exact currents, one can assume that a large
number of drifters still gives an accurate representation of their final accumulation zone. This
probabilistic approach extends the sparse observational data set inferred from the drifters that
often do not travel long enough to reveal the large-scale ocean connectivity. Each element of the
transition matrix states the probability that a drifter travels to another grid cell in a certain time
frame, given the observed drifter trajectories. Maximenko, Hafner, and Niiler (2012) calculated the
probability that in the next 5 days, a drifter would travel to a surrounding cell in a 0.5°× 0.5° grid,
assuming statistical stationarity. This, however, eliminated any seasonal variability in the resulting
modelled circulation. Even though Maximenko, Hafner, and Niiler (2012) compared their model
outcome to surface measurements of microplastics, their drifters were drogued at 15 m. Surprisingly,
these drifters seemed to accumulate in the same region as their undrogued counterparts, suggesting
that the currents at 15 m depth are somewhat representative of the surface currents. In terms of
sinks, this model only included a very simplified version of beaching by removing particles that
entered a coastal cell. No other removal processes (e.g. sinking due to biofouling) were considered.

Multiplying a global uniform distribution of virtual particles with the transition matrices for a
circulation of 10 years, Maximenko, Hafner, and Niiler (2012) found accumulation zones in each of
the subtropical gyres. The largest accumulation zone was generated in the South Pacific because
the uniform release led to the largest number of particles circulating in this basin, although in
reality, the largest input of plastics in the oceans is in the North Pacific (Jambeck et al. 2015). In
the North Atlantic, a dynamic accumulation pattern built up in the subtropics around 30 °N after
2 to 3 years. It stretched across the entire zonal extent of the North Atlantic at this latitude, with
its maximum around 55 °W. In the long run, though, diffusion allowed virtual particles to leave
the accumulation zones, dissolving them over time.

Van Sebille, England, and Froyland (2012) also built a statistical model of the ocean surface
circulation from the drifter data set, half the buoys of which remained drogued at 15 m, while
the other half had lost their drogue. From their trajectories, transition matrices were determined
on a 1° × 1° grid for periods of 60 days to capture seasonal variabilities. Virtual particles were
released along the coastlines in six pulses over the course of the first modelling year, scaled to the
population density within 200 km of the coastline. The final model did not include any beaching
nor sinking parametrization and thus conserved the number of particles over the course of the
simulation. At the end, particles accumulated in the subtropical gyres and in the Barents Sea,
while again the extent of the North Atlantic accumulation zone covered the entire width of the
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basin. The dynamical aspect of the surface circulation was revealed after 1,110 years, when almost
all of the dynamical features of the accumulation zones in the South Atlantic and Indian Ocean
had disappeared, establishing the North Pacific subtropical gyre as the main attractor.

Lebreton, Greer, and Borrero (2012) tracked the trajectories of virtual particles in a Lagrangian
simulation according to the flow field data of the HYCOM/NCODA model with a spatial resolution
of 1/12° (see also Section 3.2). Virtual particles were seeded continuously at major river mouths,
along coastlines scaled to the coastal population density, and along major shipping routes to ac-
count for a variety of different input scenarios, with the particle number increasing every year. The
particles were then advected with the Lagrangian particle tracking model Pol3DD (more informa-
tion about Lagrangian particle trackers can be found in Section 3.1) for 30 years, by looping data
sets of 6 years. Again, neither beaching nor sinking were included in this model. Particles tended to
accumulate mostly in the subtropical gyres of the Northern Hemisphere, implying that plastic input
into the oceans scales with economic activity. In the North Atlantic, the highest concentration of
virtual particles is observed around 30 °N and 55 °W.

The most recent modelling work in the North Atlantic has been done by Onink et al. (2019), who
studied the role of the geostrophic current, the surface Ekman current and the Stokes drift in the
accumulation of floating microplastics in subtropical gyres, following a suggestion by Maximenko,
Hafner, and Niiler (2012) that the magnitude of the Stokes drift might be comparable to that of
the surface Ekman drift. The geostrophic and Ekman current were modelled after satellite and in
situ data from the GlobCurrent data set (see also Section 3.2), while the Stokes drift was estimated
separately from the surface wave field of the WaveWatch III reanalysis. Adding the Stokes drift to
the GlobCurrent data might have overestimated the effect of the Stokes drift, since it is at least
partially included in the GlobCurrent observations already, but Onink et al. (2019) still considered
the sum of the GlobCurrent and WaveWatch III data in a Lagrangian simulation. Initialized as a
uniform 0.5°× 0.5° grid, particles were advected over the course of 13 years.

Despite not including any subgrid-scale dispersion, nor beaching or sinking parametrization,
Onink et al. (2019) still managed to recover the results by Kubota (1994), stating that in the North
Atlantic, Ekman currents lead to surface accumulation around 30 °N, while geostrophic currents
only contribute to the zonal dispersion of the accumulation zone. The angle between the Ekman
currents from the GlobCurrent data set and the wind stress is 30.75°, which is smaller than the 45°
angle predicted by Ekman theory. The increased zonal component of the Ekman current appeared
to contribute to the zonal transport as well. The inclusion of Stokes drift generated transport to
the Arctic and narrowed the peak of the accumulation zone to a region between 55 and 60 °W.

The three models published in 2012 (Maximenko, Hafner, and Niiler 2012, van Sebille, England,
and Froyland 2012, Lebreton, Greer, and Borrero 2012) were reviewed and compared to the accu-
mulation pattern revealed in the concentration pattern of small, buoyant plastics trawled at the
sea surface (van Sebille et al. 2015). This global data set of small, floating plastics is largely based
on the data collected by Law et al. (2010) in the North Pacific and North Atlantic and has been
spatially interpolated and standardized to account for different sampling conditions (more details
in Section 2.1). For better comparison with the other two models, the review of Lebreton, Greer,
and Borrero (2012) was limited to the coastal scenario. In each of the three models, the North
Atlantic subtropical gyre showed the lowest concentrations of virtual tracers compared to the other
subtropical gyres. Across these three models as well as the model run by Onink et al. (2019), the
highest concentration in the North Atlantic was consistently found around 30 °N and 55 °W, which
did not coincide with the location of the peak in the observational data set around 40 °W.

For a more rigorous statistical comparison, the final distributions of the virtual particles were
binned onto a 1° × 1° grid, to allow for a point-by-point comparison at each sampling location,
where the number of virtual particles aggregated from the virtual distribution was compared to the
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Figure 1.2: Scatter plot comparing the virtual particle distribution generated by the van Sebille, England,
and Froyland (2012) model to the concentrations observed in surface trawls, as collected in van Sebille et al.
(2015).

actual observed concentration. When these pairs are displayed in a scatter plot such as Figure 1.2,
the data points show the correspondence of the model prediction to the observed values. A 1-to-1
correspondence would result in the bisector giving by the black line, but the North Atlantic data
points follow a hook, or Γ-shape. The correlation coefficient r determined from a linear regression
gives a quantitative measure for the goodness of correspondence between model and observations;
the van Sebille, England, and Froyland (2012) model only reached r = 0.22 in the North Atlantic,
which corresponds to a coefficient of determination of R2 = r2 = 0.0484 (Figure 1.2). The Lebreton,
Greer, and Borrero (2012) and Maximenko, Hafner, and Niiler (2012) models gave regression plots
that agreed qualitatively with Figure 1.2; see van Sebille et al. (2015) for more details.

Aside from the North Atlantic, a similarly large data set of observations has only been collected
in the North Pacific. The models by Maximenko, Hafner, and Niiler (2012), van Sebille, England,
and Froyland (2012), Lebreton, Greer, and Borrero (2012) and Onink et al. (2019) matched these
observations rather well, as the location of the peak in the modelled distributions coincided with the
peak in the observations around 30 °N and 50 °W. The van Sebille, England, and Froyland (2012)
model was compared to the observational data set in Figure 1.2, in which the data points follow a
straight line, at least for concentrations larger than 1,000 particles per km2. It is thus reasonable to
say that the models performed sufficiently in the North Pacific and that this approach to compare
models to observations is valid.

The initialization of a simulation may also influence its final accumulation pattern. According to
Wichmann et al. 2019, any information about the initial input location of a virtual particle should
be lost when running a model for longer than the mixing time in a given basin, but Chenillat
et al. (2021) found that the release scenario does in fact play a role in the accumulation of virtual
particles in the subtropical gyre. They ran global Lagrangian simulations with GLORYS12V1 data
with different source functions for 22 years, and noted that particles released at major river mouths
ended up circulating in coastal waters retained by the rivers. Particles released more evenly along
the coast, e.g. according to the population density within 200 km of the coastline (essentially as
in van Sebille, England, and Froyland 2012), accumulated in the subtropical convergence zones,
especially in the North Atlantic. This behaviour persisted even after running a global simulation
for 22 years, which is longer than the mixing time in each ocean basin (Wichmann et al. 2019).
Even though Chenillat et al. (2021) employed only a very simplified coastal parametrization that
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risked falsifying the behaviour of virtual particles released in river mouths, their results indicate
that the release scenario might substantially influence the accumulation of virtual particles in the
subtropical gyres.

1.4 Aim of this thesis

In this thesis, I will try to unravel why previous modelling efforts so far have failed to reproduce the
observed accumulation pattern of small, floating plastics in the North Atlantic. The North Atlantic
has already been trawled extensively for micro- and mesoplastics, but mostly in the western part
of the basin. Does this existing data set contain a bias that can be removed by extending it with
novel observations? How does the modelled accumulation pattern change with different flow field
data, and is there a model that aligns best with the observations? Does a more realistic input (and
removal) scenario improve the correlation between modelled distributions and observations?

It should be noted that while observations are still very sparse in the South Atlantic, models
show a comparably poor correlation to the observations like in the North Atlantic, even though
the South Atlantic probably contains a larger amount of floating plastics (van Sebille et al. 2015).
The analysis of this thesis needs a large set of observations, which is why it will only focus on the
North Atlantic, but more efforts are needed to study the South Atlantic as well.

In Chapter 2, I will extend the existing data set van Sebille et al. (2015) with data collected
since 2015 and see how this influences the observed accumulation pattern. In Chapter 3, I will
run four different models, one based on satellite and in situ data and three numerical ones, with
different input scenarios and examine the differences in their final distributions. In Chapter 4, I
will outline the steps needed to compare a modelled distribution to observations, and I will show
the results of this statistical analysis in Chapter 5. In Chapter 6, I will discuss any shortcomings
of my analysis and propose outlooks for future studies. Chapter 7 summarizes the main findings of
this thesis.
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Chapter 2

Observations

2.1 Earlier data

Floating plastics have been sampled since the 1970s and are arguably one of the most well-studied
kinds of marine debris (van Sebille et al. 2020). Van Sebille et al. set up a global inventory of small
floating debris in their eponymous paper from 2015, containing records of small, floating plastics
since the 1970s. Except for the Arctic, all the world’s oceans and marginal seas had been combed
in 17 different studies, resulting in over 11,000 measurements of the number density or mass density
of small plastic particles, trawled with neuston and manta or other plankton nets with mesh sizes
between 200 µm and 505 µm. More than 75% of this data was gathered on cruises in the Western
North Atlantic and in the Caribbean Sea over the course of 22 years by undergraduate students
and researchers from the Sea Education Association (SEA) (Law et al. 2010; see also Section 1.3).

This data set contains the raw data as presented in each of the studies, as well as the standard-
ized data to account for varying sampling conditions such as the sampling year and location, the
meteorological conditions and the tow distance. The standardization fitting best to the raw data
was determined by a general additive model, using a spherical two-dimensional spline for spatial
smoothing. The best fit was achieved when standardizing to no-wind sampling conditions in the
year 2014, while taking into account the spatial discontinuity between the tropical Pacific Ocean
and the Caribbean Sea, where the two basins are separated by a narrow piece of land only. Wind
reanalysis data is available in the ERA5 data set of hourly data on single levels from 1979 to present
from the Climate Data Store by the Copernicus Climate Change Service (Hersbach et al. 2018), but
only for sampling years after 1979. This explains why the earliest data is from 1979 even though
plastic had been sampled in the oceans since the early 1970s.

However, any further analysis of this data should use the raw data before standardization also
given in van Sebille et al. (2015), especially if new data sets are added that would need to be
standardized in the same way as described above. Moreover, statistical tools like general additive
models and spatial smoothing functions merely consider the spatial distribution of the data, but
fail to take into account any physical processes that shape this distribution.

2.2 Trawling for additional data

The data set presented by van Sebille et al. (2015) is heavily skewed towards the western part of
the North Atlantic basin, especially towards the Sargasso and Caribbean Seas. In this data set,
the highest concentrations lie around 40 °N, 30 °W, but the number of samples is much lower in
this area than in the well-trawled western part of the basin. In order to determine whether the
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Figure 2.1: Atlantic locations of the novel plastic samples analyzed in this thesis.

location of the maximum concentration is biased by the sparse sampling outside the Western North
Atlantic, the van Sebille et al. (2015) data set has to be extended with data collected in the central
or Eastern North Atlantic.

I trawled through a myriad of online data bases and scanned a large number of publications
about the presence of (micro-)plastics in the Atlantic Ocean to find observations that had not
been included in the van Sebille et al. (2015) data set, either because they had been overlooked
by the authors of the original data set or because they had been published after 2015. The search
engines Google, Google Scholar and Google Dataset Search were a great help in this task. Another
valuable database was LITTERBASE1, an online portal compiling over 2,700 scientific publications
with original marine litter samples, set up by the Alfred Wegener Institute for Polar and Marine
Research. The locations of the new data points are mapped in Figure 2.1.

The data sets selected for this research needed to include the plastic concentrations, the coor-
dinates of the sampling location and the sampling date. Since this thesis is concerned with the
transport of small floating plastic particles, I limited my search not only to microplastics (com-
monly defined as particles smaller than 5 mm in diameter), but to particles slightly larger than this
as well. In the end, a total of 648 new data points from 14 data sets were added to the data set
by van Sebille et al. (2015) with particles sizes ranging from 32 µm to 25 mm. If plastic particles
were sampled by nets, they were trawled mostly at the sea surface with bongo, neuston or manta
nets with mesh sizes between 100 µm and 500 µm, although the typical mesh size for these trawls
is 300 µm (Brach et al. 2018; Cabernard et al. 2018; Gago, Henry, and Galgani 2015, Herrera et al.
2020; L“IeC –“”o˝der2017enzymatic Lorenz et al. 2019; Oberbeckmann et al. 2014; Rochman
et al. 2014; Garćıa Marina et al. 2019). One data set (Kooi et al. 2016) was collected in a multi-level
trawl in the water column. Other samples in the water column were obtained by pumping seawater
through a mesh at the bottom of the vessel (Kanhai et al. 2017; Montoto-Mart́ınez, Hernández-
Brito, and Gelado-Caballero 2018; GEOMAR Helmholtz Centre for Ocean Research Kiel 2018;
Pabortsava and Lampitt 2020). Because of contamination concerns, most data sets excluded fibres,
except for Brach et al. (2018), Kanhai et al. (2017) and Montoto-Mart́ınez, Hernández-Brito, and

1https://litterbase.awi.de (Last accessed: 14/05/2021)
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Figure 2.2: Surface concentrations as sampled in the bottle grabs.

Gelado-Caballero (2018). Although the mesh size of the trawling nets and in the pump filters
generally sets a lower limit to the detectable particle size, it is not uncommon that smaller particles
end up in the final sample as well, either as aggregates or by clogging the mesh (Lorenz et al. 2019).

Bottle grabs

Zooplankton sampling methods like neuston net sampling have inspired the ways that microplastics
are sampled today (Green et al. 2018a). Barrows et al. (2017) note that net sampling can only
detect plastic particles larger than 50 µm because the mesh size of the sampling net is limited. This
is why Barrows et al. (2017) suggested a novel approach to sampling microplastics without being
restricted by the mesh size: collecting sea water at the surface with 1 L bottles. Their bottle grabs
were filtered over a 0.45 µm mesh, which is several orders of magnitude smaller than the sieves
included in the underwater pumps with mesh size of about 25 µm (see e.g. Pabortsava and Lampitt
2020), or than the standard neuston net mesh size of 300 µm (see e.g. Brach et al. 2018).

Two microplastics data sets obtained by 1 L bottle grabs were considered in this research.
Barrows, Cathey, and Petersen (2018) contributed 1393 new data points, while Green et al. (2018b)
provided 16 measurements. These grab samples, however, were analyzed separately from the net
and pump data. In fact, Barrows et al. (2017) note that the concentrations derived from these
grab samples were three orders of magnitude larger than conventional net sampling at the same
locations, largely because of the lower end of the size spectrum that can be sampled this way.
Indeed, the bottle grabs from Barnes et al. (2018) and Green et al. (2018b) contained fibres and
plastic particles ranging from 0.45 µm to 5 mm. As one aim of this thesis is the spatial distribution
of small plastic particles, combining the concentrations from the net and pump samples with those
from the bottle grabs would introduce a strong bias towards the bottle grabs. Nonetheless, the
bottle grabs cover a substantial part of the previously undersampled region in the North Atlantic,
as shown in Figure 2.2. Barrows et al. (2017) further indicate that the large variation within the
bottle grabs may be due to quite a small sampling volume of 1 L.
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2.3 Combining the data sets

Different data sets are often given in different units that need to be converted before the data sets
can be combined. The data from van Sebille et al. (2015) is available in units of number of particles
per km2, converted to a total mass per km2 using a range of values for a typical mass per particle.
The plastic concentrations in the new data sets were recorded with different units, e.g. number
of particles per m3, number of particles per km2, total mass per m3 or total mass per km2. The
data sets recording the concentrations in total mass per m3 or per km2 (see Brach et al. 2018 and
Gago, Henry, and Galgani 2015) also cited the concentrations in number of particles per m3 or per
km2, hence the choice of number of particles as the first part of the unit to combine the different
data sets into one. The next choice is between the concentrations given by volume or by surface
area. The samples recorded in concentration by volume had often been obtained by counting the
plastic particles in the water flux passing through an underwater pump, as in Kanhai et al. (2017),
Montoto-Mart́ınez, Hernández-Brito, and Gelado-Caballero (2018), GEOMAR Helmholtz Centre
for Ocean Research Kiel (2018) and Pabortsava and Lampitt (2020). Since the dimensions of these
pumps or the pumping times were not always recorded, it is impossible to infer the corresponding
sampling area from these volumes. Therefore, the concentrations by surface area, resulting from net
tows, are converted to concentrations by surface area by multiplying with an average submerged
net height of 0.25 m, as suggested in Kukulka et al. (2012).

Some data sets do not give the surface concentrations, as underwater pumps or sub-surface
trawls rather measure the concentration of buoyant plastic particles in the water column. While
buoyant particles are usually expected to rise to the sea surface after submersion, their upwards-
directed buoyancy is partially suppressed by wind-driven turbulent mixing in the so-called mixed
layer (Kukulka et al. 2012). Surface heat fluxes and evaporation also homogenize the upper part of
the water column, but wind and wave action remain the most important drivers (Chamecki et al.
2019). The magnitude of these effects determines the share of buoyant particles submerged in the
mixed layer. Since the aim of this thesis is to assess the accumulation pattern of plastic particles at
the surface, the plastic samples from the water column have to be extrapolated to the sea surface.
In a first step, this is done following a parametrization by Kukulka et al. (2012) using the wind speed
at the sampling point and time. None of the plastic data sets included meteorological parameters,
but the wind speed is part of the ERA5 reanalysis of hourly data on single levels from 1979 to
present from the Climate Data Store by the Copernicus Climate Change Service (Hersbach et al.
2018). The total wind speed U10 at 10 m above the sea surface is calculated from the zonal and
meridional wind speeds at 10 m u10 and v10 as U10 =

√
u2

10 + v2
10.

The hydrodynamic model by Kukulka et al. (2012) describes the steady state of a buoyant
particle in wind-driven turbulence. This leads to an exponential vertical distribution of buoyant
plastic particles near the sea surface:

n0 = n(z = 0) = n(z) exp

(
−zwb
K0

)
, (2.1)

where n is the particle concentration and z < 0 is the sampling depth, so that z = 0 denotes the
depth of the sea surface. The buoyant rise velocity of the plastic particles is given by wb = 1 cm/s,
a typical value inside the range of observed buoyant rise velocities for different sizes and shapes of
particles (Kukulka et al. 2012). If breaking waves are the main factor for mixing near the surface
and if the sea is fully developed with a wave age of β = 35, the vertical diffusion coefficient at the
surface K0 can be parametrized as given in Kukulka et al. (2012):

K0 = 1.5uwκHs, (2.2)
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where κ = 0.4 is the von Kármán constant for flow velocities in turbulent fluids at the fluid
boundary. uw =

√
τ/ρw is the frictional velocity of the water with density ρw due to the wind

stress τ . The wind stress can be determined from τ = ρairCDU
2
10 using the air density ρair, but

the drag coefficient CD has to determined empirically since it depends on the sea state. However,
for average wind conditions around 12 knots or 6.1 m/s, uw = 0.65 m/s is a reasonable assumption.
Considering the wind speed at each sampling point in the water column (Hersbach et al. 2018), the
average wind speed is (6± 3) m/s and therefore uw = 0.65 m/s seems reasonable.

For a fully developed sea and in deep waters, the significant wave height is determined from the
wind speed at 10 m according to Komen et al. (1996):

Hs = 0.243
U2

10

g
, (2.3)

where g = 9.81 m2/s2 is the gravitational acceleration. According to Kukulka et al. (2012), Equation
(2.2) only holds for z > −1.5Hs, where Hs is the significant wave height. With a typical significant
wave height of (0.34± 0.05) m averaged over each sampling point in the water column, the sampling
depth cannot exceed 0.5 m. The sampling depths of the underwater pumps were much larger than
this, though, ranging from 1.5 m (GEOMAR Helmholtz Centre for Ocean Research Kiel 2018) to
270 m (Pabortsava and Lampitt 2020). Kooi et al. (2016) also note that Kukulka’s approach in
Equation (2.2) often results in a potential overestimation of the inferred surface concentration,
especially at low wind speeds.

This is why in his current work about an empirical Lagrangian parametrization for wind-driven
mixing of buoyant particles at the ocean surface (reference updated when a DOI is available),
Victor Onink investigates two different parametrizations of the vertical diffusion coefficient Kz

in the mixed layer. He notes that neither of these approaches seems to have a clear advantage
over the other. The first approach is based on the fact that for depths larger than 1.5Hs, the
eddy viscosity profile νz becomes depth-dependent. Assuming a linear relationship between νz and
Kz, the so-called surface wave breaking (SWB) parametrization arises (Poulain-Zarcos, reference
updated when a DOI is available):

Kz =

{
1.5uwκHs +KB if z ≥ −Hs

1.5uwκH
5/2
s |z|−3/2 +KB if z < −Hs.

(2.4)

The bulk dianeutral diffusion KB = 3× 10−5 m2/s accounts for turbulent mixing below the
mixed layer, outside the reach of surface waves.

The second approach considers the dependency of the vertical diffusion on the local mixed layer
depth (MLD). In the so-called K-profile parametrization (KPP), Large, McWilliams, and Doney
(1994) and Boufadel et al. (2020) give Kz as:

Kz =
κuwθ

φ
(|z|+ z0)

(
1− z

MLD
+KB

)
, (2.5)

where φ = 0.9 is used in the Monin-Obukov boundary layer theory, θ = 1 parametrizes the Langmuir
circulation, and z0 is the roughness scale of turbulence, depending on the wind speed at 10 m U10

and on the wave age β (Zhao and Li 2019) (here, a fully developed sea is assumed and thus β = 35).
The wind speed at 10 meters used in these calculations is again obtained from the ERA5 data

set (Hersbach et al. 2018). Holte et al. (2017) analyzed the records of over 2 million Argo drifters
to compile a global monthly climatology of the mixed layer depths, averaged into 1° × 1° bins.
Since the mixed layer depth would have been an additional parameter but was not given for any
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Figure 2.3: Adjusted surface concentrations as sam-
pled in net trawls and by underwater pumps.

Figure 2.4: Combination of the surface concentra-
tions compiled in van Sebille et al. (2015) and the ad-
justed surface concentrations as sampled in net trawls
and by underwater pumps (Figure 2.3).

of the sub-surface data and would have to be obtained from a reanalysis product, I opted for the
SWB parametrization. I decided to discard the Pabortsava and Lampitt (2020) data set because
the data was collected well below the mixed layer at depths down to 240 m, where this mixed layer
parametrization is no longer valid.

The vertical diffusion coefficient can be used to infer the share of particles collected at depth
compared to the particles that would have been trawled at the surface, thus yielding a factor
with which to correct the sub-surface observations taken with underwater pumps. In Lagrangian
simulations that track virtual particles such as Parcels (more information in Section 3.1), subgrid-
scale turbulence is often modelled by adding a stochastic term to a virtual particle’s displacement
(in a Markov model of order zero; “random walk”). In the case of wind-driven turbulence, a
one-dimensional stochastic differential equation arises for the vertical coordinate z:

z(t+ dt) = z(t) + (wr + ∂zKz)dt+
√

2KzdW, z(0) = 0, (2.6)

where dt is the time step, wr is the buoyant rise velocity, Kz is the vertical diffusion coefficient and
dW is the Wiener increment, a stochastic component distributed normally around a zero mean with
a variance of dt. Using the Parcels framework, the vertical diffusion of virtual particles initialized at
the surface is simulated for a runtime of 12 hours and for a given wind speed at 10 m. Dividing the
number of virtual particles at depth z by the total number of particles in the simulation gives the
correction factor with which to adjust the measured concentration at depth z to infer the surface
concentration.

Figure 2.3 shows the net and pump data adjusted for wind-driven mixing to give the surface
concentrations. Still, compared to Figure 2.4 which shows the final net and pump data set including
the van Sebille et al. (2015) data, the surface concentrations inferred from the sub-surface data sets
(Kanhai et al. 2017; Montoto-Mart́ınez, Hernández-Brito, and Gelado-Caballero 2018; GEOMAR
Helmholtz Centre for Ocean Research Kiel 2018) seem rather high. Especially in the divergence
zone around the equator, the surface concentrations are larger than expected. This might either be
due to the finer mesh size used to filter particles collected in the pumps, compared to the nets used
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in the surface trawls, or there might be an error in the modelling work of the surface concentration.
I have assumed a typical buoyant rise velocity of wb = 1 cm/s for all these data sets, even though
wb depends strongly on the particle size and density (Kooi et al. 2016). Having said this, most
of these data points do not seem to be part of the accumulation zone in the subtropical gyre as
predicted in previous modelling work (Section 1.3), just the like the high concentrations found
in the Northwestern European shelf. Disregarding these higher values, a local maximum of the
observed accumulation zone lies at 40 °W, even though the lack of observations eastwards thereof
leaves it unclear whether this is indeed the global maximum of the accumulation zone.

In the end, only 508 data points were added to the initial 11,103 data points to form the final
net and pump data set. Many of these new data points were sampled around Europe and do not
give much more information about the zonal extent of the garbage patch in the North Atlantic
subtropical gyre. This is why in the following analysis that compares the observations to modelled
predictions, I will investigate the influence of the samples from the coastal waters, especially because
of the rather high concentrations around Europe. In the main part of the analysis, though, samples
around Europe (north of 35 °N and east of 10 °W) or closer than 100 km to the continental coastlines
are removed from the final data set.
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Chapter 3

Simulations with Ocean Circulation
Models

3.1 Lagrangian simulations with Parcels

Parcels1 is a framework of Python classes and methods, designed to produce tracer simulations with
the outputs from ocean general circulation models (OGCMs). The backronym Parcels stands for
“Probably A Really Computationally Efficient Lagrangian Simulator”, highlighting the Lagrangian
approach used to follow active and passive tracers along their trajectories in hydrodynamic flow
fields. First developed by Lange and van Sebille (2017) with additions by Delandmeter and van
Sebille (2019), its current version (2.2) is a useful tool to simulate the movement of virtual, in-
finitesimal particles in a flow field, in analogy to small plastic particles in the oceans.

The trajectory of an infinitesimal water parcel or of a particle within the parcel follows the local
advection prescribed by a Eulerian velocity field such that the particle position X(t) changes in
time as:

∂X(t)

∂t
= v(x, t) (3.1)

at the point X(t) = x. This connects the Lagrangian approach to the Eulerian form of the flow field,
which determines the velocity at fixed points at space. Instead of updating the entire ocean grid as
would be necessary in a Eulerian analysis, the Lagrangian approach only computes the particle’s
movement along its trajectory, which is especially useful when studying ocean connectivity. The
trajectory of a particle is computed as:

X(t+ ∆t) = X(t) +

∫ t+∆t

t
v(x, τ)dτ + ∆Xb(t), (3.2)

where X(t) is the three-dimensional, Lagrangian positional vector of the particle at time t, ∆t is
the computational time step and v(x, t) is the three-dimensional Eulerian velocity given by the
OGCM at x = X(t). ∆Xb(t) is the change in position due to additional behaviour not included
in the OGCM, which can be added to the basic Parcels code by the means of custom kernels.

This thesis only uses the horizontal components at the sea surface of the velocity fields generated
by the OGCM, since the focus of this study lies on the surface accumulation pattern generated by
the surface flow. The advection is computed with a Runge-Kutta scheme of fourth order and a

1https://oceanparcels.org (Last accessed: 26/05/2021)
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time step of 5 min. This choice is motivated by the Courant-Friedrichs-Lewy (CFL) condition for
the stability of a numerical time integration scheme:

v∆t

∆x
< 1, (3.3)

where v is the velocity magnitude, ∆t is the integration time step and ∆x is the spatial grid size.
The largest flow velocities in the Atlantic Ocean are found in the Gulf Stream with a maximum
of 9 km/h at the surface.2 ∆x ranges between 1/12° and 1/25° (see Section 3.2). The movement
of the virtual particles is not restricted to the Atlantic basin and covers a large range of latitudes,
along which the metric size of 1° varies with the cosine of the latitude. This is why the time step
has to be chosen well below the order of one hour. The exact value of v(x, t) at location x and
time t is interpolated from the flow field data.

Most flow fields are given on grids that have a discontinuity around ±180 °E. To let virtual
particles cross this discontinuity, the flow field is extended with a “halo” east and west of it, so that
a custom kernel can move the particles from one side of the field to the other. Particles can not only
get stuck at a discontinuity but also along the shore, either due to actual beaching or when they get
trapped floating in the coastal zones (Onink et al. 2019). Beaching is a highly complex process that
involves coastal dynamics at a much smaller scale than the basin-scale considered in this project.
Modelling a realistic beaching process along the Atlantic coastline is therefore outside the scope of
this work. Still, the number of particles getting stuck at the coast should be minimized in order
to obtain meaningful statistics. Parcels is usually set up in a way that if particles enters a coastal
cell, it stops moving, i.e. its zonal and meridional velocities are zero. A land mask can be created
from all the grid cells at which the zonal and meridional velocities are zero, differentiating between
coastal cells and inland cells by checking flow velocities in the grid cells around them. Similarly, the
landward and seaward directions can be determined for the coastal cells. Now, each particle that
enters a coastal cell is displaced seawards by a virtual “anti-beaching current” of 10 m/s, which for
a time step of 5 min corresponds to a one-time seawards displacement of 3000 m back into the open
ocean. This is enough to avoid that particles are trapped in most coastal grid cells, while at the
same time it does not interfere much with the global circulation. Still, the anti-beaching current
is often not enough to make sure that particles do not not accumulate in river mouths, as can be
seen below in Figure 3.6, where particles end up in the mouth of the Amazon river. This is why at
the end of each simulation, particles that are closer than 100 km to the continental coastlines are
removed from the final accumulation pattern. Nevertheless, the assumption remains that particles
that would in reality beach or stay in the coastal zone do not influence the shape of the basin-scale
surface accumulation patterns.

In Lagrangian simulations, subgrid-scale processes are usually modelled stochastically, for ex-
ample by adding a stochastic component to the particle displacement (Markov model of order zero;
“random walk”) or to its velocity (Markov model of order one; “random flight”) (van Sebille et al.
2018). In the next section, I will describe the ocean circulation models used in my simulations; their
spatial resolution lies between 1/4° and 1/12°, which is high enough to resolve mesoscale processes
such as mesoscale eddies on length scales of 100 km. This is why I did not include any further
subgrid-scale parametrization in my simulations.

Finally, the virtual particles are advected for 4 years, a choice which is motivated in Section 3.3,
starting in the Atlantic Ocean, but using the global flow field data. Even though the main focus
lies on the North Atlantic, particles are seeded within the entire Atlantic basin.

2https://oceanservice.noaa.gov/facts/gulfstreamspeed.html (Last accessed: 23/06/2021)
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3.2 Ocean circulation models

GlobCurrent

The GlobCurrent3 data set is based on altimetry data from Archiving, Validation, and Interpreta-
tion of Satellite Oceanographic (AVISO) data and CNES-CLS11 Mean Sea Surface (MSS) altimetry
data to construct a map of the geostrophic ocean currents derived from differences in sea surface
height. The underlying geoid is obtained from the Gravity Field and Steady-State Ocean Circula-
tion Explorer (GOCE), an ESA satellite operated between 2009 and 2013 that mapped the Earth’s
gravity field. Correcting these measurements by CNES-CLS11 altimeter MSS data, a so-called
geodetic mean dynamic topography (MDT) is constructed.

The estimate of the geostrophic currents is further improved by interpolating the geostrophic
measurements from in situ drifter velocities using the geostrophic and Ekman balance. In general,
the work by Rio, Mulet, and Picot (2014) combines altimetry, gravimetry and in situ data to
assess the geostrophic and Ekman currents, which are the two main contributors to the global
ocean circulation. The Ekman currents are obtained from in situ data, which also allows the
inclusion of small-scale structures, increasing the resolution of the final product. Among other in
situ data sets are for example the Argo floats, the vertical profiles from Coriolis Ocean database
ReAnalysis (CORA) and the drogued and undrogued buoys from the Surface Velocity Drifter
Program (SVP), which is the precursor of the Global Drifter Program. The drogued buoys allow
for velocity estimates below the surface at 15 m depth. The Ekman currents are also modelled
from wind stress data from the ERA-Interim reanalysis: Subtracting the Ekman current from the
drifter velocities and correcting for wind slippage, the geostrophic current is updated again, after
removing ageostrophy from inertial oscillations, Stokes drift and tides with a 3 day low-pass filter.
Since the inertial signal is more prominent around the equator, the low-pass filter might have been
unable to remove it in a band of ±10° around the equator.

This thesis uses the zonal and meridional components of the global, total surface current given
as the sum of the geostrophic and Ekman currents in the third version of the GlobCurrent data set
at level 4. It has a spatial resolution of 1/4° on a standard longitude/latitude grid and a temporal
resolution of 24 h. The time range selected for this work is a 4 year period from 2002-01-01 00:00
until 2005-12-31 00:00.

NEMO12

I denote by “NEMO12” a product4 of the ORCA0083 family of NEMO (Nucleus for European
Modelling of the Ocean) models (Madec et al. 2017). The NEMO models integrate the momentum,
temperature and salinity equations without data assimilation. The atmospheric forcing at the sea
surface is given by the DRAKKAR Forcing Set 5.2 data, including winds, temperature, humidity,
downward long- and shortwave radiative fluxes, as well as precipitation and river runoff. The
NEMO data is given as a 5-day average on a curvilinear, tripolar ORCA grid where the poles have
been placed on land to avoid singularities in the model domain, like a rectangular grid would have
them at the North Pole. Along the equator, the grid cells have a size of 1/12° in longitude and
latitude, but the grid is even finer at higher latitudes where the Rossby radius of deformation is
smaller, which is crucial for a realistic representation of mesoscale eddies across a large range of
latitudes. The NEMO data is available on 75 vertical levels, but I chose only the surface level in
this work, running the model for 4 years between 2000-01-03 12:00 and 2003-12-29 12:00.

3https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=MULTIOBS_GLO_

PHY_REP_015_004 (Last accessed: 14/06/2021)
4https://gws-access.jasmin.ac.uk/public/nemo/runs/ORCA0083-N06/means/ (Last accessed: 14/06/2021)
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SMOC

The SMOC5 data set is a product from the global, high resolution Mercator Océan monitoring
and forecasting sytem PSY4V3R1, provided by the Copernicus Marine Environment Monitoring
Service (CMEMS). SMOC stands for Surface and Merged Ocean Currents, referring to the addition
of surface waves and tides to a basic ocean currents model. This way, it aims to “reproduce the
net velocity felt by a body at the sea surface” (Drillet et al. 2019).

SMOC is based on the NEMO ocean model (version 3.1) using a tripolar ORCA grid with a
spatial resolution of 1/12° and 50 vertical levels (Gasparin et al. 2018). The model is based on
the free surface formulation of momentum, salinity and temperature advection terms (Lellouche
et al. 2018). It is forced diurnally by atmospheric fields from the European Centre for Medium-
Range Weather Forecasts-Integrated Forecast System (ECMWF-IFS), using momentum and heat
turbulent surface fluxes and precipitation fluxes. Similarly as for the GlobCurrent data set, a hybrid
MDT is inferred from GOCE, MSS and the Mercator GLobal Ocean ReanalYsis and Simulation
(GLORYS2V3).

After initializing the system on 11 October 2006 with zero velocity profiles and temperature
and salinity profiles from the EN4 monthly climatology, the model spins up until the velocity field
balances the density field. External gravity waves are filtered out, but isopycnal tracer diffusion
and turbulent vertical mixing are included.

The model output is improved by assimilation with satellite and in situ data according to the
Système d’Assimilation Mercator (SAM), e.g. by CMEMS altimetry and sea surface temperature
(SST); sea level anomalies from the Data Unification and Altimeter Combination System (DUACS)
altimeter and gridded operational sea surface temperature and sea ice analysis (OSTIA SST);
vertical temperature and salinity profiles among others from Argo floats, CORA data and moorings.

SMOC also takes into account the Stokes drift, a type of surface current driven by waves that
can reach the same velocities as the Ekman currents. It uses the 1/10° forecasting system by the
Météo France WAve Model (MFWAM), which applies the spectral dissipation of wind-generated
waves. Tides are added via the Finite Element Solution (FES2014) tide model, based on the spectral
configuration of the shallow water equations. SMOC has difficulties in modelling unstable current
systems; in the Atlantic Ocean, this is mainly the western boundary current. Like many numerical
products, its forecast becomes more prone to errors around the equator, where the geostrophic
approximation does not hold anymore.

The final zonal and meridional velocities are given in hourly intervals on a standard longi-
tude/latitude grid with a cell size of 1/12°. Even though 50 depth levels are available, I ran the
model at the surface only, for a period of 4 years between 2016-04-01 00:30 and 2020-03-31 23:30.

HYCOM

I use “HYCOM” as a shorthand for the Global Ocean Forecast System (GOFS) 3.1 reanalysis
product6 generated by the HYbrid Coordinate Ocean Model (HYCOM) coupled to the Community
Ice CodE (CICE) model (Metzger et al. 2017). The model solves the momentum, temperature
and salinity equations, using atmospheric forcing from the NAVy Global Environmental Model
(NAVGEM) 1.4. It is updated daily by the Navy Coupled Ocean Data Assimilation (NCODA),
which includes several in situ data sets such as Multi-Channel Sea Surface Temperature (MCSST)
data and Argo floats. The hybridicity of the vertical coordinate arises from the use of isopycnic

5https://resources.marine.copernicus.eu/?option=com_csw&product_id=GLOBAL_ANALYSIS_FORECAST_PHY_

001_024&view=details (Last accessed: 14/06/2021)
6https://www.hycom.org/dataserver/gofs-3pt1/reanalysis (Last accessed: 14/06/2021)
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or ρ-level coordinates in the open, stratified ocean, while the mixed layer and unstratified regions
are modelled on z-levels. Shallow coastal areas make use of terrain-following σ-levels. This unique
vertical parametrization is generally used to model transitions from shallower to deeper waters. The
HYCOM data is given at 41 levels on a standard longitude/latitude grid with a cell size of 1/12°,
with a temporal resolution of 3 h. The model is run at the surface for 4 years between 2005-01-01
12:00 and 2008-12-30 21:00.

3.3 Determining the simulation runtime

In order to limit the computation time, simulations should be run for a minimum necessary time
span only. For Lagrangian ocean analyses, this is often the so-called mixing time. Wichmann et al.
(2019) note that due to the chaotic nature of the surface ocean circulation, any information about a
virtual particle’s initial position will be lost after the mixing time, which is why simulations longer
than the mixing time should not depend on the input scenario anymore. Wichmann et al. (2019)
calculated the mixing time in each basin using a transition matrix based on OGCM output to model
the transport of virtual particles. The total variation distance of the distributions at a certain time
compared to a stationary density corresponding the “garbage patch” will be small enough if the
virtual particles have been advected for a period corresponding to the mixing time or longer. In
the North and South Atlantic, the mixing time is then found to be 4 years, both when modelling
the transport in the Atlantic Ocean only but also when global dynamics are considered.

In order to verify this runtime of 4 years qualitatively, I ran a GlobCurrent simulation for
runtimes between 1 and 10 years, releasing particles on a uniform 1°×1° grid within the boundaries
of the Atlantic Ocean, i.e. between the longitudes of 100 °W and 20 °E and latitudes of 60 °N and
55 °S. I then produced maps of the initial position of the virtual particles coloured according to the
final longitude that they had reached at the end of the simulation. Particles that left the domain
of the Atlantic Ocean at the end of each simulation have been removed from the original release
pattern. Supposing that longitudinal mixing is reached definitely after 10 years (see Figure 3.1d), a
runtime of 4 years seems reasonable in order to ensure that the subtropical accumulation zone has
reached a dynamic steady state, as shown in Figure 3.1b. Indeed, after 4 years the distribution of
the final longitudes looks roughly similar to that after 10 years, even though around the equator and
in the mid-latitudes, particles would still travel to more central respectively westward longitudes.
All in all, differences in the final positions between runtimes of 4 years runtime and 10 years can
probably be attributed to the dynamic nature of the steady state distribution. Figure 3.2 shows the
same analysis to investigate the latitudinal mixing timescale, suggesting that a runtime of 4 years
might be too short. Indeed, particles that circulate in equatorial waters (in turquoise in Figure
3.2b) after a runtime of 4 years would still move northward if the runtime were longer. Nevertheless,
I limited the runtime to 4 years to restrict computation time and also because the SMOC data set
was only available for 4 years.

3.4 Final distributions

Figures 3.3 to 3.6 present the final virtual particle distribution generated by each of the four models
after a runtime of 4 years. The left column in each figure shows the final snapshot using two different
one-time release scenarios: the uniform seeding of virtual particles arranged in a 1°× 1° grid (like
in Maximenko, Hafner, and Niiler 2012), and the release of virtual particles along the coastline in
every coastal grid cell. For the latter, the coastline is extracted by using the land mask of each
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(a) After 1 year. (b) After 4 years.

(c) After 7 years. (d) After 10 years.

Figure 3.1: Maps of the initial positions of virtual particles released on a uniform 1° × 1° grid, coloured
according to their final longitude at the end of a simulation with the GlobCurrent flow field, for different
runtimes.
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(a) After 1 year. (b) After 4 years.

(c) After 7 years. (d) After 10 years.

Figure 3.2: Maps of the initial positions of virtual particles released on a uniform 1° × 1° grid, coloured
according to their final latitude at the end of a simulation with the GlobCurrent flow field, for different
runtimes.
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Figure 3.3: Maps of the virtual particle distribution (left column) and the associated KDE (right column)
generated by the GlobCurrent model after a uniform release scenario (top row) and after a coastal release
scenario (bottom row). The KDE has been calculated after removing virtual particles that ended up closer
than 100 km to the coastline at the end of the simulation.
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Figure 3.4: Maps of the virtual particle distribution (left column) and the associated KDE (right column)
generated by the NEMO12 model after a uniform release scenario (top row) and after a coastal release
scenario (bottom row). The KDE has been calculated after removing virtual particles that ended up closer
than 100 km to the coastline at the end of the simulation.
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Figure 3.5: Maps of the virtual particle distribution (left column) and the associated KDE (right column)
generated by the SMOC model after a uniform release scenario (top row) and after a coastal release scenario
(bottom row). The KDE has been calculated after removing virtual particles that ended up closer than
100 km to the coastline at the end of the simulation.
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Figure 3.6: Maps of the virtual particle distribution (left column) and the associated KDE (right column)
generated by the HYCOM model after a uniform release scenario (top row) and after a coastal release
scenario (bottom row). The KDE has been calculated after removing virtual particles that ended up closer
than 100 km to the coastline at the end of the simulation.
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Figure 3.7: Dynamic change in the maximum of the surface accumulation zone over runtimes ranging from
1 to 10 years generated by the GlobCurrent model after a uniform release. The maximum of the accumulation
zone is defined as the area where KDE values are at least 3/4 of the maximum KDE value.

model and checking which ocean grid cells lie immediately adjacent to a land cell. Table 3.1 gives
the number of virtual particles seeded in each release scenario for each model.

Neither of these source functions is particularly realistic. A uniform, one-time release is easy
to compute but does not happen in reality, even though some plastic is released into the oceans as
fishing debris from vessels at sea. The coastal release starts at least with a more realistic spatial
distribution, although the amount of plastic put into the ocean is hardly evenly distributed along
the coast, but rather depends on a country’s economic activity (Jambeck et al. 2015). Within one
country, plastic is mostly entering the ocean in highly populated coastal areas and at beaches, but
also via waterways (Lebreton, Greer, and Borrero 2012). The comparison of these two simplified
release scenarios will, however, give a first indication as to whether the accumulation pattern after
a runtime 4 years depends on the source function of a simulation, given that particles seeded at
the coastline need to travel longer to reach the center of the basin.

The right column in Figures 3.3 to 3.6 shows the kernel density estimate (KDE) corresponding
to the virtual particle distribution in the left column. The surface accumulation zone can be defined
as the region of a higher virtual particle density, but rather than try to infer the shape and location
of the accumulation zone from the discrete virtual particle distribution, it is useful to approximate
the underlying continuous distribution, for instance by a kernel density estimation. This approach
will be explained further in Chapter 4, but the KDE is shown here already, as its interpretation is
rather straightforward: The general shape of the maximum of the accumulation zone is given by
the highest values of the KDE, e.g. where the KDE values are at least 3/4 of the maximum KDE
value, indicated in red in the heat map. The KDE has been determined after removing virtual
particles that ended up closer than 100 km to the coastline at the end of the simulation.

The accumulation zones vary in shape and location for each of the models and release pattern.
For the GlobCurrent model, the accumulation zone is centered around 30 °N and is confined to

Table 3.1: Number of virtual particles released on a uniform 1° × 1° grid or along the coastline in every
coastal grid cell, for simulations with the four different OGCMs.

GlobCurrent NEMO12 SMOC HYCOM

Uniform 7,629 7,629 7,629 7,629
Coastal 2,416 10,628 9,031 11,052
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the western and central part of the North Atlantic, stretching from the western boundary up to
30 °W (see Figure 3.3). The maximum of the accumulation zone lies around 45 °W after a uniform
release and is shifted slightly eastwards after a coastal release. Since the exact location of the
maximum depends on the densest part of the virtual particle distribution, it shifts in time due to
the dynamic behaviour of the accumulation zone, as shown in Figure 3.7. After a runtime of at
least 4 years, the maximum seems to remain more or less constant, which validates the runtime
choice of 4 years. Still, after runtimes of 7 years (10 years), the center shifts slightly northwards and
westwards (eastwards), which is consistent with the finding that the latitudinal (and longitudinal)
mixing after 4 years did not correspond fully to that after 7 and 10 years (cf. Figures 3.2, 3.1).

The maximum of the surface accumulation zone lies around the same latitude and longitude
as the highest concentrations observed around 30 °N and 40 °W, even though it is unclear whether
this is the real maximum of the actual accumulation zone as there is still a lack of observations
eastward of the highest concentrations.

For the NEMO12 model, the accumulation zone arises in the western and central part of the
basin around 30 °N, with a maximum at 50 °W for the uniform release or at 45 °W for the coastal
release. This is similar to the findings of Maximenko, Hafner, and Niiler (2012), van Sebille,
England, and Froyland (2012) and Lebreton, Greer, and Borrero (2012) who locate the maximum
between 55 and 60 °W. It is interesting to see that virtual particles tend to accumulate in the
Gulfs of Guinea and Mexico. It could be an issue with the implementation of the “anti-beaching
current” that would displace particles in a coastal cell seawards again, due to the concave shape
of these Gulfs, so that displacing a coastal particle seawards would still trap it in another coastal
cell. It should be noted, though, that the GlobCurrent model with a grid size three times that of
NEMO12 does not show this behaviour, as the Gulfs of Guinea and Mexico are practically void
of virtual particles. The same “anti-beaching current” of 10 m/s should be able to move particles
outside coastal grid cells in the finer resolution NEMO12 model more so than in the GlobCurrent
model. The trapping of particles in these bays seems to be a consequence of the hydrodynamic
field, regardless of the coastal dynamics. This justifies the removal of particles closer than 100 km
to the coastline at the end of each simulation to calculate the corresponding KDE.

The SMOC model shows a peculiar accumulation pattern (Figure 3.5). Around 60 °W, there
seems to be a typical accumulation zone around 30 °N. Eastward of this, the virtual particles
seem to be attracted to a long ridge that stretches northwards to Iceland, coinciding with the
Mid-Atlantic Ridge. It is interesting to note that SMOC is based on the NEMO model, but the
latter does not exhibit these convergence lanes (see Figure 3.4). In fact, SMOC is the only model
studied in this thesis that includes the effect of tides, albeit only in the shallow water approximation
which should not hold for the Mid-Atlantic Ridge at depths of 1500 to 3000 m. Still, internal tides
reflected at the bottom topography are known to generate surface convergence zones parallel to
the depth contours (van Sebille et al. 2020). In the appendix to this thesis, Figure A.2 shows the
result of the same simulation but without tides or surface waves, so only the large-scale circulation
from the PSY4V3R1 product. Indeed, the convergence at the Mid-Atlantic Ridge disappears, but
similar braided structures or “convergence lanes” persist in the eastern part of the basin. As shown
in the animation in Figure A.1, these structures are not seasonal and only appear right before the
end of the total runtime of 4 years, after 197 weeks. The quality of the KDE suffers visibly from
the presence of the convergence lanes, as these lanes are not captured in the overall shape of the
KDE (see Figure 3.5).

Finally, Figure 3.6 shows the accumulation zone generated by the HYCOM model, with its
maximum slightly north of 30 °N and around 30 °W, so more eastward than the for other models.
After a coastal release, the accumulation zone is narrower than for the uniform release. In the latter
case, the accumulation zone stretches westwards up to 60 °W. Lebreton, Greer, and Borrero (2012)
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Figure 3.8: Change in the maximum of the surface accumulation zone for the GlobCurrent model after
a coastal (dashed line) and after a uniform release (solid line). The maximum of the accumulation zone is
defined as the area where KDE values are at least 3/4 of the maximum KDE value.

also used HYCOM data, but found the center of the accumulation zone to lie more westwards.
Figure 3.8 summarizes the findings from above. It shows the center of the surface accumulation

zone for each model and release scenario after a runtime of 4 years, suggesting that the coastal
release scenario shifts the center of the accumulation zone to eastwards for GlobCurrent, NEMO12
and HYCOM. For the SMOC model, the peculiar locations for center of the accumulation zone
arises mainly from the fact that the KDE fails to reproduce the pattern given by the virtual particle
distribution.

Figure 3.9 shows the difference in KDE after a coastal and uniform release scenario for each
model. As already seen in Figure 3.8, virtual particles accumulate preferably in the eastern part of
the North Atlantic, but also in the coastal waters around Europe when a coastal release scenario is
used, while a uniform release scenario increases the virtual particle density in the Western North
Atlantic as well as in the Gulfs of Mexico and Guinea.
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Figure 3.9: Difference between the KDE values after a coastal and uniform release scenario for each model.
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Chapter 4

Combining Models and Observations

Both the virtual particle simulations and the concentrations from in situ plastic samples show the
accumulation pattern of small, floating debris in the oceans. The observed and modelled patterns
are not immediately comparable, though. It is already difficult enough to compare the observations
amongst themselves, as I have shown in Chapter 2, for instance because the sampling methods differ
from study to study. The sampling year also plays an important role in determining the plastic
concentration at a given location, as more and more plastic is being released into the oceans every
year (Wilcox, Hardesty, and Law 2019; Jambeck et al. 2015). With the sampling years ranging
from 1979 to 2019, the particle detection methods, as well as the sample treatment procedures have
improved over time as well (Jakob Strand, private communication, 14 December 2020). To account
for the sampling year in terms of change in the large-scale circulation patterns, the simulations
could have been run for a certain period of time after which the final positions of the virtual
particles are compared to the observations from the same year. However, this would require large
enough a data set sampled in the region where concentrations are expected to be highest over the
course of the mixing time, which does not exist yet. In fact, the spatially most extensive data set
in this region spans 22 years (Law et al. 2010). Finally, some meteorological phenomena that affect
sampling conditions such as winter storms occur seasonally, influencing at which times sampling
efforts are undertaken.

Virtual particle simulations have the advantage that the particles can be compared amongst
themselves, since they are “sampled” at the same time and because they all have the same in-
finitesimal shape, size and density, contrary to their real counterparts. The virtual particles are
distributed over the entire basin, independent of practical sampling issues such as rough sea states
or remote sampling locations in the middle of the basin, and without any concerns for a spatial
bias or blind spots in the virtual sampling. A virtual particle distribution can best be compared
to the observed distribution if their spatial coordinates coincide. One way to achieve this is by
binning either distribution into a two-dimensional histogram of a certain bin size. As can be seen
in Figure 3.3, the order of magnitude of the number of virtual particles seems to small, as there
are not enough virtual particles to cover the entire basin. This yields empty bins in the resulting
histogram, as can be seen in the left panel of Figure 4.1, even though the probability of sampling a
particle in these empty bins should not be zero. This issue arising from the discrete nature of the
histogram can be circumvented by approximating the underlying continuous distribution, e.g. by
the bivariate kernel density estimation (KDE).
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Figure 4.1: Left: Two-dimensional histogram of the virtual particle distribution generated by the GlobCur-
rent model when after a uniform release scenario (as shown in Figure 3.3) with a bin size of 1°× 1°. Right:
KDE of the same virtual particle distribution, projected onto a 1° × 1° grid. Both maps have been created
after removing virtual particles that ended up closer than 100 km to the coastline at the end of the simulation.

The multivariate kernel density estimate is defined as (Garćıa-Portugués 2021):

f̂H(x) =
1

n

n∑
i=1

KH(x− xi), (4.1)

where x is the location in the domain at which to evaluate the KDE. The multidimensional vectors
xi, i = 1, . . . , n denote the final longitude and final latitude coordinates of the n virtual particles
that remain inside the North Atlantic basin. The kernel function is given by K, a symmetric
multivariate density. According to Garćıa-Portugués (2021) and Turlach (1993), a typical choice is
the Gaussian kernel:

K(t) =
1√
2π

exp

(
−1

2
t2

)
. (4.2)

Here, H is the so-called bandwidth matrix. For two-dimensional data, it is a 2 × 2 symmetric
positive-definite matrix that smoothes the final KDE. Finally, the scaled kernel is given by:

KH(x) = |H|−1/2K(H−1/2x). (4.3)

The bandwidth matrix needs to be chosen such as to minimize the root mean square error
(RMSE) between the KDE and the unknown underlying continuous distribution. It corresponds to
a generalization of the definition of a scalar bandwidth h in the case of a univariate kernel density
estimate (Garćıa-Portugués 2021):

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (4.4)

where the xi, i = 1, . . . , n are the one-dimensional coordinates of a discrete distribution and the ker-
nel function K is a symmetric univariate density. For multidimensional data, the anisotropy of the
bandwidth is captured in a matrix. Trying out a range of bandwidths using the sklearn.neighbors.
KernelDensity module from Python’s scikit-learn package (Pedregosa et al. 2011), a quick vi-
sual evaluation of an exemplary virtual particle distribution (see the right panel in Figure 4.1)
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shows that the same bandwidth can be chosen for both dimensions, as the KDE does not seem to
be over- or underfitted in either dimension.

Being able to choose the same bandwidth for both dimensions reduces the complexity of the
bandwidth determination. Algorithms such as sklearn.model selection.GridSearchCV deter-
mine the bandwidth that corresponds best to the underlying data, but looping over a range of
bandwidths between 0 and 1° worked well enough in this case. Still, it is important to note that
the final shape of the KDE highly depends on the bandwidth choice, which is the main source of
uncertainty for this statistical tool.

The KDE is evaluated on a standard grid between 100 °W and 20 °E, and between the equator
and 60 °N. The grid cells are of size 1° × 1°, and therefore the observations need to be binned in
the same way as well. The weighted mean concentration of all the observations in each grid cell is
computed by dividing the arithmetic mean by the number of observations binned in the cell (i, j),
n:

c̄(i, j) =
1

n2

n∑
k=1

ck(i, j). (4.5)

Like in van Sebille et al. (2015), this is done to highlight regions with sparse sampling coverage.
The weighted mean concentration in each 1°× 1° bin containing observations can be compared to
the corresponding value of the KDE in the same bin. A scatter plot is a helpful tool to visualize
the relationship between the weighted mean observed concentrations and the corresponding KDE
values. The coefficient of determination R2 quantifies the correspondence between a model and the
observations, as it gives the share of the variance in the dependent variable y that is predictable
from the independent variable x. Here, the KDE values are chosen to be the dependent variable,
because models are often assimilated to observations.

To calculate the coefficient of determination, the variance of the dependent variable is described
by the total sum of squares:

SStot =
n∑
i=1

(yi − ȳ)2, (4.6)

where n is the number of data points and ȳ is the arithmetic mean of the y values.
The sum of squares of residuals determines the difference of the dependent variable to the

corresponding value of a fit function f :

SSres =
n∑
i=1

(yi − f(xi))
2 . (4.7)

Finally, the coefficient of determination is given as:

R2 = 1− SSres

SStot
. (4.8)

R2 will be 1 if the simulated values exactly coincide with the observed values. It can further be
shown that if the fit function f is determined from a univariate linear regression, the coefficient of
determination R2 is equivalent to the square of Pearson’s correlation coefficient r (Verbeek 2005),
which is given as:

r2 =
(Cov(x, y))2

σ2
xσ

2
y

=
(
∑n

i=1(xi − x̄)(yi − ȳ))2∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

, (4.9)
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where Cov(x, y) is the covariance between x and y, and σx, σy are the standard deviations of x and
y.

If surface accumulation zone generated by a model simulation agrees with the pattern deter-
mined from the observations, there should be a linear relationship between the KDE values and
the observed concentrations. As mentioned in Chapter 2, the order of magnitude of the observed
concentrations varies a lot, even within the results from the same sampling method. The relation-
ship between KDE values and observed concentrations is therefore visualized best in a log-log plot.
Here, a 1-to-1 linear correspondence, f(x) = x, is represented by a straight line of slope 1. A linear
regression minimizing the sum of squared residuals for a linear relationship would put too large an
emphasis on regions with higher modelled concentrations, which can be orders of magnitudes off
from the observed concentration. Instead, a linear fit to the base 10 logarithm of the modelled and
observed values is better suited to estimate the correspondence between models and observations.
The best fit is determined by a least squares regression using Python’s scipy.stats.linregress,
which puts out Pearson’s correlation coefficient r. I will interprete r as the coefficient of determi-
nation R2 = r2, because R2 is easier to understand as the share of the variance in the dependent
variable predicted from the independent variable.

To illustrate this comparison, Figure 4.2 shows the regression between the KDE values of the
virtual particle distribution generated by the GlobCurrent model after a uniform release scenario
and the concentrations sampled from bottle grabs, from the net/pump samples, and from the bottle
grab, net and pump samples combined. The third panel shows the different orders of magnitude
covered by the bottle grabs and net/pump data, resulting in a coefficient of determination of
R2 = 0.1382. Taking only the bottle grabs or the net/pump data to compare to the modelled
concentrations, as shown in the top panels, the coefficients of determination are smaller than for
the combined observations; they are R2 = 0.0135 and R2 = 0.0125 respectively. This is an example
of a statistical fallacy called Simpson’s paradox (Sprenger and Weinberger 2021): The statistical
conclusion arising from combining two distinct data sets is fundamentally different than that from
considering the data sets separately. In this case, the key to the paradox lies in the nature of
the sampling methods, because the bottle grabs measured concentrations about three orders of
magnitude larger than the sampled in the net trawls or with the underwater pumps. This is why
the following analysis will consider the results for bottle grabs and net/pump data separately.

In the scatter plots in Figure 4.2, the modelled concentrations would correspond perfectly to
the observed concentrations if the data points were to lie on the black line that simply states a
1-to-1 linear correspondence, f(x) = x. Since the modelled values are technically unitless as they
arise from the KDE computation, they can be scaled to cover the same range as the observations.
This is done by shifting the y-axis until the mean of the log-transformed modelled concentrations
corresponds to the mean of the log-transformed observed concentrations. This allows to estimate
the range of the predicted concentrations. Shifting data along a log-axis is equivalent to multiplying
the data with a scalar, which does not affect the calculation of R2 in Equation (4.8) or r2 in Equation
(4.9). It is essential to assign units to the modelled values, as these models are used to interpolate
observations in order to assess maps of the surface plastic concentrations.

The best linear fit to the log-transformed values is indicated by a red line in Figure 4.2, as
the coefficient of determination is calculated using this fit. Essentially, R2 indicates the goodness
of this linear fit, which is always different from the identity function. Any slope different from 1
indicates a power law relationship between modelled and observed values, so the closer the slope
of the red line is to 1, the better the model fits to the observations.

The uncertainty on R2 is determined by bootstrapping the data set. First, 1,001 bootstrap
samples are built by sampling the original data set with replacement. Then, the coefficient of
determination is calculated for each of these bootstrap samples. Assuming these R2 are normally
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Figure 4.2: Illustration of Simpson’s paradox. Top left: Regression between the KDE values of the
virtual particle distribution generated by the GlobCurrent model after a uniform release scenario and the
concentrations sampled from bottle grabs. Top right: Regression between the KDE values of the same
simulation and the net/pump concentrations. Bottom: Regression between the KDE values of the same
simulation and the concentrations from bottle grab, net and pump samples.
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distributed, their standard deviation gives a measure for the uncertainty on R2 of the original data
set. The linear fit corresponding to each bootstrap sample is indicated by a golden line in Figure
4.2.

There are more elaborate statistical alternatives to compare two discrete, two-dimensional dis-
tributions than the method used in this thesis. The two-sample, two-dimensional Kolmogorov-
Smirnov test measures the maximum distance between their empirical distribution functions over
their domains in both dimensions (Peacock 1983). A similar statistic is the Cramér-von Mises
criterion, defined as the integral of the difference between two (empirical) distribution functions. A
slightly different formulation of this criterion emphasizes the tail of the distribution, and is known
as the Anderson-Darling test. However, Babu and Feigelson (2006; 2019) note that all three tests
may yield different results depending on how their statistics are calculated across all dimensions as
they depend on the empirical distribution functions of the distributions that need to be compared.
Indeed, an ill-defined statistic cannot help to determine the likeliness of two distributions. A sta-
tistical method that does not depend on the empirical distribution functions is the Wasserstein
(Kantorovich) distance, also called earth-mover’s distance, which describes the distance between
two distributions as the minimal effort needed to convert one into the other, the same way one pile
of earth would be shaped into another. The Kullback-Leibler divergence or relative entropy gives
a relative comparison of two distributions. Both measures can be generalized to two and more
dimensions. These methods are useful if there is no obvious bias in the two distribution that ought
to be compared; this is not necessarily given with the observational data set, which is still biased
towards the western part of the North Atlantic basin. These methods can only be used once the
bias in the observations has been overcome.
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Chapter 5

Results

5.1 Different release scenarios

As mentioned in Section 1.3, Chenillat et al. (2021) note that the release scenario of virtual particles
may influence the final accumulation pattern generated by a simulation. Figure 3.8 also shows that
the maximum of the surface accumulation zone shifts eastwards after a coastal release as opposed to
seeding virtual particles on a uniform grid. In this chapter, I will examine the influence of different
release scenarios on the correlation between modelled and observed concentrations.

Figures 5.1 to 5.4 show the correlation between the KDE values of the virtual particle distri-
butions generated by the each model and the observed concentration pattern, after releasing the
virtual particles uniformly across the basin or along the coast, compared to the net/pump con-
centrations and to the concentrations sampled from bottle grabs. The scatter plots display the
observed concentrations on the x-axis, binned into 1° cells, while the y-axis shows the correspond-
ing modelled value in the same grid cell. The log-log plot reveals the wide range of magnitudes of
the observed concentrations.

As I explained in Chapter 4, the y-axis has been shifted to display the modelled concentrations
in the same units as the observed concentrations. The black line indicates a 1-to-1 correspondence,
while the red line shows the best linear fit to the log-transformed data. The golden lines arise from
bootstrapping the data set in order to estimate the uncertainty on the coefficient of determination
R2.

The scatter plots of the GlobCurrent model are shown in Figure 5.1. For the bottle data, there
does not appear to be any visual correlation between the modelled and the observed concentrations.
The coefficient of determination is rather small as well for both the uniform and the coastal release,
with R2 = 0.0135 ± 0.0008 and R2 = 0.0326 ± 0.0011. Considering the map of the concentrations
sampled with the bottle grabs in Figure 2.2, there also does not seem to be any pattern or clear
maximum in the spatial distribution. Indeed, Barrows et al. (2017) note that the large variability
among their samples might arise because the sampling volume of 1 L is quite small, but it also good
to note that the sampling area was below the accumulation zone of 30 °N.

For the net and pump data, the scatter plot displays a similar hook that looks like the Γ-shape
in Figure 1.2, when van Sebille et al. (2015) performed a similar regression analysis on their original
observations with the van Sebille, England, and Froyland (2012) model. Since these observations
also form the largest part of the net and pump used in this thesis, it is no surprise that the same
shape arises. The hook shows a cut-off of the modelled concentrations at around 0.1 particles
per m3, indicating that the modelled values are too low in locations where observed values are
highest. The modelled maximum seems to lie at a location that has not been thoroughly sampled
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Figure 5.1: Regression between the KDE values of the virtual particle distribution generated by the
GlobCurrent model after a uniform release scenario (left column) and after a coastal release scenario (right
column), and the net/pump concentrations (top row) and the concentrations sampled from bottle grabs
(bottom row).
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Figure 5.2: Regression between the KDE values of the virtual particle distribution generated by the
NEMO12 model after a uniform release scenario (left column) and after a coastal release scenario (right
column), and the net/pump concentrations (top row) and the concentrations sampled from bottle grabs
(bottom row).
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Figure 5.3: Regression between the KDE values of the virtual particle distribution generated by the SMOC
model after a uniform release scenario (left column) and after a coastal release scenario (right column), and
the net/pump concentrations (top row) and the concentrations sampled from bottle grabs (bottom row).
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Figure 5.4: Regression between the KDE values of the virtual particle distribution generated by the
HYCOM model after a uniform release scenario (left column) and after a coastal release scenario (right
column), and the net/pump concentrations (top row) and the concentrations sampled from bottle grabs
(bottom row).
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yet. The high observations at lower model values probably stem from the surface-adjusted pump
data (cf. Section 2.3). Again, there seems to be little difference in the coefficient of determination
between the uniform and the coastal release, with R2 = 0.0125± 0.00018 and R2 = 0.0253± 0.0025
remaining too small to be meaningful.

The scatter plots for NEMO12 are shown in Figure 5.2. Comparison with the bottle data
again results in a broad distribution with R2 = 0.0213 ± 0.0010 for the uniform release and R2 =
0.0410± 0.0011 for the coastal release. The scatter plots comparing the different release scenarios
to the net data again show the Γ-shape. For the uniform release, R2 = 0.0063± 0.0015, and for the
coastal release, R2 = 0.0326± 0.0028.

Figure 5.3 shows the scatter plots for the SMOC model. Again, the comparison of each release
scenario with the bottle grabs results in a dispersed point cloud with R2 = 0.0003± 0.0003 for the
uniform release and R2 = 0.0179 ± 0.0009 for the coastal release, for which the slope of the best
linear fit is negative although it should be positive. Comparing the uniform release to the net and
pump data, the data points are again arranged in a Γ-shape. This is not the case for the coastal
release, because the higher modelled concentrations sampled at the locations of the observations
are not cut off at the same value due to the local KDE maximum around 50 °W, 10 °S (Figure 3.5).
For the uniform release, R2 = 0.0037± 0.0003, and for the coastal release, R2 = 0.0275± 0.0007.

For the HYCOM model, the scatter plots in Figure 5.4 again show the dispersed point clouds
for the bottle data, with R2 = 0.0122 ± 0.0008 for the uniform release and R2 = 0.0058 ± 0.0005
for the coastal release. The comparison with the net data shows the Γ-shape after the uniform
release, for which R2 = 0.0443±0.0032, but gives a slightly different shape after the coastal release,
as low observations in the Western North Atlantic are shifted to lower modelled values, because
the accumulation zone is modelled to be confined to the eastern part of the basin. For the coastal
release, R2 = 0.0832± 0.0039.

For each of the four models, the comparison with the bottle data does not give any information
about the surface accumulation zone, as there is no clear spatial pattern to be detected in the
concentrations sampled with bottle grabs. This may be due to the sampling method and locations,
as sampling was performed mostly well below 30 °N outside the convergence zone in the mid-
latitudes.

In the comparison with the net data, the coefficients of determination remain below 0.1 and are
too small to make any assumption about which model matches the observations best. NEMO12, a
numerical model, seems to predict a similar accumulation zone in the western and central part of
the North Atlantic as GlobCurrent, which is mainly based on altimetry and in situ measurements
and has a lower spatial resolution. The underlying physics of these models reproduce the same
results, giving a similar hook shape in the scatter plots of Figures 5.1 and 5.2, independent of the
spatial or temporal resolution. This is surprising in a sense that the varying grid size of NEMO
models allows for an unparalleled resolution of eddies on a basin scale. These eddies might have
disappeared because NEMO data is given as a 5-day-average.

HYCOM is another numerical model with the same spatial resolution as NEMO12, but with a
much higher temporal resolution of 3 hours, which may be responsible for modelling the accumu-
lation in the east. Still, Onink et al. (2019) modelled the North Atlantic accumulation zone with
3 hourly GlobCurrent data, which remained in the western and central part of the basin. Both
GlobCurrent and HYCOM predict the accumulation zone in the North Pacific quite well (Onink
et al. 2019; Lebreton, Greer, and Borrero 2012), which validates their modelling power. However,
the hook shape present in the scatter plots of Figures 5.1 and 5.2 is much less pronounced for
HYCOM, implying that the maximum of the accumulation zone is modelled better.

SMOC is the only model that includes the effect of surface waves and tides. Given that SMOC
predicts a braided accumulation pattern with convergence lanes, even when waves and tides are not
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included in the model, it is difficult to gauge how these effects influence the accumulation pattern.
Similarly, even though for every model R2 is slightly larger if virtual particles are released along

the coastlines, it remains inconclusive whether an even more realistic release scenario will improve
the correlation between the models and the observations. Table 5.1 summarizes the change in R2

for each model and release scenario compared to the net/pump data and to the bottle grabs. As it
seems redundant to repeat any further statistical analysis with both scenarios, I will only consider
the coastal release in the next sections, since this release pattern is the most realistic after all.

Table 5.1: Change in R2 computed from the KDE values of the virtual particle distribution generated by
each model after a one-time uniform and coastal release, compared to the net/pump concentrations and to
the concentrations sampled from bottle grabs.

GlobCurrent NEMO12 SMOC HYCOM

Uniform
Net/pump 0.0125 ± 0.0018 0.0063 ± 0.0015 0.0114 ± 0.0015 0.0443 ± 0.0032
Bottle 0.0135 ± 0.0008 0.0213 ± 0.0010 0.0003 ± 0.0003 0.0122 ± 0.0008

Coastal
Net/pump 0.0253 ± 0.0025 0.0326 ± 0.0028 0.0160 ± 0.0012 0.0832 ± 0.0039
Bottle 0.0326 ± 0.0011 0.0410 ± 0.0011 0.0179 ± 0.0009 0.0058 ± 0.0005

Maps of the ratio between models and observations

Figure 5.5 shows the ratio between the modelled and observed concentrations for each model, after
deleting observations around Europe and closer than 100 km to the coastline. The closer models
and observations match in a certain location, the whiter the colour of the bin (and the closer a
data point lies to the 1-to-1 line in the corresponding scatter plot). All models seem to overpredict
the concentrations west of 55 °W, while they underpredict them between 45 and 50 °W. HYCOM
also overpredicts the concentrations around 40 °W, as it locates the maximum of the accumulation
zone more to the east than the other models. In the Caribbean Sea, SMOC over- and HYCOM
underpredicts the concentrations. There are some outliers indicated in dark blue, for which all
models strongly underpredict the concentration. The samples at these locations have mostly been
taken by an underwater pump.

5.2 Age of plastic particles

Impact of the sampling year

Both of the previous release scenarios are one-time releases that do not take into account the
increase in plastic production and input into the ocean over the last decades (Wilcox, Hardesty,
and Law 2019). There are multiple ways to include temporal variability into the analysis. One
way is to assume that the exponential plastic production, doubling globally every 11 years, reflects
the plastic input into the oceans as well. In the North Atlantic specifically, the doubling time lies
around 8 years (Wilcox, Hardesty, and Law 2019).

Since the observational records span a range of sampling years from 1979 to 2020, it is reasonable
to assume that if particles do not sink, more recent samples would show higher concentrations than
earlier samples at the same location, simply because the abundance of plastic has increased over
time. When comparing a sample at a specific location to the modelled distribution, the sampling
year will therefore influence how well the modelled and observed concentrations match. In order
to address this, I adjusted the value of the modelled concentration with a factor corresponding
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Figure 5.5: Ratio between the modelled concentrations after a coastal release scenario for each model
and the observed net/pump concentrations. Observations around Europe and closer than 100 km to the
continental coastlines have been deleted.
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Figure 5.6: Regression between the KDE values of the virtual particle distribution generated by the
each model after a coastal release scenario and the net/pump concentrations, after adjusting the modelled
concentrations with the sampling year of the observations at the same location.
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to 2(t−t0)/T2 , where t is the sampling year at the corresponding location, t0 = 1979 and T2 is the
doubling time of 8 years.

Figure 5.6 shows the scatter plots comparing each of the four models using the coastal release
to the net/pump data, after adjusting the modelled concentrations with the sampling year of the
observation at the same location. The most striking feature in each of these plots is the increase
in observed concentrations for recent sampling years. Wilcox, Hardesty, and Law (2019) already
noticed the increase in the abundance of floating particles the North Atlantic, using the data from
Law et al. (2010) that is also analyzed in this thesis. Nevertheless, the same trend is also found
across the extended data set.

The unusually high concentrations from recent pump data are now paired with higher modelled
values as well, aligning the data points closer around the black line indicating 1-to-1 correspondence.
This is probably the main reason why the coefficients of determination increase for each model
when the modelled values are adjusted according to the sampling year of the observations at
the same location, from R2 = 0.0253 ± 0.0025 to R2 = 0.1246 ± 0.0046 for GlobCurrent, from
R2 = 0.0326 ± 0.0028 to R2 = 0.1419 ± 0.0041 for NEMO12, from R2 = 0.0160 ± 0.0012 to
R2 = 0.1232 ± 0.0025 for SMOC, and from R2 = 0.0832 ± 0.0039 to R2 = 0.1831 ± 0.0047 for
HYCOM.

Repeated release and sinking

A second option to incorporate temporal variability is to include a sink for virtual particles in the
analysis. Particles do not beach in my simulations because the coastal dynamics are too complicated
to resolve them in a meaningful parametrization in the scope of this thesis. But buoyant plastic
particles may be lost from the sea surface by sinking through the water column and even down
to the seafloor as “marine snow” as they stick to organic debris or after being excreted in fecal
pellets (van Sebille et al. 2020). Another important sinking mechanism is biofouling, when a film of
algae forms around the usually hydrophobic surface of a plastic particle, raising the density of the
compound and sinking it (Kaiser, Kowalski, and Waniek 2017). Kooi et al. (2017) hypothesized
that this sinking might actually result in an oscillatory movement, when below the euphotic layer,
algae growth stops as photosynthesis becomes impossible. The biofilm vanishes, so that the plastic
particle rises towards the sea surface, where a new biofilm starts to develop.

Lobelle et al. (2021) did not consider these oscillations when they set up a three-dimensional
model to study the sinking characteristics of biofouled microplastics, using data from NEMO-
MEDUSA at 1/12° that includes not only physical but also biological effects. For different particle
sizes and densities, the sinking timescale, defined as the number of days before the vertical velocity
of a particle is negative, was mapped globally. Here, I will only consider the sinking timescales for
particles larger than 10 µm, as this is the order of magnitude of the smallest particles included in
the net and pump observations. At this size, the overall pattern of the sinking timescales in the
Atlantic is consistent over a range of different densities. Due to downwelling around 30 °N, the
center of a subtropical gyre is oligotrophic and algae concentration are low, which is why in this
region the sinking timescale is too large to be determined during the model runtime of 90 days.
Biofouling becomes more important at the equator because of the strong upwelling in this area,
but in the Atlantic Ocean, the sinking timescale seems to increase in a narrow band just below
the equator. Most of the sinking happens at latitudes north of 30 °N and south of 30 °S, with an
average timescale that lies around 30 days.

In the following analysis, I assume an exponential sinking behaviour so that for a particle, the
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Figure 5.7: Left column: Maps of the KDE associated to the virtual particle distribution generated by
the GlobCurrent model (top row) and the NEMO12 model (bottom row) after a repeated coastal release
and sinking due to biofouling. The KDE has been calculated after removing virtual particles that ended
up closer than 100 km to the coastline at the end of the simulation. Right column: Associated regression
between the KDE values and the net/pump concentrations, after adjusting the modelled concentrations with
the sampling year of the observations at the same location.
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Figure 5.8: Left column: Maps of the KDE associated to the virtual particle distribution generated by the
SMOC model (top row) and the HYCOM model (bottom row) after a repeated coastal release and sinking
due to biofouling. The KDE has been calculated after removing virtual particles that ended up closer than
100 km to the coastline at the end of the simulation. Right column: Associated regression between the KDE
values and the net/pump concentrations, after adjusting the modelled concentrations with the sampling year
of the observations at the same location.
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Figure 5.9: Probability that a virtual particle with an initial latitude north of 30 °N or south of 30 °S sinks
over time, given a sinking timescale of 30 days.

probability to sink ps increases over time as:

ps(t) = 1− e−t/τ , (5.1)

where the e-folding timescale τ is assumed to be the timescale as defined in Lobelle et al. (2021).
In the limit t → ∞, the probability to sink will reach 1 (see Figure 5.9). The analysis of the
sinking behaviour remains rather qualitative, as I assume τ = 30 days at latitudes north of 30 °N
and south of 30 °S, and that particles in between these latitudes will never sink. This is in line with
the observation by Wilcox, Hardesty, and Law (2019) that the some plastics seem to remain in the
ocean for decades.

This parametrization of the sinking probability includes some spatial variability already. In
order to incorporate a temporal variability, simulations of different runtimes can be concatenated
to model the effect of releasing additional virtual particles as time passes. Because of the large
runtime of my simulations, I had already split them up into yearly runs, by taking the final positions
of one run as the starting positions for the following year (more information in Section 6.2). This
way, I was able to concatenate the different slices to total runtimes of 1 year, 2 years, 3 years and 4
years, while sinking particles north of 30 °N and south of 30 °S according to the probability at the
end of these runtimes in the post-processing of the simulation outputs. Finally, I added up the final
positions of each of these concatenations to give the final distribution that included particles of
ages between 1 to 4 years. This linear superposition of distributions is possible because the virtual
particles move independently and do not interact. For an even more realistic source function, the
number of particles released each year should have increased exponentially, which I did not consider
in this analysis.

Figures 5.7 and 5.8 explore the effect of releasing virtual particles along the coast every year
over the course of 4 years, while also sinking them due to biofouling as in Lobelle et al. (2021).
For each model, the KDE associated to the final distribution is shown next to the scatter plot
comparing the modelled concentrations and net/pump concentrations. Wilcox, Hardesty, and Law
(2019) note that the plastic input must be larger than its removal from the surface, which is why
the modelled concentrations are again adjusted to take into account the sampling year (Section
5.2), assuming a doubling time of 8 years.

For the GlobCurrent model, Figure 5.7 shows a rather broad accumulation zone with its max-
imum close to the western boundary at around 70 °W, contrary to the one-time release, for which
the maximum of the accumulation zone is located more towards the center of the basin. In the
case of the NEMO12 model, as shown in Figure 5.7, the repeated release shifts the accumulation
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zone around slightly westwards, compared to the one-time release. The discerning feature in the
map of the SMOC model in Figure 5.8 is the local accumulations in the Gulf of Mexico. The map
of the HYCOM model in Figure 5.8 shows a more spread out accumulation zone, compared to the
one-time coastal release.

For GlobCurrent, SMOC and HYCOM, the coefficient of determination increases even more
compared to the one-time release if the sampling year is taken into account: R2 = 0.1724± 0.0029
for GlobCurrent, R2 = 0.2025± 0.0025 for SMOC and R2 = 0.21790.0036 for HYCOM, suggesting
that for these models, a more realistic simulation increases the correlation between the modelled
and the observed concentrations. For the NEMO12 model, however, R2 = 0.1037±0.0031 is smaller
than for the previous simulations. Table 5.2 summarizes the change in R2 for each model compared
to the net/pump data, for the one-time coastal release with and without taking into account the
sampling year, and for a repeated coastal release including sinking, while also taking into account
the sampling year.

Table 5.2: Change in R2 computed from the KDE values of the virtual particle distribution generated by
each model after a one-time coastal release with and without taking into account the sampling year, and
after a repeated coastal release including sinking, while also taking into account the sampling year, compared
to the net/pump concentrations.

GlobCurrent NEMO12 SMOC HYCOM

Coastal 0.0253 ± 0.0025 0.0326 ± 0.0028 0.0160 ± 0.0012 0.0832 ± 0.0039
Sampling year 0.1246 ± 0.0046 0.1419 ± 0.0041 0.1232 ± 0.0025 0.1831 ± 0.0047
Repeated 0.1724 ± 0.0029 0.1037 ± 0.0031 0.2025 ± 0.0025 0.2179 ± 0.0036

5.3 Influence of observations sampled along the coastline

In this section, I will analyze the influence of the samples taken along the coastline and around
Europe (north of 35 °N and east of 10 W) on the correlation between modelled and observed concen-
trations. I had previously removed these samples from the analysis because the continental coastal
waters and the Northwest European shelf seas are not part of the subtropical gyre. However, espe-
cially the samples around Europe show higher concentrations (Figure 2.4), which may change the
overall correlation between modelled and observed concentrations. The following figures repeat the
statistical analysis as seen above, but now including samples taken along the continental coastlines
and around Europe.

Figures 5.10 and 5.11 show the correlation between the KDE values of the virtual particle dis-
tribution generated by each model after releasing virtual particles in one pulse uniformly across
the basin (left column), and along the coast (right column), and the observed net/pump concentra-
tions. For each model, the scatter plot is extended towards higher observations. The coefficient of
determination remains below 0.1 for both the one-time uniform or coastal release (Table 5.3). For
NEMO12, the best linear fit of the log-transformed data has a negative slope, implying that the
model unexpectedly predicts higher concentrations where samples are lower and vice versa. Again,
SMOC does not show a hook shape for the coastal release. Compared to the previous analysis, it
seems like the samples taken along the coastline and around Europe mask the modest improvement
in the coefficient of determination after a coastal instead of a uniform release scenario.

Figure 5.12 shows the correlation between the KDE values of the virtual particle distribution
generated by each model after a one-time coastal release and the observed net/pump concentrations,
after adjusting the modelled concentrations with the sampling year of the observation at the same

50



location. For each model, the coefficient of determination increases compared to the simulations
that do not take into account the sampling year but still, R2 mostly remains below 0.1, except for
HYCOM.

Finally, Figure 5.13 displays the correlation between the KDE values of the virtual particle
distribution generated by each model after releasing virtual particles along the coast every year
over the course of 4 years, while sinking them due to biofouling as given in Lobelle et al. (2021),
and the observed net/pump concentrations. For NEMO12, the best linear fit of the log-transformed
data has a negative slope again. Contrary to the previous findings when samples taken along the
coastline and around Europe were excluded, the coefficient of determination is now smaller than
for the one-time coastal release when taking into account the sampling year, suggesting that the
simple sinking parametrization implemented in this work does not represent the sinking behaviour
of plastic particles closer than 100 km to the coastline or around Europe in a realistic way. This
finding is not surprising since the sinking parametrization was implemented with a focus on the
open ocean, as Lobelle et al. (2021) focussed on a large-scale, global assessment of the sinking
timescales of biofouled microplastics.

Table 5.4 summarizes the changes in R2 for each model compared to the net/pump data, after
a one-time coastal release with and without taking into account the sampling year, and after a
repeated coastal release including sinking, while also taking into account the sampling year.

Table 5.3: Change in R2 computed from the KDE values of the virtual particle distribution generated by
each model after a one-time uniform and coastal release, compared to the net/pump concentrations. Samples
around Europe and closer than 100 km have not been deleted in this analysis.

GlobCurrent NEMO12 SMOC HYCOM

Uniform 0.0016 ± 0.0004 0.0017 ± 0.0003 0.0008 ± 0.0003 0.0283 ± 0.0012
Coastal 0.0111 ± 0.0008 0.0090 ± 0.0007 0.0007 ± 0.0002 0.0956 ± 0.0021

Table 5.4: Change in R2 computed from the KDE values of the virtual particle distribution generated by
each model after a one-time coastal release with and without taking into account the sampling year, and
after a repeated coastal release including sinking, while also taking into account the sampling year, compared
to the net/pump concentrations. Samples around Europe and closer than 100 km have not been deleted in
this analysis.

GlobCurrent NEMO12 SMOC HYCOM

Coastal 0.0111 ± 0.0008 0.0090 ± 0.0007 0.0007 ± 0.0002 0.0956 ± 0.0021
Sampling year 0.0950 ± 0.0020 0.0996 ± 0.0018 0.0730 ± 0.0013 0.2022 ± 0.0026
Repeated 0.0289 ± 0.0008 0.0084 ± 0.0005 0.0155 ± 0.0007 0.0145 ± 0.0008
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Figure 5.10: Regression between the KDE values of the virtual particle distribution generated by the
GlobCurrent model (top row) and the NEMO12 model (bottom row) after a uniform release scenario (left
column) and after a coastal release scenario (right column), and the net/pump concentrations. Samples
around Europe and closer than 100 km have not been deleted in this analysis.
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Figure 5.11: Regression between the KDE values of the virtual particle distribution generated by the SMOC
model (top row) and the HYCOM model (bottom row) after a uniform release scenario (left column) and
after a coastal release scenario (right column), and the net/pump concentrations. Samples around Europe
and closer than 100 km have not been deleted in this analysis.
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Figure 5.12: Regression between the KDE values of the virtual particle distribution generated by the
each model after a coastal release scenario and the net/pump concentrations, after adjusting the modelled
concentrations with the sampling year of the observations at the same location. Samples around Europe and
closer than 100 km have not been deleted in this analysis.
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Figure 5.13: Regression between the KDE values of the virtual particle distribution generated by the
each model after a repeated coastal release and sinking due to biofouling and the net/pump concentrations,
after adjusting the modelled concentrations with the sampling year of the observations at the same location.
Samples around Europe and closer than 100 km have not been deleted in this analysis.
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Chapter 6

Discussion

6.1 Biases in the observational data

The standardization of the observational data sets has proven to be quite a challenge, as these data
sets have been collected over a time span of 40 years during which sampling and detection methods
have improved drastically. More and more plastic has entered the oceans during that period, too,
so that earlier samples show lower concentrations than more recent samples at the same location.
This has to be accounted for during the analysis; either by adjusting the observational data set
itself like van Sebille et al. (2015) did by using a general additive model to standardize for the
sampling year, or by using an estimate for the input rate like in this thesis.

A couple of new data sets containing samples of plastic measurements were added to the existing
data set by van Sebille et al. (2015), but much more data is needed in the central and eastern part of
the North Atlantic, to finally get a better picture of the true zonal extent of the surface accumulation
zone. A large part of the new data consisted of observations around the Northwestern European
shelf where concentrations were high, the waters of which are still part of the Atlantic Ocean, but
certainly not of the accumulation zone in the subtropical gyre. The new data also included samples
collected below the surface in the mixed layer by underwater pumps that needed to be adjusted
for their sampling depth. A wind-dependent parametrization is currently being developed (Onink,
reference updated when a DOI is available), but the implementation in this thesis probably still
yielded too large values (see Figure 5.5). This may also be due to the finer mesh size used to
filter particles collected in the pumps or simply to the fact that I assumed the same buoyant rise
velocity for all particles, even though it varies throughout the data sets. These high concentrations
in locations where models predict lower concentrations distort the correspondence between models
and observations significantly, as found in Section 5.3.

More surface trawls should be undertaken in the central and eastern part of the North Atlantic,
employing rigorous standardized reporting conventions as proposed by Galgani et al. (2021) so
that the results from the individual trawls can easily be combined, as Law (2017) mentions. Even
though bottle grabs yield in higher concentrations than the net or pump data as they catch a larger
number of very small particles, their limited sampling volume is a source for high variability among
samples (Barrows et al. 2017). Bottle grabs are a promising tool to help determine the absolute
amount of plastics inside the oceans, but they still need to be scaled up to larger sampling volumes.
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6.2 Notes on the simulations

The Parcels framework was used to run simulations advecting virtual particles with the flow fields
given by four different ocean circulation models. Other than displacing particles seawards that came
too close to shore, I did not include any coastal parametrization, even though 77% of particles in
the oceans wash up on beaches or circulate in coastal waters (Onink et al. 2021; Olivelli, Hardesty,
and Wilcox 2020). Moreover, the “beaching” parametrization of the simulations performed in this
thesis seems to be at least partially flawed as particles still tend to accumulate in rivers mouths
(cf. the Amazon river in Figure 3.6), even though this behaviour is less visible in a coarser spatial
grid (cf. the first panel in Figure ??), for which an error in this approach should be more apparent.

Contrary to the suggestion by Wichmann et al. (2019), a simulation runtime of 4 years was
probably not long enough (see Figure 3.2). As the SMOC data set was only available for 4 years,
though, each simulation was run for 4 years to enable intercomparison between the different models.

At the end of a simulation, I took the final snapshot to be representative of the dynamic steady
state of the spatial virtual particle distribution. It would have been wiser to run the simulation for
a year longer than the minimum mixing time, and then average over a larger number of snapshots
of the virtual particle density distribution in that year.

I only implemented two different source functions to release virtual particles into the oceans.
The coastal seeding seems slightly more realistic than the uniform seeding in the sense that it
corresponded slightly better to the observations, while still being a simplified release scenario. A
next step towards more realistic simulations includes a coastal release scenario that is proportional
to the coastal population and its amount of mismanaged waste (Jambeck et al. 2015), as well as
to the amount of plastics entering the oceans via rivers (Lebreton et al. 2017) or as fishing debris
along shipping routes. It would also be interesting to study what kind of varying temporal release
is the most realistic.

But the main bottleneck of this thesis were the model simulations runs with Parcels (version
2.2.2) on the secure shell server Gemini that is maintained by Utrecht University. While the
GlobCurrent simulation proved relatively easy to run for long time periods, I had some difficulties
running the higher resolution flow field data without my simulations being aborted either because
they took up too much memory themselves (> 150 GB) or because they were running for days. The
high spatial and temporal resolution but also the basin-scale nature of the simulations were the
main challenges, even when loading only the flow field data that would need to be accessed by the
virtual particles in a certain time step. This dynamic loading is called “field chunking” in Parcels
but it did not always resolve the memory issues, for example in the case of the SMOC flow field.
This is a Parcels issue that still needs to be investigated further.

Field chunking might reduce the memory taken up during a simulation, but it increases the
runtime. I solved this issue by running the simulation for a year, then taking the final positions as
the starting positions for the next year and so on, until I reached the total runtime of 4 years.

In light of these memory problems, I took care not to release too many virtual particles, so only
in the order of 10,000 in the entire Atlantic (and only 2,000 virtual particles for the GlobCurrent
model), about half of which were then included in analysis of the North Atlantic. These numbers are
still too low, though, since the histogram of the virtual particle distributions looks rather patchy.
Moreover, GlobCurrent shows a different accumulation pattern after a repeated release scenario
which results in fourfold amount of virtual particle (compare the lower right panel in Figure 3.3 to
the top left panel in Figure ??), even though this difference also might be due to the inclusion of
sinking into the analysis.

Parcels computes the main advection C which should be relatively fast, compared to the loading
of input and saving of output in Python. I presume that the last bottleneck happened as the output
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Figure 6.1: Left: Regression between the KDE values of the virtual particle distribution generated by the
SMOC model after a uniform release scenario and the net/pump concentrations. Right: Same as left panel,
but only using the large-scale circulation component, excluding the effect of waves or tides.

was saved hourly in a netCDF file, when a weekly time step should have sufficed for my analysis. I
did not try saving any of the longer simulations in weekly slices, so this remains a hypothesis only.

6.3 Comparison of models and observations

The ocean circulation models all seem to perform comparably well, except for the SMOC model, in
which the virtual particles converge in lanes right before the end of the simulation. This model also
points out an underlying flaw in the analysis, as shown in Figure 6.1. The left panel displays the
scatter plot comparing the SMOC model including the wave and tide action to the net data, while
the scatter plot in the right panel uses only the large-scale component of the surface circulation.
The developers of the SMOC model show that the product compares better to drifter data if it
includes waves and tides (Drillet et al. 2019). However, comparing the coefficients of determination
which are both lower than 0.1, Figure 6.1 seems to indicate that SMOC corresponds best to the
observations if waves and tides are not included (R2 = 0.0160± 0.0012 vs. R2 = 0.0287± 0.0029).
This further supports the claim that at low R2 values, one cannot say whether one model performs
better than the other.

Yet also the KDE seems to have its own flaws in this analysis. I decided to use the KDE as an
alternative to a two-dimensional histogram, since I did not achieve full coverage of the subtropical
gyre with the number of virtual particles used in my simulations (cf. e.g. Figure 3.3). Indeed, a
histogram using around 4,000 particles has a lot of empty bins and therefore looks rather patchy
(Figure 4.1), which does not allow for any statements about the location of the maximum of
the accumulation zone. However, the computation of the KDE also presents some challenges. Its
main disadvantage is the dependency on the bandwidth that determines the resolution of individual
features in the particle distribution. Even though the chosen bandwidth seems to yield an acceptable
KDE for some models (cf. Figures 3.3, 3.4, 3.6), this is not the case for SMOC (cf. Figure 3.5).
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6.4 Inclusion of subgrid-scale processes

Subgrid-scale processes evolve on length scales that are too small to be resolved by a model’s spatial
resolution. In numerical models, they are often parametrized as diffusion. For instance, SMOC,
NEMO12 and HYCOM take into account horizontal and vertical diffusion. In this thesis, I used
models with spatial resolutions down to 1/12°, which is good enough to resolve mesoscale structures
of sizes between 10 and 200 km. Smaller-scale features such as submesoscale eddies of sizes between
1 and 10 km are not resolved, even though they might play an important role in the transport of
floating debris. In fact, D’Asaro et al. (2018) found that cyclonic submesoscale eddies accumulate
floating particles.

Mesoscale eddy kinetic energy (EKE) scales with the basin size (Spall 2000) and should therefore
be lower in the Atlantic than in the Pacific Ocean, but is only slightly lower with a maximum value
of 4000 cm2/s2 compared to 4500 cm2/s2 (Ducet and Le Traon 2001). Furthermore, Martinez,
Maamaatuaiahutapu, and Taillandier 2009 found that in the South Pacific, floating marine debris
tends to accumulate in regions of low EKE, probably because eddies transport floating particles as
they advance through the oceans. Onink et al. 2019 were not able to confirm that virtual particles
converge in regions of low EKE in the North Atlantic, attributing this to the absence of a local
minimum in EKE in this basin.

Since mesoscale eddies are already resolved in the models, it may be interesting to study sub-
mesoscale eddies. Indeed, Gula, Molemaker, and McWilliams 2016 note that frontal submesoscale
eddies generated by the Gulf Stream tend to have a stronger upwelling core when resolved properly.
NEMO at 1/60°, HYCOM at 1/48° and eNATL60 at 1/60° are interesting models in this regard,
even though the submesoscale parametrization in HYCOM at 1/12° was supported by HYCOM
at 1/48° results (Haza et al. 2012). Because the computational effort increases with dx3, it would
be worth to see how the current implementation of subgrid-scale diffusion differs from the actual
submesoscale activity on the scale of the gyre center only, which is about 10° in longitude and
latitude.
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Chapter 7

Conclusion

The aim of this thesis was to compare the observed accumulation pattern of small, floating plastics
in the North Atlantic to its modelled counterparts, but it is important to note that the data set of
observed surface concentrations is still very sparse in the eastern part of the predicted accumulation
zone. In order to know the true zonal extent of the surface accumulation, more observations are
needed in the central and eastern part of the Western North Atlantic. Galgani et al. (2021) propose
a standardized sampling protocol that will facilitate the comparison of different data sets. As more
and more plastic is entering the oceans, the sampling year strongly influences the amount of plastics
sampled in a specific location. This must be taken into account when analyzing the data set of
surface observations. Concentrations measured inside the mixed layer can be taken as proxies for
the surface concentration, but need to be carefully extrapolated by taking into account the size and
density of a sample. Samples collected by bottle grabs present a high spatial heterogeneity.

The observation-based GlobCurrent model and the numerical NEMO12 model predict a similar
surface accumulation in the western and central part of the North Atlantic, despite being quite
different in their computation and resolution. The numerical HYCOM model locates the maximum
of the surface accumulation slightly northwards and more to the east, while the numerical SMOC
model shows floating particles aggregating into lanes at the end of the simulation, starting in early
2020. For GlobCurrent and NEMO12, a coastal release scenario shifts the center of the surface
accumulation zone from the west more towards the center of the basin, compared to a simpler
uniform release scenario. For HYCOM, it is shifted towards the center as well, but from the eastern
location given after a uniform release. Comparing the improved SMOC model that includes wave
and tide action to only its large-scale circulation component shows that the regression analysis
fails to notice any difference. This points towards a flaw either in the statistical analysis or in the
computation of the KDE, which, in its present form, does not capture any small-scale structures
like the “convergence lanes” observed in the final snapshots of the SMOC simulation.

A measure for the correspondence between models and observations is the coefficient of determi-
nation R2 that is calculated from a linear fit between the log-transformed observed concentrations
and the modelled concentrations sampled at the location of the observations. Because of the large
variability of the bottle grabs, the models were mainly compared to the net/pump data only. For
each model, R2 increases with increasingly realistic modelling scenarios. The correlation improves
only modestly after a one-time coastal seeding of virtual particles compared to a one-time uniform
release, but R2 reaches values above 0.1 once the modelled concentrations are adjusted with the
sampling year of the observation at the same location. Again, this supports the claim that the
sampling year is one of the most important parameters to consider when analysing a data set of
observations that spans decades. Finally, a repeated release over 4 years combined with a simple
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Table 7.1: Change in R2 computed from the KDE values of the virtual particle distribution generated
by each model after a one-time uniform release without taking into account the sampling year, and after a
repeated coastal release including sinking, compared to the net/pump concentrations.

GlobCurrent NEMO12 SMOC HYCOM

One-time uniform 0.0253 ± 0.0025 0.0326 ± 0.0028 0.0160 ± 0.0012 0.0832 ± 0.0039
Repeated coastal 0.1724 ± 0.0029 0.1037 ± 0.0031 0.2025 ± 0.0025 0.2179 ± 0.0036

sinking parametrization gives the best correlation for GlobCurrent, SMOC and HYCOM, while R2

decreases again for NEMO12. Table 7.1 shows the range of improvement for R2, from the simplest
to the most complex release scenario.

Since the coastal release seems to improve the correlation (albeit only modestly), the center
of the accumulation zone probably lies between 25 and 55 °W in the center of the basin. More
observations in this regions are direly needed to support this claim. Even though HYCOM gives
the best overall coefficient of determination with the observation, the center of its accumulation
zone around 35 °W is not modelled well enough. In Figure 5.5, it seems like HYCOM overpredicts
the concentrations in this area.

Observations that were collected closer than 100 km to the continental coastlines or around
Europe have been removed in the analysis described above, as they were not sampled in the sub-
tropical gyre. Since the aggregation of new data sets was an important part of this thesis, it was
important to study their influence on the overall correlation between models and observations.
The results are rather inconclusive because for almost each release scenario, R2 remains below 0.1,
except for the HYCOM model after a coastal release, when accounting for the sampling year. This
is probably due to the high concentrations sampled around Europe, which extend the range of
observed concentrations. The correlation did not improve further with a repeated release over 4
years combined with a simple sinking parametrization, suggesting that the sinking parametrization
implemented in this thesis does not represent the behaviour of particles closer than 100 km to the
coastline or around Europe in a realistic way. Indeed, this sinking parametrization originates from
a global, large-scale assessment of the sinking timescales for biofouled microplastics and does not
consider coastal dynamics.
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Appendix A

Additional Figures

Figure A.1: Animation of the advection of virtual particles over 4 years by the large-scale component
of the SMOC model, without the effect of waves or tides, after a uniform release scenario. To display the
animation, please open this PDF document with Adobe Acrobat Reader.
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Figure A.2: Maps of the virtual particle distribution (left column) and the associated KDE (right column)
generated by the large-scale circulation component of the SMOC model without the effect of waves or tides,
after a uniform release scenario (top row) and after a coastal release scenario (bottom row). The KDE has
been calculated after removing virtual particles that ended up closer than 100 km to the coastline at the end
of the simulation.
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