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ABSTRACT
Many wonderful relations between the Gabor transform
and the fractional Fourier transform (FRFT), which is a
generalization of the Fourier transform, are derived. First,
we find that, as the Wigner distribution function (WDF),
the FRFT is also equivalent to the rotation operation of the
Gabor transform. We also derive the shifting, the projec-
tion, the power integration, and the energy sum relations
between the Gabor transform and the FRFT. Since the Ga-
bor transform is closely related to the FRFT, we can use it
for analyzing the effect of the FRFT. Compared with the
WDF, the Gabor transform does not have the problem of
cross terms. It makes the Gabor transform a very powerful
assistant tool for fractional sampling and designing the
filter in the FRFT domain. Moreover, we show that any
combination of the WDF and the Gabor transform also has
the rotation relation with the FRFT.

1. INTRODUCTION

The fractional Fourier transform(FRFT) is defined as [1][2]:
OF(f())=F, (u)
J
2
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It is a generalization of the Fourier transform (i.e., o = 7/2):
FIf @)= 0F*(10) =112z [ e ™ f@yar. ()

The FRFT can extend the utilities of the Fourier transform
(FT). It is useful for filter design, pattern recognition, optics
analysis, radar system analysis, communication, etc.

The Wigner distribution function (WDF) is [3]

Welto)=1/2z-[" flevz/2)f (t-7/2)-e7" -dr.(3)

If W(t, w) and Wr(t, ») are the WDFs of f{(¢) and its FRFT,
F(u), then they have the following relation [4][5]:
W, (u,v)=W ,(ucos a — vsin a, usin & + veos ), (4)

That is, Wy, (u, v) is a rotation of W(t, w). Since WDFs and
the FRFTSs have such a close relation, we often use WDFs
to aid FRFTs for signal processing applications. For exam-
ple, for filter design in the FRFT domain, WDFs are helpful
for estimation the optimal order « [5]. Cohen’s class distri-
butions also have the rotation relation with the FRFT [11].
However, there is a problem for the WDF and
Cohen’s class distributions, i.e., “the cross term”. This can
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be seen from Figs. 2(h), 3(b), and 5(h). It makes us hard to
distinguish the signal part, the noise part, and the cross-
term part. Thus it is hard to use the WDF and Cohen’s class
distributions to analyze the FRFT characters when the sig-
nal consists of multiple time-frequency components.

In this paper, we derive the relations between the Gabor
transform and the FRFT. The Gabor transform is [6][7]:

Gl L
Gf(t,a)):\/gf;e 2 ¢ 2f(c)dr.  (5)

We find that, as the WDF, the FRFT also corresponds to
the rotation operation for the Gabor transform. Thus as the
WDF, the Gabor transform can also be used for analyzing
the characters of signals in the FRFT domain. Comparing
with the WDF, the Gabor transform has the advantages of

(1) avoiding the cross-term problem,

(2) less computation time.
Especially, due to the ability of avoiding the cross-term, the
Gabor transform is more effective than the WDF for filter
design (see Section 4). Without the misleading of the cross-
term, the optimal parameter « of the FRFT will be much
easier to determine. This problem perplexes the researchers
on the field of the FRFT for many years. Now we can use
the Gabor transform to solve it successfully.

Moreover, in Section 5, we find that, in addition to the
WDF and the Gabor transform, if we do arbitrary combi-
nation for the Gabor transform and the WDF, the resultant
transform also have the rotation relation with the FRFT.

2. ROTATION RELATION

[Rotation Relation]: If F,(u) is the FRFT of f{¢), then their
Gabor transforms (denoted by G(¢, @) and Gr(u, v)) have
the relation of:

Gp, (u,v) = G, (u cosa —vsina, usina + vcosa). (6)
That is, the FRFT corresponds to rotating the Gabor trans-
form in the clockwise direction with angle a.
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Then, applying the fact that
J‘joef(a‘rzﬂﬂ)dz_ :m.ebz/ht (8)

(from Ref. [8]), we can rewrite (7) as:
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It leads to (6) #

We perform an experiment in Fig. 1 to show that the FRFT
is equivalent to the rotation relation of the Gabor transform.

Although the WDF also have the similar property, it
has the problem of “cross term”. If we use the Gabor trans-
form instead of the WDF, the cross term problem can be
avoided. That is, if

A0 =s(0) +r(0) (10

and Wi(t, w), Wi(t, ) and W,(t, w) are the WDFs of f(7), s(?),

and n(?), respectively, then
Wit, w) = Wt, @) + W(t, o). (11)
This is because the formula of the WDF contains the auto
correlation term f{t+7/2)f*(+—7/2), see (2). If f{£) = s(¢) + 1(?),
A+ d2)f*(-12) = s(t+7/2)s*(t—1/2) + r(t+72)r*(t-7/2)
+s(t+72)r* (t—12) tr(tt72)s*(t—1/2).
Due to the cross terms s(t+7/2)r*(t—7/2) and r(t+7/2)s*(t—
7/2), Wt, @) will not be the sum of W(t, w) and W.(t, w).
In contrast, when using the Gabor transform, the auto
correlation is avoided, (see (5)). If G(t, w), G\(f, @) and
G,(t, w) are the Gabor transforms of f{¢), s(¢), and n(f), then
G(t, w) = G(t, ) + G(t, w), (12)
and the problem of cross term can be avoided. In Fig. 2, we
do some experiments to show the Gabor transforms and the
WDFs of s(?), (¢), and f(¢) = s(t)+r(¢), where
—expl 1% /10— j3t) for-9<1<1,

s(#) = 0 otherwise, (13)

(a) alpha = b) alpha = pi/6  (c) alpha = pi/3

alpha—p|/2 e alpha 2p|/3 f)alpha 5p|/6

Frg. 1 The Gabor transform ofFa(u) Where Fa(u) is the FRFT of
a rectangular function f{(¢), f(t) = 1 for |¢| < 3, and f{f) = 0 otherwise.
We use gray level to show the magnitude of Gru, v).

(a) GT of s(t) (b) GT of r(t c) GT of f(t)
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Fig.2 The Gabor transform (GT) and the Wigner distribution

functions (WDF) of s(¢), r(¢), and f(¢) = s(¢)+r(f). Note the WDF
has the “cross term problem” but the GT does not.

5 (a) GT of exp(jt3/10) 1éb) WDF of exp(Jt3/10)

10 10
5 5
0 0
-5 -5
-10 0 10 10 10
Fig. 3 The GT and the WDF for f{f) = exp(/t3/10)
—expl—ji? 12+ jot)exp- -4 /10 (14)

Although when f{¢) = exp(jat*+jbt), the resolution of the
Gabor transform may not be as good as the WDT, it has an
important advantage of avoiding the cross-term.
Moreover, if
Af) = exp(jal*+ remained terms), k>3 anda=0, (15)
the Gabor transform will have better resolution than the
WDF, as the example in Fig. 3.
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3. PROPERTIES AND IMPLEMENTATION

[Recovery Relation]: We can recover f{t) from G(¢, w) by:

M
\/gj_wc;f(z,m)e 2 do=f(t). (16)

This relation can be generalized into the case of the FRFT.
In (16), if we replace f{f) by F(u), then

Juv
\/IJ‘OO Gr (u,v)e 2 av=F,(u),
2 dmo e

Juv
J r G/ ucosa —vsing, usma+vcosa)e 2 dv=F,(u).

(applying (6)). (17
That is, we can obtain F(u) from the Gabor transform of
A¢) if we do the scaled inverse FT along the direction of

(-sing, cosq). (18)

[Projection Relation]: The recovery relation for f{¢) in (16)
can be generalized into:

| _(k-1/2)¢
1/—j G (to)e " do=e 2 f(1/2+k)x).(19)
2r =
In (19), if we replace f{¢) by F(u) and apply (6), it becomes
Jij‘w G, (ucosa —vsina,usina +veosa)e’ ™ dv
27 v -

_(k-1/2)F
=e 2 F,((k+1/2)u) (20)
When k= 1/2, it becomes (17).

[Power Integration Relation]: If we integrate the power of
G(t, w) along w-axis, then

[l6, o) do=[" ) dr. @1
For the case of the FRFT, we replace f{¢) in (22) by F(u):

J |GF u v1 dv= ‘[ et ”)2|F X dr, (22)
Then we apply (6),

00 ) . 2
I |G/r(uCOSO!_VSIHG!,MSIHO,’"I‘VCOSQH dv
ol

-[" e E, (o) dr (23)

Therefore, the power integrating along the line of
u(cosa, sin@) + v(-sina, cosa), v € (-0, ®), (24)
will be the local energy of F,(7) around 7= u.

[Energy Sum Relation]: From (23),

.[ I |Gfta)j da)dt—.[ I (-0’ |f
[ t,a))| da)dt:\/;j_w|fr Vdr. (@25

Then, from the fact that the energy is preserved after rota-
tion and the Parseval’s theory of the FRFT [1], (25) can be
generalized as

[0 JGe o) dod=z]" |F ) a o)

for any o, S.
[Power Decayed Relation]: If F(u) = 0 for u > u,, then

drdt,

. . 2
”Gf(ucosa—vs1na,us1na+vcosa1 dv

2 2
< g (uHo) ﬂGf(uO cosa —vsina,uysina + vcosaj dv (27)

[Shifting and Modulation Relations]: If

h(t) = it — 1),
then their Gabor transforms have the following relation:
G (t,0)=G (1~ 19, )e "2, (28)
If h(f) = f(H)exp(j axt), then
Gyt 0)=G /(t.o— )/, (29)

Generally, if H,(u) and F,(u) are FRFTs of 4(f) and f{¢) and
Ho(u) = Fo(u — up),
then
J(tsina—wcosar)uy,

G,(t,0)= G, (¢ —uq cosa, —uy sina)e 2 . (30)
[Discretization] When doing digital implementation, in (5),
we set 7=md, t = nd, and w = s, To preserve the rota-
tion property and other properties, it is proper to choose

6 =0, <2r/Max(B,),
where B, is the supporting width of |F(u)| > A. (31)

2
Moreover, since e '? <0.0001 when |[x| > 4.292, from
(5), to save the computational time, instead of varying m
from —oo to oo, we can set the range of m as

n—4292/8 <m< n+4.292/5, (32)
4. APPLICATIONS FOR SIGNAL PROCESSING IN
THE FRFT DOMAIN

Since the Gabor transform is closely related to the FRFT,
we can use it as an assistant tool for signal processing in the
FRFT domain. We give two examples: (A) fractional sam-
pling and (B) fractional filter design to show how to use the
Gabor transform together with FRFTs for signal processing.

When using the FRFT to do signal sampling [9], we first
try to find « such that the supporting of |F',(u)| is minimal

supporting Q,: Fu) <A ifu ¢ Q,,
optimal & — width(Q,) is minimal. (33)

When f{(¥) has only one time-frequency (T-F) component,
we can use the WDF to estimate width(€2,) and hence
search the optimal . However, when f{f) has two or more
T-F components, as the example in Fig. 2(f), using the
WDF to estimate « may not be proper. In this case, since
the “orient” for each of the T-F component is different, it is
proper to separate f{¢) into several T-F components and
determine the optimal « for each of the component. Due to
the cross term, this work is hard to be done by the WDF.
Note that, in Fig. 2(f), it is hard to conclude whether the
central region around (0, 0) is “the third T-F component” of
S(®) or just the cross term of the left part and the right part.

In contrast, when using the Gabor transform, since there
is no cross term, we can easily conclude how may T-F
components f{f) contains and decompose f{¢) into the sum-
mation of these components. For the example in Fig. 2,
(a) First, we decompose G(t, @) in Fig. 2(c) into the left

part and the right part, which corresponds to s(¢) and 7(#).
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d i left part — fractional sampling

P ccompost 1°<“ ~ s(1) with @ =-1.373
right part fractional sampling

~r(f) with a=0.785

Fig. 4 Using the FRFT together with the time-frequency compo-
nent decomposition by the Gabor transform to sample the signal
f(?) (see Fig. 2) in the FRFT domain.

(b) Then we use the power integration relation to estimate
the optimal order « (defined by (33)) for the left and the
right T-F components
Oere =-1.373, Otigne = 0.785. 34)

(c) Then, we apply the algorithm in [9] to do fractional
sampling for each of the components. When the number of
sampling points is fixed to 10, the reconstruction errors are
e Using the conventional sampling theory: err=2.763%
e Sampling f{¢) in the FRFT domain:, err =1.306%,
e Sampling f{¢) in the FRFT domain with the aid of the Ga-

bor transform: err=0.061%. 35)

Then we discuss how to use the Gabor transform to
design the filter in the FRFT domain. It is known that we
can use the FRFT instead of the FT for filter design [9], i.e

()= 05 108 [T, (w)f (36)
where A(f) and r(¢) are the input and the output of the filter,
respectively. Although the way for searching the optimal
transfer function 7,(u) has been developed [1][10], it lacks
an efficient way to determine the optimal order . It seems
that the WDF is helpful for determining « and the cutoff
line, however, due to the cross term problem, using the
WDF is not suitable for the case where /(#) consists of a lot
of time-frequency (T-F) components.

In this paper, we find that the Gabor transform also
has the rotation relation with the FRFT and it can avoid the
cross term problem. This hints that we can use the Gabor
transform instead of the WDF for fractional filter design.

We give an example in Fig. 5. The input signal is

s(t)=2cos(5¢)exp(~¢ /10) (shown in Fig. 5(a)).  (37)
It is interfered by the following noise

n(t) = 0.5¢705 4703 cos(104) (38)
and A(?) = s(¢) + n(?) is plotted in Fig. 5(b). We want to re-
cover s(f) from A(?) by the filter in the FRFT domain.

The WDFs of s(¢) and A(¢) are plotted in Fig. 5(g)(h). In
Fig. 5(h), the signal parts, the noise parts, and the cross
term parts are mixed together. It is hard to know how to
separate the signal parts from the noise parts after observ-
ing Fig. 5(h).

In contrast, when doing the Gabor transform, since the
problem of cross term can be avoided, in Fig. 5(d), the sig-
nal parts and the noise parts are separated clearly. We can
use the following four lines (in Fig. 5(¢)) to separate them:

L1: -2(cosa, sina) + k(-sina, cosa), a=-1.14,
L2: 2(cosa, sina) + k(-sine, cosa)

L3: -7.5(cosp, sinf) + k(-sing, cosf),  [f=-1.03,

L4: 7.5(cosp, sinf) + k(-sinf, cosp), (39)

(a) signal s(t) (b) h(t)

=s(t) + noise

2 2

0 AHMMA O‘H“k e L v ‘M

“\ ) | f

-2 -2

-10 0 10 -10 0 10
o) GT of s(t)

(@) GT of ht)

(e) cutoffline L3

(f) Recowered signal

10
L1
L2
0 L4
0
-10 -2
-10 0 10 -10 0 10

,(@) WDF of s(t

10-

-10 - 1 0 0 10
Fig. 5 Using the FRFT with the Gabor transform for filter design.

o) WDF of h(t)

Therefore, we can use the following process to filter out the
noise and recover s(¢) from /A(¢). Step (b) comes from L1
and L2 and Step (d) comes from L3 and L4:

(@) H , (u) = OF[h(1)]. (40)
(b) H, (u) = H(u) for |u| =2, H [u)=0for |ul <2, (41)
(©) Hy 5 ()= OF “[H, , ()], (42)
(d) H fu) = H, fu) for |u| < 7.5,

H, fu) = 0 for |u| > 7.5, (43)
(©) s(t)~ 0/ [H, (). (44)

The recovered signal is plotted in Fig. 5(f). It is very close
to the original signal s(¢) and the error is only 0.049%.

We give another example in Fig. 6. The input is in Fig.
6(a). It is interfered by the noise with the 3 order phase.

n(t) = 0.9 exp(0.025¢° — j5¢) . (45)

When using the WDF, the noise and the signal parts are
mixed, see Fig. 6(c). When we use the Gabor transform, the
noise and the signal parts are obviously separable, see Fig
6(d). Since the noise and the signal parts can be separated
by three lines, we can use three fractional filters to filter out
the noise. The orders of FRFTs for these fractional filters
can be determined by the slopes of the cutoff lines (a =
0.6947, 1.5708, —0.6947). With them, we can recover the
original signal with a very small error, see Fig. 6(b).
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(a) Input signal (b) Recovered signal

2 2

0

err = 0.946%
-10 0 10 -10 0 10

(c) WDF of signal+noise (d) Gabor transform
1

-10
-20 0 20 -10 0 10

Fig. 6 Using the FRFT filter to filter output the 3™ order phase
exponential function

-10 -10
-10 -5 0 5 10 -10 -5 0 5 10

Fig. 7 The GWTs of (1) where f{t) = s(¢)+7(f) is defined in (13)
and (14) and the GWTs are defined in (49) and (50).
5. GABOR-WIGNER TRANSFORM

We have known that both the Gabor transform and the
WDF has the rotation relation with the FRFT. In fact, if we
combine the Gabor transform with the WDF properly, the
new time-frequency distribution also has the rotation rela-
tion with the FRFT.

[Combination Theorem]: Suppose that p(x, ) is any func-
tion with two variables. If we define a new time frequency
C(t, w) (We call it the Gabor-Wigner transform (GWT))
that has the following relation with the Gabor transform
G(t, w) and the WDF W(t, w):

C,(t,0)=plG, (t. o)W, (t,0)), (46)

then C(t, w) also has the rotation relation with the FRFT:
Cr, (u,v) = Cf(u cosa —vsina, usina +vcos a), 47

where C(t, w) and Cr(u, v) are the GWT of f{r) and its
FRFT, F(u), respectively.
[Proof]: From (46),
Cr, (wv)= plGr, @ V). Wy, (.)) (48)
= p(Gf(u cosa —vsina,usin @ +vcos ),
W (ucosa—vsina,usina+vcos a))

:CFa(ucosa—vsin(x,usin(x-l-vcosa). #

Since the GWT also has rotation relation, thus it is possible

to use it instead of the WDF and the Gabor transform for
signal analysis in the FRFT domain. In fact, if p(x, y) is

chosen properly, the resultant GWT will combine the ad-
vantages of the Gabor transform and the WDF. In Fig. 7,
we perform several experiments. For Fig. 7(a),

C/t.o)=G, (o)W, (t o), (49)
For Fig. 7(b),
C,(Lo)=min(|G, o)W, )],  (50)

That is, p(x, y) = xy in (49) and p(x, y) = min(|x]*, [y]) in (50).

Compare Fig. 7 with Fig. 2, we find that, as the Gabor
transform, when using the GWT, the cross term problem
can also be avoided. Moreover, its resolution is obviously
better than that of the Gabor transform. It combines both
the advantage of the WDF (higher resolution) and the ad-
vantage of the Gabor transform (no cross term).

6. CONCLUSIONS

We derived several interesting relations between the FRFT
and the Gabor transform, including the rotation relation, the
recovery relation, and the power integration relation. Since
the Gabor transform can avoid the cross term, which is a
serious problem for the WDF, we could use it instead of the
WDF to do signal process in the FRFT domain, such as
fractional sampling and the fractional filter design.
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