
RELATIONS BETWEEN GABOR TRANSFORMS AND FRACTIONAL FOURIER 
TRANSFORMS AND THEIR APPLICATIONS FOR SIGNAL PROCESSING  

Soo-Chang Pei,         Jian-Jiun Ding  

Department of Electrical Engineering, National Taiwan University,  
No. 1, Sec. 4, Roosevelt Rd., 10617, Taipei, Taiwan, R.O.C  

TEL: 886-2-23635251-321,     Fax: 886-2-23671909,     Email:  pei@cc.ee.ntu.edu.tw, djj1@ms63.hinet.net 

 
ABSTRACT 

Many wonderful relations between the Gabor transform 
and the fractional Fourier transform (FRFT), which is a 
generalization of the Fourier transform, are derived. First, 
we find that, as the Wigner distribution function (WDF), 
the FRFT is also equivalent to the rotation operation of the 
Gabor transform. We also derive the shifting, the projec-
tion, the power integration, and the energy sum relations 
between the Gabor transform and the FRFT. Since the Ga-
bor transform is closely related to the FRFT, we can use it 
for analyzing the effect of the FRFT. Compared with the 
WDF, the Gabor transform does not have the problem of 
cross terms. It makes the Gabor transform a very powerful 
assistant tool for fractional sampling and designing the 
filter in the FRFT domain. Moreover, we show that any 
combination of the WDF and the Gabor transform also has 
the rotation relation with the FRFT.              
                                                                                   

1.     INTRODUCTION 

The fractional Fourier transform(FRFT) is defined as [1][2]:  
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It is a generalization of the Fourier transform (i.e., α = π/2):   
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The FRFT can extend the utilities of the Fourier transform 
(FT). It is useful for filter design, pattern recognition, optics 
analysis, radar system analysis, communication, etc.          

The Wigner distribution function (WDF) is [3]            
      ( ) ( ) ( ) τττπω ωτ detftftW j

f ⋅⋅−⋅+⋅= −∞
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If Wf(t, ω) and WFα(t, ω) are the WDFs of f(t) and its FRFT, 
Fα(u), then they have the following relation [4][5]:              
    ( ) ( )αααα

α
cossin,sincos, vuvuWvuW fF +−= , (4)      

That is, WFα(u, v) is a rotation of Wf(t, ω). Since WDFs and 
the FRFTs have such a close relation, we often use WDFs 
to aid FRFTs for signal processing applications. For exam-
ple, for filter design in the FRFT domain, WDFs are helpful 
for estimation the optimal order α [5]. Cohen’s class distri-
butions also have the rotation relation with the FRFT [11].         

However, there is a problem for the WDF and 
Cohen’s class distributions, i.e., “the cross term”. This can 

be seen from Figs. 2(h), 3(b), and 5(h). It makes us hard to 
distinguish the signal part, the noise part, and the cross-
term part. Thus it is hard to use the WDF and Cohen’s class 
distributions to analyze the FRFT characters when the sig-
nal consists of multiple time-frequency components.          

In this paper, we derive the relations between the Gabor 
transform and the FRFT. The Gabor transform is [6][7]:                       
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We find that, as the WDF, the FRFT also corresponds to 
the rotation operation for the Gabor transform. Thus as the 
WDF, the Gabor transform can also be used for analyzing 
the characters of signals in the FRFT domain. Comparing 
with the WDF, the Gabor transform has the advantages of    
  (1) avoiding the cross-term problem,  
  (2) less computation time.   
Especially, due to the ability of avoiding the cross-term, the 
Gabor transform is more effective than the WDF for filter 
design (see Section 4). Without the misleading of the cross-
term, the optimal parameter α of the FRFT will be much 
easier to determine. This problem perplexes the researchers 
on the field of the FRFT for many years. Now we can use 
the Gabor transform to solve it successfully.           

Moreover, in Section 5, we find that, in addition to the 
WDF and the Gabor transform, if we do arbitrary combi-
nation for the Gabor transform and the WDF, the resultant 
transform also have the rotation relation with the FRFT.    

2.     ROTATION RELATION  

[Rotation Relation]: If Fα(u) is the FRFT of f(t), then their 
Gabor transforms (denoted by Gf(t, ω) and GFα(u, v)) have 
the relation of: 
  ( )vuGF ,

α
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That is, the FRFT corresponds to rotating the Gabor trans-
form in the clockwise direction with angle α.        
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Then, applying the fact that 
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(from Ref. [8]), we can rewrite (7) as:            
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It leads to (6) #  

We perform an experiment in Fig. 1 to show that the FRFT 
is equivalent to the rotation relation of the Gabor transform.           

Although the WDF also have the similar property, it 
has the problem of “cross term”. If we use the Gabor trans-
form instead of the WDF, the cross term problem can be 
avoided. That is, if       
   f(t) = s(t) + r(t)   (10) 
and Wf(t, ω), Ws(t, ω) and Wr(t, ω) are the WDFs of f(t), s(t), 
and n(t), respectively, then     
   Wf(t, ω) ≠ Ws(t, ω) + Wr(t, ω).      (11) 
This is because the formula of the WDF contains the auto 
correlation term f(t+τ/2)f*(t–τ/2), see (2). If f(t) = s(t) + r(t),  
   f(t+τ/2)f*(t–τ/2) = s(t+τ/2)s*(t–τ/2) + r(t+τ/2)r*(t–τ/2)    
                          +s(t+τ/2)r*(t–τ/2) +r(t+τ/2)s*(t–τ/2).      
Due to the cross terms s(t+τ/2)r*(t–τ/2) and r(t+τ/2)s*(t–
τ/2), Wf(t, ω) will not be the sum of Ws(t, ω) and Wr(t, ω).  

In contrast, when using the Gabor transform, the auto 
correlation is avoided, (see (5)). If Gf(t, ω), Gs(t, ω) and 
Gr(t, ω) are the Gabor transforms of f(t), s(t), and n(t), then       
                 Gf(t, ω) = Gs(t, ω) + Gr(t, ω),                    (12) 
and the problem of cross term can be avoided. In Fig. 2, we 
do some experiments to show the Gabor transforms and the 
WDFs of s(t), r(t), and f(t) = s(t)+r(t), where  
               ( ) ( )tjjtts 310/exp 2 −=  for –9 ≤ t ≤ 1,        
                             s(t) = 0 otherwise, (13) 
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Fig. 1  The Gabor transform of Fα(u) where Fα(u) is the FRFT of 

a rectangular function f(t), f(t) = 1 for |t| ≤ 3, and f(t) = 0 otherwise. 
We use gray level to show the magnitude of GFα(u, v). 
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Fig. 2  The Gabor transform (GT) and the Wigner distribution 

functions (WDF) of s(t), r(t), and f(t) = s(t)+r(t). Note the WDF 
has the “cross term problem” but the GT does not. 

-10 0 10
-5

0

5

10

15

-10 0 10
-5

0

5

10

15
(a) GT of exp(jt /10) 3 (b) WDF of exp(jt /10) 3 

 
Fig. 3  The GT and the WDF for f(t) = exp(jt3/10). 

            ( ) ( ) [ ]10/)4(exp62/exp 22 −−+−= ttjjttr .     (14) 
Although when f(t) = exp(jat2+jbt), the resolution of the 
Gabor transform may not be as good as the WDT, it has an 
important advantage of avoiding the cross-term.  

Moreover, if 
   f(t) = exp(jatk+ remained terms),   k ≥ 3 and a ≠ 0,  (15) 
the Gabor transform will have better resolution than the 
WDF, as the example in Fig. 3.   
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3.     PROPERTIES AND IMPLEMENTATION 

[Recovery Relation]: We can recover f(t) from Gt(t, ω) by:   
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This relation can be generalized into the case of the FRFT. 
In (16), if we replace f(t) by Fα(u), then               
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                                                      (applying (6)).   (17) 
That is, we can obtain Fα(u) from the Gabor transform of 
f(t) if we do the scaled inverse FT along the direction of    
                              (–sinα, cosα).       (18) 
[Projection Relation]: The recovery relation for f(t) in (16) 
can be generalized into:             
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In (19), if we replace f(t) by Fα(u) and apply (6), it becomes        
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When k = 1/2, it becomes (17). 
[Power Integration Relation]: If we integrate the power of 
Gf(t, ω) along ω-axis, then        
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For the case of the FRFT, we replace f(t) in (22) by Fα(u):   
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Then we apply (6),  
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Therefore, the power integrating along the line of      
       u(cosα, sinα) + v(–sinα, cosα),      v ∈ (-∞, ∞),    (24) 
will be the local energy of Fα(τ) around τ = u.                            

[Energy Sum Relation]: From (23),     
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Then, from the fact that the energy is preserved after rota-
tion and the Parseval’s theory of the FRFT [1], (25) can be 
generalized as  
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                                                   for any α, β.                
[Power Decayed Relation]: If Fα(u) = 0 for u > u0, then        
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[Shifting and Modulation Relations]: If         
                              h(t) = f(t – t0),   
then their Gabor transforms have the following relation:    
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If h(t) = f(t)exp(jω0t), then   
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Generally, if Hα(u) and Fα(u) are FRFTs of h(t) and f(t) and   
                            Hα(u) = Fα(u – u0),                       
then     
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[Discretization] When doing digital implementation, in (5), 
we set τ = mδt, t = nδt, and ω = sδω. To preserve the rota-
tion property and other properties, it is proper to choose          
   δt = δω  < 2π / Max(Bα),   
          where Bα is the supporting width of |Fα(u)| > ∆. (31) 
Moreover, since 0001.02/2

<−xe  when |x| > 4.292, from 
(5), to save the computational time, instead of varying m 
from −∞ to ∞, we can set the range of m as      
          n − 4.292/δt  < m <  n + 4.292/δt.     (32) 

4.   APPLICATIONS FOR SIGNAL PROCESSING IN 
THE FRFT DOMAIN 

Since the Gabor transform is closely related to the FRFT, 
we can use it as an assistant tool for signal processing in the 
FRFT domain. We give two examples: (A) fractional sam-
pling and (B) fractional filter design to show how to use the 
Gabor transform together with FRFTs for signal processing.                  

When using the FRFT to do signal sampling [9], we first 
try to find α such that the supporting of |Fα(u)| is minimal 
             supporting  Ωα:   Fα(u) < ∆    if u ∉ Ωα,         
              optimal α → width(Ωα) is minimal.              (33) 
When f(t) has only one time-frequency (T-F) component, 
we can use the WDF to estimate width(Ωα) and hence 
search the optimal α. However, when f(t) has two or more 
T-F components, as the example in Fig. 2(f), using the 
WDF to estimate α may not be proper. In this case, since 
the “orient” for each of the T-F component is different, it is 
proper to separate f(t) into several T-F components and 
determine the optimal α for each of the component. Due to 
the cross term, this work is hard to be done by the WDF. 
Note that, in Fig. 2(f), it is hard to conclude whether the 
central region around (0, 0) is “the third T-F component” of 
f(t) or just the cross term of the left part and the right part.             

In contrast, when using the Gabor transform, since there 
is no cross term, we can easily conclude how may T-F 
components f(t) contains and decompose f(t) into the sum-
mation of these components. For the example in Fig. 2,   
(a) First, we decompose Gf(t, ω) in Fig. 2(c) into the left 

part and the right part, which corresponds to s(t) and r(t).             
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Fig. 4  Using the FRFT together with the time-frequency compo-
nent decomposition by the Gabor transform to sample the signal 

f(t) (see Fig. 2) in the FRFT domain. 

(b) Then we use the power integration relation to estimate 
the optimal order α (defined by (33)) for the left and the 
right T-F components  
              αleft  = -1.373,            αright = 0.785. (34) 
(c) Then, we apply the algorithm in [9] to do fractional 
sampling for each of the components. When the number of 
sampling points is fixed to 10, the reconstruction errors are          
• Using the conventional sampling theory:  err = 2.763%        
• Sampling f(t) in the FRFT domain:,  err = 1.306%, 
• Sampling f(t) in the FRFT domain with the aid of the Ga-

bor transform:   err = 0.061%. (35) 

Then we discuss how to use the Gabor transform to 
design the filter in the FRFT domain. It is known that we 
can use the FRFT instead of the FT for filter design [9], i.e.,     
   ( ) [ ] ( ){ }uTthOOtr FF α

αα )(−=           (36) 
where h(t) and r(t) are the input and the output of the filter, 
respectively. Although the way for searching the optimal 
transfer function Tα(u) has been developed [1][10], it lacks 
an efficient way to determine the optimal order α. It seems 
that the WDF is helpful for determining α and the cutoff 
line, however, due to the cross term problem, using the 
WDF is not suitable for the case where h(t) consists of a lot 
of time-frequency (T-F) components.       

In this paper, we find that the Gabor transform also 
has the rotation relation with the FRFT and it can avoid the 
cross term problem. This hints that we can use the Gabor 
transform instead of the WDF for fractional filter design.     

We give an example in Fig. 5. The input signal is  
   ( ) ( ) )10/exp(5cos2 2ttts −=  (shown in Fig. 5(a)).     (37) 
It is interfered by the following noise  

               )10cos(5.0)(
22 3.023.0 teetn tjtj += , (38) 

and h(t) = s(t) + n(t) is plotted in Fig. 5(b). We want to re-
cover s(t) from h(t) by the filter in the FRFT domain.   

The WDFs of s(t) and h(t) are plotted in Fig. 5(g)(h). In 
Fig. 5(h), the signal parts, the noise parts, and the cross 
term parts are mixed together. It is hard to know how to 
separate the signal parts from the noise parts after observ-
ing Fig. 5(h).   

In contrast, when doing the Gabor transform, since the 
problem of cross term can be avoided, in Fig. 5(d), the sig-
nal parts and the noise parts are separated clearly. We can 
use the following four lines (in Fig. 5(e)) to separate them:  
     L1: -2(cosα, sinα) + k(-sinα, cosα),         α = −1.14, 
     L2:  2(cosα, sinα) + k(-sinα, cosα)         
     L3: -7.5(cosβ, sinβ) + k(-sinβ, cosβ),       β = −1.03, 
     L4: 7.5(cosβ, sinβ) + k(-sinβ, cosβ),      (39) 
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Fig. 5  Using the FRFT with the Gabor transform for filter design. 

Therefore, we can use the following process to filter out the 
noise and recover s(t) from h(t). Step (b) comes from L1 
and L2 and Step (d) comes from L3 and L4:    
  (a) )]([)( thOuH F

α
α = ,   (40) 

  (b) H1,α(u) = Hα(u)  for |u| ≥ 2, H1,α(u) = 0 for |u| < 2, (41) 
  (c) )]([)( ,1,1 tHOuH F α

αβ
β

−= ,        (42) 
  (d) H2,β(u) = H1,β(u) for |u| ≤ 7.5, 
        H2,β(u) = 0 for |u| > 7.5, (43) 
  (e) ( ) )]([ ,2 uHOts F β

β−≈ .     (44) 
The recovered signal is plotted in Fig. 5(f). It is very close 
to the original signal s(t) and the error is only 0.049%.   

We give another example in Fig. 6. The input is in Fig. 
6(a). It is interfered by the noise with the 3rd order phase.   
                     )5025.0exp(9.0)( 3 tjtjtn −= .     (45) 
When using the WDF, the noise and the signal parts are 
mixed, see Fig. 6(c). When we use the Gabor transform, the 
noise and the signal parts are obviously separable, see Fig 
6(d). Since the noise and the signal parts can be separated 
by three lines, we can use three fractional filters to filter out 
the noise. The orders of FRFTs for these fractional filters 
can be determined by the slopes of the cutoff lines (α = 
0.6947, 1.5708, −0.6947). With them, we can recover the 
original signal with a very small error, see Fig. 6(b).     

 decomposition 
 f(t) 

left part 
 ≈ s(t) 

right part 
 ≈ r(t) 

fractional sampling 
with α = -1.373

fractional sampling 
with α = 0.785 
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Fig. 6  Using the FRFT filter to filter output the 3rd order phase 
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Fig. 7  The GWTs of f(t) where f(t) = s(t)+r(t) is defined in (13) 

and (14) and the GWTs are defined in (49) and (50). 

5.   GABOR-WIGNER TRANSFORM     

We have known that both the Gabor transform and the 
WDF has the rotation relation with the FRFT. In fact, if we 
combine the Gabor transform with the WDF properly, the 
new time-frequency distribution also has the rotation rela-
tion with the FRFT. 
[Combination Theorem]: Suppose that p(x, y) is any func-
tion with two variables. If we define a new time frequency  
Cf(t, ω) (We call it the Gabor-Wigner transform (GWT)) 
that has the following relation with the Gabor transform 
Gf(t, ω) and the WDF Wf(t, ω):                   
               ( ) ( )),(),,(, ωωω tWtGptC fff = ,    (46)     

then Cf(t, ω) also has the rotation relation with the FRFT:      
    ( )vuCF ,

α
( )αααα cossin,sincos vuvuC f +−= ,   (47)    

where Cf(t, ω) and CFα(u, v) are the GWT of f(t) and its 
FRFT, Fα(u), respectively. 
[Proof]: From (46),    
           ( ) ( )),(),,(, vuWvuGpvuC FFF ααα

=          (48) 
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Since the GWT also has rotation relation, thus it is possible 
to use it instead of the WDF and the Gabor transform for 
signal analysis in the FRFT domain. In fact, if p(x, y) is 

chosen properly, the resultant GWT will combine the ad-
vantages of the Gabor transform and the WDF. In Fig. 7, 
we perform several experiments. For Fig. 7(a), 
                 ( ) ),(),(, ωωω tWtGtC fff = ,     (49) 
For Fig. 7(b),  
          ( ) ( )|),(|,|),(|min, 2 ωωω tWtGtC fff = , (50) 
That is, p(x, y) = xy in (49) and p(x, y) = min(|x|2, |y|) in (50).    

Compare Fig. 7 with Fig. 2, we find that, as the Gabor 
transform, when using the GWT, the cross term problem 
can also be avoided. Moreover, its resolution is obviously 
better than that of the Gabor transform. It combines both 
the advantage of the WDF (higher resolution) and the ad-
vantage of the Gabor transform (no cross term).  

6.   CONCLUSIONS 

We derived several interesting relations between the FRFT 
and the Gabor transform, including the rotation relation, the 
recovery relation, and the power integration relation. Since 
the Gabor transform can avoid the cross term, which is a 
serious problem for the WDF, we could use it instead of the 
WDF to do signal process in the FRFT domain, such as 
fractional sampling and the fractional filter design.   
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