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Abstract

The computing power of high-performance computing (HPC) systems is increasing
with a rapid growth in the number of compute nodes and CPU cores. Meanwhile, I/O
performance is one of the bottlenecks in improving HPC system performance. Current
HPC systems are equipped with parallel file systems such as GPFS and Lustre to cope
with the huge demand of data-intensive applications. Although most of the HPC systems
provide performance tuning tools on compute nodes, there is not enough chance to tune
I/O operations on parallel file systems, including high speed interconnects among com-
pute nodes and file systems. We propose an I/O performance optimization framework
that utilizes log data of parallel file systems and interconnects in a holistic way for im-
proving the performance of HPC system, including effective use of I/O nodes and parallel
file systems. We demonstrated our framework at the K computer with two I/O bench-
marks for the original and the enhanced MPI-IO implementations. The analysis by using
the framework revealed the effective utilization of parallel file systems and interconnects
among I/O nodes in the enhanced MPI-IO implementation, thus paving the way towards
holistic I/O performance tuning framework in the current HPC systems.

Keywords: Holistic log data analysis, K computer, FEFS, Lustre, Tofu, MPI-IO
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1 Introduction

HPC systems have been facing the performance gap between computing power and I/O per-
formance. Parallel file systems such as GPFS [SH02] and Lustre [Lus] provide vast amounts of
storage capacity with high I/O bandwidth to bridge the gap. Most of the I/O optimization re-
search efforts have addressed to improve I/O performance of their implementations in an em-
pirical way using I/O benchmarks rather than analyses of I/O activities on target parallel file
systems and interconnect data transfers [BLH+13, BBR+16, TMV+16, VdSB+18, OVW+19].
With an increase in the number of compute nodes and target I/O nodes, it is quite difficult
to tune an implementation only through such benchmark runs. Holistic log analysis has
been proposed for investigating I/O performance bottlenecks or I/O performance tuning of
applications [LWS+18,WSL+18,YJM+19]. Such analysis collects log data about file system
activities in addition to I/O performance results of applications. As Yang et al. remarked in
their paper [YJM+19], a storage interconnect is another contention point on HPC systems.
To this end, they have extended their framework named Beacon to monitor performance
counters of InfiniBand network switches.

Within this context, an interconnect is one of the important points to tune not only
inter-node communications in applications but also I/O accesses towards underlying storage
systems. A profiling tool named Tofu PA [IOIkM12] was provided in the K computer, which
acquired statistical information called Tofu PA information regarding communication in the
Tofu interconnects [AIH+12] on compute nodes used, with the purpose to tune communica-
tions among compute nodes. However, there were no tools to get the Tofu PA information of
Tofu interconnects among I/O nodes and I/O activities of its parallel file systems. Similar to
other HPC platforms, we conducted I/O benchmark runs to evaluate and tune performance
of I/O subsystems in an empirical way in the K computer. For investigating I/O performance
bottlenecks and further I/O performance improvements, a well-balanced I/O workload among
compute nodes, I/O nodes, and parallel file systems is required to optimize I/O operations.
Without knowing the status of I/O nodes and parallel file systems, it is quite difficult to tune
I/O operations in HPC applications.

It is expected that the utilization of statistics log data of I/O subsystems such as file
system servers and interconnects provides quite useful metrics for I/O performance tuning
by examining statistics of I/O request operations or data packet transfers through intercon-
nects. In this context, we have proposed a framework that monitors data transfers on Tofu
interconnects on I/O nodes and I/O activities of parallel file systems with the help of log
data collected in the system administration in our workshop paper [TFH+20]. To our best
knowledge, this is the first work to utilize data transfer information of Tofu interconnects
on I/O nodes among the HPC systems using Tofu interconnects in tuning I/O operations.
The framework consists of analysis functions for several components: log data collected by
fluentd [flu], a PostgreSQL database that keeps a large amount of executed job information
(JOB-DB), and information about compute and I/O nodes (node information table).

Given a unique ID for each job (JOB-ID), the analysis function of the framework provides
us data such as averaged values of essential I/O activities on OSSes used, bandwidth utiliza-
tion of Tofu interconnects on I/O nodes, and heat-maps about I/O throughput of OSTs used
from the log data with the help of the JOB-DB and the node information table. In this
paper, we demonstrated how such analyzed data could be used for further performance im-
provements by examining I/O bottlenecks and unbalanced situations in I/O workload among
I/O nodes used in our enhancements in collective MPI-IO implementations named “EARTH
on K” [THI14, THK+18]. We have already conducted empirical benchmark evaluations in
performance improvements for our enhancement work in the K computer through studies
in [THI14,THK+18]. Since only the result obtained from the benchmark evaluations is I/O
performance, we had difficulties in tuning the implementation. Once we have introduced the
framework for the evaluations, we have noticed which subsystem is bottleneck during the
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optimizations.
Compared with our previous paper [TFH+20], we have made further analysis for addi-

tional optimizations in an enhanced MPI-IO with and without two-phase I/O in order to
show their impact in each underlying I/O subsystems. We have found additional explicit
differences in metrics that were given by the framework in not only write operations but also
read operations. In addition, we propose scoring scheme in the framework so that we can
easily find optimal optimization candidates.

Rest of this paper is organized as follows. In Sec. 2, we discuss related work. A system
overview of the K computer including its file I/O subsystems, in which we conducted imple-
mentation and evaluation of the proposed framework, is explained in Sec. 3. In Sec. 4, we
present the proposed analysis framework. We also explain the “EARTH on K” in Sec. 5,
where we briefly present its advanced functions relative to the original MPI-IO. In Sec.6,
we report experimental evaluations for the proposed framework at the K computer, and we
discuss the usefulness of the proposed framework through examinations about performance
improvements achieved by the “EARTH on K” at the K computer. Finally, we conclude the
paper in Sec. 7.

2 Related Work

I/O bottlenecks in various applications were studied in [XCD+12, SRC+12]. These studies
showed numerous characteristics in terms of I/O access patterns performed by applications on
HPC systems using Lustre file systems. I/O monitoring at storage system level was studied
in [KZH+14,UW13,MBC+17]. For example, Kunkel et al. proposed a monitoring and analysis
framework to suggest and apply performance optimizations automatically [KZH+14]. It as-
sisted locating and diagnosing performance problems. Separately, Uselton and Write [UW13]
proposed extended monitoring about metrics available from Lustre using Lustre Monitoring
Tool [LMT]. They characterized I/O patterns with their own metric named File System
Utilization using obtained metrics. Madireddy et al. conducted I/O system analysis using
operation log data, and they demonstrated I/O characterization of each job through corre-
lation between I/O patterns of each job and I/O subsystem activities [MBC+17]. They also
discussed the influence of monitoring intervals in system performance. Multi-platform study
using system logs of file systems was reported in [LWG+15]. Their cross-platform analysis
with I/O behavior collection by Darshan [DAR] showed wide varieties of insights about I/O
subsystem operations through comparison among the several HPC systems. Our framework
also supports similar functions compared with the above studies. Compared with the above
researches, our case also focuses on behavior of interconnects among I/O nodes in the target
file system.

Log data collection and analysis for performance tuning were conducted in server-side
analysis [LGMV14,LGMV16,XBV+16,PBLT19]. For example, Liu et al. proposed a frame-
work to identify I/O activities automatically using trace log data from file system servers [LGMV14,
LGMV16]. Separately, Xu et al. proposed their I/O profiling framework named LIOProf to
track I/O activities of on Lustre file system servers including client-side statistics recorded on
servers [XBV+16]. Using those metrics, they demonstrated optimization effect in collective
MPI-IO implementation. A detailed study in production runs was conducted in [PBLT19]
by analyzing server-side log data of parallel file systems to draw new insights about I/O
characteristics. However, abovementioned studies did not focus on behavior of interconnects.
Our proposed framework supports interconnect monitoring in performance bottleneck inves-
tigation to tune I/O optimization with server-side log data of a local file system although the
framework has not been used in production runs at the K computer.

Interconnects are also one of the key components in HPC systems. Monitoring data
transfers of interconnects tells us a hot-spot of traffic congestion for instance, and such ap-
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proaches succeeded in analysis of application activities and performance impact associated
with the traffic condition [ZGL16,KGP+18,CJH+19,YJM+19]. Zimmer et al. demonstrated
their monitoring framework to collect detailed stats information using their daemon program
named I/O Router Congestion Daemon with monitoring performance counter of Gemini in-
terconnects in the Titan at the Oak Ridge Leadership Computing Facility [ZGL16]. Kumar
et al. utilized performance counter of Gemini interconnect in the Titan too [KGP+18]. They
analyzed and characterized errors and traffic congestion on Gemini interconnects. Chunduri
et al. succeeded in execution time predictions of applications by analyzing traffic congestion
information obtained from performance counters of Aries interconnects in the Theta at the
Argonne Leadership Computing Facility [CJH+19]. They introduced a machine learning ap-
proach in their prediction. However, the above studies were not sufficient to characterize I/O
activities on parallel file systems in HPC systems. Within this context, Yang el al. pointed
out that storage interconnect is another contention point on HPC systems [YJM+19]. They
have extended their I/O monitoring framework to monitor performance counters of Infini-
Band network switches.

Recently, holistic I/O monitoring has been proposed in many research works [LWS+18,
WSL+18,YJM+19]. For example, Lockwood et al. proposed a holistic I/O monitoring frame-
work named TOKIO [LWS+18]. It consisted of several components for monitoring, analysis,
and visualization for administrators and users. Separately, Wang et al. proposed a monitoring
and analysis framework named IOMiner [WSL+18], in which Darshan [DAR] was introduced
to collect I/O performance metrics. Application users can easily identify root cause of poor
I/O performance with the framework from vast amounts of log data associated with I/O
subsystems. Yang et al. proposed a monitoring framework named Beacon [YJM+19]. This
framework provided a collection of monitoring tools for Metadata Servers (MDSes) and Ob-
ject Storage Servers (OSSes) and analysis functions, including some visualization interface.
Their extended monitoring for InfiniBand networks covered to find network contention in
I/O operations. The above studies are similar to our study regarding holistic approach to
characterize I/O activities.

On the other hand, our study addresses holistic I/O activity analysis through log data
analysis of Tofu interconnects and parallel file systems including associated I/O nodes. The
uniqueness of this framework is a holistic analysis approach using data transfer status on
the Tofu interconnects among I/O nodes and associated I/O activity traces at parallel file
systems.

3 K computer and Its File System Monitoring

3.1 Overview of the K computer

The K computer finished its operation for about seven years in August 2019. The system had
two-layered file systems, a local file system (LFS) and eight volumes of a global file system
(GFS), as shown in Figure 3.1. The LFS was a scratch high-performance storage space which
was used during computations, while the GFS was used to store programs and data with high
redundancy. An enhanced Lustre named Fujitsu Exabyte File System (FEFS) [SSK12] that
was based on Lustre version 1.8 was equipped to build both file systems. The K computer
consisted of 82,944 compute nodes and 5,184 I/O nodes, where every system rack consisted
of 96 compute nodes and six I/O nodes. Every compute node and I/O node were connected
through the Tofu interconnect in a six-dimensional (6D) mesh/torus network represented by
X, Y , Z, A, B, and C. Tofu links of X, Z, and B were connected in a torus configuration,
while those of Y , A, and C were connected in a mesh configuration. However, torus con-
figuration of the Z-link was only available in I/O accesses through I/O nodes because I/O
nodes were included only in I/O accesses. In other cases, the Z-link was used in a mesh
configuration for inter-node communications by application jobs.
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Figure 3.1: System configuration of the K computer.

Figure 3.2: Subset of system racks of the K computer and I/O accesses from compute nodes
towards the LFS.

Figure 3.2 depicts the configuration of a subset of system racks and I/O accesses from
compute nodes towards the LFS. Each cabinet consists of two system racks, which have two
groups separated by the A-link position (A=0 and 1) consisting of 48 compute nodes each.
Every compute node was located on Z-link positions ranging from Z=1 to 8 and from Z=9
to 16 in the groups of A=0 and 1, respectively, while I/O nodes were on Z=0 in both groups.
Boot-I/O nodes (BIOs) were responsible for system software start-up and Global I/O nodes
(GIOs) were the gateways in accessing the GFS. The LFS was accessible from compute nodes
through OSSes running on the local-I/O nodes (LIOs). Every node including I/O nodes
consisted of Tofu network router (TNR) [AIH+12] where each TNR had 10 communication
links (X+, X−, Y +, Y−, Z+, Z−, A, B+, B−, and C) to construct a 6D mesh/torus
network.

The number of available OSTs at the LFS was uniquely configured based on the assigned
compute node layout according to the I/O zoning scheme [Sum11]. I/O zoning scheme was
introduced in order to mitigate I/O interference on OSTs and I/O nodes among jobs by
assigning I/O nodes and OSTs on the same Z-link with compute nodes used. In Fig. 3.2, I/O
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Figure 3.3: Log collection from I/O nodes.

accesses from compute nodes at the system rack are illustrated on the left side. I/O nodes on
the same Z-links were configured to work with compute nodes that issued I/O requests, and
those I/O nodes take part in data transfers during I/O accesses on the LFS. It is noted that
I/O paths from compute nodes were automatically routed to the corresponding I/O nodes
(either of BIO, GIO, and LIO) on the same Z-link, then routed to a target OSS running on
an LIO.

Performance profiling tools including Tofu PA addressed to tune performance of compute
nodes and communications among compute nodes. It is noted that similar profiling tools are
available at our current HPC system, the supercomputer Fugaku [The] (hereinafter, Fugaku).
The tools succeeded to leverage high levels of computing potential of the K computer, espe-
cially in tuning applications utilizing the large number of compute nodes in terms of data
transfer status of each node in addition to CPU and memory utilization. The only way to
tune I/O operations had been benchmark evaluations because there was not any I/O profiling
tool for users to profile activities of I/O nodes and parallel file systems. Therefore, it was
quite difficult in I/O operation tuning using only the existing profiling tools.

3.2 Log collection for monitoring the LFS

We have addressed to extract I/O activity information of the LFS in order to investigate
operation status of the LFS for not only finding malfunctions but also performance tuning.
In this context, we conducted to collect log data from servers associated with the LFS during
the K computer operation, as shown in Figure 3.3. We have deployed fluentd to collect
performance metrics associated with I/O operations from 5,184 I/O nodes including 2,592
LIOs which also acted as OSSes for the LFS.

The proposed analysis framework utilized the following three log data collection groups
from large amounts of collected information by fluentd.

� Tofu stats: Data transfer status metrics of I/O nodes on each Tofu interconnect link
(the number of transferred packets, amount of transferred data size, and others)

� I/O stats: Statistics of I/O requests obtained from /proc/fs/lustre/ost/OSS/ost io/stats

on every OSS

� I/O rates: Amount of size in read and write operations on every OST

Only the I/O stats was collected at one minute intervals, while the rest were collected at ten
minute intervals. We have selected the ten minute intervals for the I/O-related monitoring
as trial in a conservative manner not to affect I/O node activities for stable production runs
from our empirical study. We conducted the trial monitoring in the last few months of the
K computer operation. Limited storage space for the I/O related log-collection was another
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reason for the ten-minutes intervals. In the last few months of the K computer operation,
we already collected huge amounts of recorded information on the log-collection server from
other high-priority components of the K computer for a long time.

The Tofu stats consisted of the following packet processing metrics of the ten Tofu links,
which were obtained from the TNR of each I/O node through the Tofu PA information in
each ten minute interval:

� Cycle counts until target transfer buffer was available in packet transfers

� Amount of transferred data size

It is noted that the cycle counts in the Tofu stats corresponded to congestion status since
unavailability of transfer buffers in packet processing closely corresponds to packet transfer
congestion. We conducted to retrieve those metrics from the TNR at every I/O node during
the K computer operation for about a few months until the end of the K computer operation.

The I/O stats consisted of the same statistics with an original Lustre, where we es-
pecially focused on the three statistics, req qdepth, req active, and req waittime. These
statistics provided the status of I/O requests coming from compute nodes through I/O nodes.
For instance, a large value in both req qdepth and req waittime indicated very busy sta-
tus of OSSes or idle status of OSSes waiting for the next operation due to heavy load of
an MDS before I/O accesses. Such situation was not suitable for effective I/O operations.
Since req active indicated the number of active threads for I/O operations, high numbers
in req active indicated a very good condition in terms of I/O accesses.

The I/O rates provided I/O throughput status at each OST over time. Collected I/O
throughput information showed I/O behavior on each OST such as how much I/O bandwidth
was achieved in each OST or how about I/O load balancing was for instance. Due to the
reasons described above, we examined I/O activities in the two I/O benchmark runs at ten
minute intervals as trial, where each I/O benchmark run took around ten minutes so that we
could observe I/O activities of each I/O benchmark run. Minimization of monitoring interval
time is our future work in Fugaku.

3.3 Database for executed jobs

A database to store job information named JOB-DB was built on a PostgreSQL database
server to collect and refer to job information executed in the K computer. The JOB-DB kept
compute nodes used, compute node layout, elapsed time, and start and finish times of job
execution, which were associated with a JOB-ID, for instance. Therefore, we could refer to
information about a target job from the JOB-DB by specifying a JOB-ID.

4 Analysis Framework for I/O Activities

As described in Sec. 3.2 and Sec. 3.3, we had monitoring and log collection environment for
each component in the K computer operation. However, there was not any environment to
have holistic I/O activity analysis for the purpose of investigation and performance tuning.
Considering the complexity in I/O subsystems and I/O software stacks in a large scale of HPC
systems such as the K computer, we have built an analysis framework in cooperation with
the existing monitoring components described in Sec. 3.2 and Sec. 3.3. Since the framework
needs to work together with several components such as the JOB-DB built on a PostgreSQL
database and log data collected by fluentd, we have conducted to build the framework us-
ing Python. Figure 4.1 depicts an overview of the implemented analysis framework, which
is connected with associated log data collected by fluentd and the JOB-DB to analyze I/O
activities on I/O nodes and the LFS. Given a target JOB-ID, the framework retrieves infor-
mation of the JOB-ID such as 6D mesh/torus network positions of compute nodes used and
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Figure 4.1: Functional overview of implemented analysis framework.

system racks used from the JOB-DB. Such information about compute nodes used and sys-
tem racks is utilized to find I/O nodes used including LIOs from the I/O node table because
the assigned I/O node layout is automatically configured by the shape of assigned compute
nodes. Besides, start and finish times of the target job obtained from the JOB-DB are used
to pick up essential information associated with the JOB-ID from a large amount of log data
collected by fluentd.

Once the framework collects all essential information, its log analysis function figures out
and gives the following information for the given JOB-ID:

� Maximum waiting time of each interconnect at each I/O node used (Tmax
wait ) from Tofu

stats log collection

� Peak bandwidth utilization ratio of the interconnects relative to the theoretical band-
width during job execution (RBW ) from Tofu stats log collection

� I/O throughput in both write and read operations on each OST used from IO rates

log collection

The former two performance values were calculated by using the packet transfer metrics ob-
tained from the TNR of Tofu links used, which were obtained from Tofu stats log collection.
The function converts the cycle counts obtained from the TNR into time values in the unit of
a second for the Tmax

wait . While the RBW was obtained by dividing the peak bandwidth in Tofu
links of the job with the theoretical bandwidth. Note that the peak bandwidth was obtained
by dividing transferred packet size with elapsed time of the specified job. In the proposed
framework, we used the RBW to examine the effectiveness in packet transfers associated with
I/O operations.

While the I/O performance values were obtained by dividing an amount of data size
in read and write operations with a monitoring interval time (600 seconds in the current
configuration) in each snapshot in order to know I/O throughput at each OST used. Once
the analysis function is executed, data are stored in the CSV format and associated heat-map
image data are stored in the PNG format.

5 Enhanced MPI-IO Implementation: EARTH on K

In order to examine effectiveness of the proposed framework, we have conducted to eval-
uate MPI-IO benchmark runs. In this context, we have picked up our enhanced MPI-IO
implementations in addition to the original MPI-IO implementation at the K computer.

MPI-IO is an I/O interface including parallel I/O in the MPI standard [MPI]. An MPI
library for the K computer supports MPI-IO functions for the FEFS using MPI-IO implemen-
tation named ROMIO [TGL99]. Two-phase I/O optimization in ROMIO improves collective

SH

∞

J P This article appeared in the Journal of High-Performance Storage, 2 8/24



Holistic I/O Activity Characterization Through Log Data Analysis . . . August 9, 2021

(a) Without striping-awareness (b) With striping-awareness

Figure 5.1: Aggregator layouts with and without striping awareness.

MPI-IO performance in accessing non-contiguous data layouts in each process by rearrange-
ment to form large data access space as much as possible in each process performing I/O
(aggregator). Although two-phase I/O optimization of ROMIO improves collective MPI-IO
performance, the implementation on the K computer uses an old implementation of ROMIO
which is not optimized for Lustre. Therefore, the original MPI-IO implementation is not
suitable for the FEFS to achieve high I/O performance.

The current ROMIO with the improved two-phase I/O for Lustre [Lus08] has the po-
tential to improve performance on the FEFS. Our enhanced MPI-IO implementation named
“EARTH on K” (hereinafter, EARTH) has been developed for the K computer based on the
improved two-phase I/O with topology-aware performance optimizations for collective MPI-
IO at the FEFS. We have already reported performance improvements by using the EARTH
in some conference papers [THI14,THK+18], there is not any evidences what kind of improve-
ments has been achieved in underlying interconnects among I/O nodes or OST activities. In
this context, we have investigated some advanced functions of this implementation with the
proposed framework.

Compared with the original MPI-IO, EARTH has advanced optimizations controlled by
the following three parameters represented by agg, req, and rr, respectively:

� agg: Striping-aware aggregator layout

� req: I/O throttling and associated stepwise data aggregation with a given number of
I/O requests per step

� rr: Round-robin aggregator layout among compute nodes

ROMIO deploys one aggregator in each compute node, and its layout is dependent on MPI
rank layout among compute nodes. In HPC systems, users have been focusing on MPI rank
layout for communication performance among compute nodes. However, such optimizations
are not always suited for aggregator layout with respect to interconnects among compute
nodes and I/O nodes or layout of OSSes/OSTs of a Lustre file system. In such layout,
contention in data transfer happens on network paths among compute nodes and a Lustre
file system.

The striping-aware aggregator layout mitigates data transfer congestion by suitable ag-
gregator layout. Figure 5.1 shows aggregator layouts with and without striping awareness in
accessing four OSTs by 16 aggregators, where numbers in circles represent MPI ranks and the
numbers ranging from i to iv represent the order of striping accesses. By placing aggregators
in an MPI rank order as shown in Figure 5.1a, we may face contention in a path towards tar-
get OSTs. On the other hand, a striping-aware layout shown in Figure 5.1b, renumbering the
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(a) I/O throttling with token relay (b) Stepwise data aggregation

Figure 5.2: I/O request throttling with stepwise data aggregation.

order of aggregators in the red-colored numbers, eliminates data transfer congestion on every
I/O path because I/O flows of every I/O path towards a target OST are evenly distributed
for a striping access pattern against OSTs.

Figure 5.2a illustrates I/O throttling scheme operated by 192 aggregators accessing 12
OSTs, where we assume every process acts as an aggregator. Numbers in circles represent MPI
ranks, and red-colored numbers neighboring to the circles are the aggregator layout orders
configured by the striping-aware aggregator layout. Two-phase I/O consists of repetitive
operations of data aggregation on every aggregator and I/O accesses by aggregators. We
may have I/O request contention on OSTs if we have I/O accesses simultaneously from all
aggregators. The I/O throttling scheme shown in this figure alleviates I/O request contention
on OSTs by issuing I/O requests from aggregators in each group in a stepwise manner from
the younger number group by relaying tokens from an aggregator that finishes I/O accesses
to a corresponding aggregator in the next group. The number of groups can be tuned at
runtime through MPI Info set() or an environment variable. It is also noted that EARTH
also supports I/O request throttling even if we disable two-phase I/O in collective MPI-IO.

Stepwise data aggregation shown in Figure 5.2b is another optimization associated with
the I/O throttling. Compared with simultaneous data aggregation by all the processes, we can
eliminate congestion in data transfers among compute nodes by stepwise data aggregations
issued from younger number group. In this figure, we represent data aggregation between the
groups numbered by i and j as (i, j), which is equivalent to (j, i). In the first step (step=1),
processes in the first group numbered as 0 initiates data transfers to aggregators on every
group numbered from 0 to 7, described by (0, k), where k = 0-7. However, in the first step,
only the (0, 0) is carried out because other groups are not ready in data aggregation. In the
next step (step=2), the second group numbered as 1 initiates data aggregation of (1, k), where
k = 0-7, and only data aggregations of (0, 1), which is equivalent to (1, 0), and (1, 1) complete
in this step. Finally in the last step (step=8), the last group numbered as 7 initiates data
aggregations of (7, k), where k = 0-7. Then the remaining aggregations denoted by (k, 7),
where k = 0-7, complete in this step.

Figure 5.3 shows examples of blocked and round-robin aggregator layouts, where we have
eight aggregators from 16 processes deployed among four compute nodes in a blocked layout.
Horizontal colored arrows represented by R, A, and W stand for read, data aggregation, and
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(a) Blocked layout (b) Round-robin layout

Figure 5.3: Aggregator layouts with blocked and round-robin manners, utilizing I/O throt-
tling and stepwise data aggregation in write operations.

write phases in two-phase I/O during collective write operations, respectively. As shown in
this figure, I/O throttling scheme relays tokens among aggregators. When we have a blocked
aggregator layout as shown in Figure 5.3a, four processes in the two compute nodes (CN #0
and CN #1) work as aggregators, which are from 0 to 7 in MPI ranks. As a result, we may
have contention within the same compute node in performing each phase of two-phase I/O.
It is also noted that such layout leads to high I/O workload in each node compared with
other compute nodes without aggregators. Meanwhile, the round-robin aggregator layout in
Figure 5.3b can distribute I/O workload evenly among compute nodes, and this layout also
prevents aggregators from I/O access contention within the same compute node by reducing
the number of aggregators in the same compute node.

Although the above enhancements outperformed the original version in an empirical study
using I/O benchmark runs [THI14, THK+18], there was not any investigations about the
performance impact of those optimizations in I/O nodes or underlying file systems. One
of the main reasons is the lack of tools to characterize optimization effects in data transfers
among I/O nodes and I/O accesses against the LFS at the K computer. By using the proposed
framework, we examined their advanced features at the K computer in the following section.

6 Experimental Evaluation

We conducted to examine functionalities of the proposed framework at the K computer
through two I/O benchmark runs, IOR [IOR] and HPIO [CCkL+06], about the original
MPI-IO implementation and EARTH. Although the K computer was already dismantled, we
believe that results and experiences obtained from the evaluations provide useful hints for
current HPC systems including Fugaku. Although IOR supports two file creation modes,
accessing file per rank and shared access to a single file, we utilized the shared access mode
with collective MPI-IO. Meanwhile, HPIO supports I/O accesses for non-contiguous data
layout, and we performed collective MPI-IO for the data layout. For both benchmark runs,
we initiated 12,288 processes on 3,072 compute nodes forming a logical 3D layout of 8×12×32
in order to eliminate I/O interference from other jobs. According to the 3D layout of assigned
compute nodes, 192 OSTs were assigned for parallel I/O, and we set 192 as a stripe count to
use all available OSTs. We set 256 MiB and 64 MiB in stripe size in the IOR run and the
HPIO run, respectively.

In both benchmark runs, every processes worked as aggregators with ascending order
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layout in MPI ranks from zero in the original MPI-IO under default configuration. On the one
hand, 6,144 processes were chosen to be aggregators in the EARTH case in order to examine
performance impact of aggregator layout among compute nodes according to optimization
configuration of the EARTH. In this paper, original stands for the original MPI-IO, while a
combination of the three optimization parameters, agg, rr, and req, indicates MPI-IO of the
EARTH. Concerning the EARTH use case, agg=1 stands for striping-aware aggregator layout
and rr=1 denotes round-robin aggregator layout among compute nodes. A zero value in each
case stands for deactivation in the corresponding layout optimization. The last parameter
req with a number describes the number of I/O requests going to each OST per step in
I/O throttling and stepwise data aggregation except that req=0 denotes deactivation of I/O
throttling and stepwise aggregation.

In the IOR benchmark run, we conducted collective MPI-IO without two-phase I/O. In
this paper, we describe collective MPI-IO with and without two-phase I/O by giving “T:”
and “N:” at the beginning of the parameter configuration notation such as T:original and
N:original, respectively.

6.1 Benchmark configuration

We conducted to evaluate collective MPI-IO in the two benchmark runs, IOR and HPIO with
the proposed framework. In both cases, we enabled two-phase I/O implemented in ROMIO.

6.1.1 IOR

The following command was executed in write operations to generate a shared file of 3 TiB
(= 256 MiB × 12,288) per iteration:

$ ior -i 5 -a MPIIO -c -U hints_info -k -m -vvv -w -t 256m -b 256m \

-o ${TARGET_DIR}/test-IOR.dat -d 0.1

We performed read operations with the same command changing “-w” by “-r”, followed by
write operations with the above command in every optimization parameter configuration.
“hints info”, is a file describing some hints associated with I/O operations such as the
number of processes per node and so forth. A target file (test-IOR.dat) was generated in
the directory (${TARGET DIR}) with 192 stripe count. We carried out collective MPI-IO with
and without two-phase I/O by enabling or disabling “romio cb write” and “romio cb read”
through the “hints info.”

6.1.2 HPIO

We executed the following command for write operations to generate a shared file of about
2.1 TiB (≈ (5,992 B + 256 B) × 12,288 × 30,729 - 256 B) per iteration, followed by read
operations in non-contiguous access pattern on a target file with specifying the number of pro-
cesses per node (-H cb config list=*:4) and parameter to tune the number of aggregators
to be 6,144 (=192× 32):

$ hpio -n 12288 -n 0010 -r 6 -B -s 5992 -c 30729 -p 256 -m 01 -O 11 -f 0 \

-S 0 -a 0 -g 2 -H cb_config_list=*:4 -H romio_lustre_co_ratio=32 \

-d ${TARGET_DIR} -w 1

Note that the option, “cb config list” was available only for the EARTH case, and thus
all processes worked as aggregators in the original case as we explained. The target file was
generated in the directory ${TARGET DIR} with 192 stripe count. We conducted the collective
MPI-IO only with two-phase I/O because collective MPI-IO without two-phase I/O was time-
consuming under the non-contiguous access pattern and it was difficult to perform in a limited
machine time.
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(a) IOR benchmark (b) HPIO benchmark

Figure 6.1: Benchmark results of the original MPI-IO and EARTH with several optimization
configurations by using (a) IOR and (b) HPIO.

6.2 Benchmark results

Figure 6.1 shows averaged I/O throughput values with standard deviations for the IOR and
HPIO benchmarks.

The original MPI-IO operations with and without two-phase I/O represented by T:original

and N:original showed poor performance in both read and write operations in the IOR runs.
The same situation was observed for the T:original case in the HPIO runs. EARTH with
full optimization in aggregator layout, I/O request throttling, and stepwise data aggregation
outperformed other cases by setting four requests per step (T:agg=1,rr=1,req=4) in the
IOR runs and eight requests per step (T:agg=1,rr=1,req=8) in the HPIO runs. However,
performance was degraded by changing the number of requests per step or deactivating ag-
gregator layout optimization. In addition, the EARTH case using only I/O throttling without
two-phase I/O (N:agg=0,rr=0,req=4) could not improve I/O performance compared to the
original case (N:original) in the IOR runs.

Although we learned optimization effects through such empirical benchmark runs in our
previous research papers [THI14, THK+18], it was not clear about the performance impact
of the optimization configuration on I/O nodes, Tofu links among I/O nodes, and the LFS.
We report investigations of each component using the proposed framework in the following
subsections.

6.3 I/O request status at file system servers

Figure 6.2 shows the mean values of req qdepth, req waittime, and req active from I/O

stats log collection during I/O operations at the IOR benchmark run. As shown in Fig-
ure 6.2a, the two original cases with or without two-phase I/O, T:original and N:original,
had the largest number of requests in a request queue in each I/O operations with or without
two-phase I/O. Figure 6.2b shows that those cases also took the longest time to proceed
requests in each I/O operations with or without two-phase I/O. Additionally, Figure 6.2c
shows the highest number of I/O threads in the original case with two-phase I/O. Note that
the maximum number of threads at each OSS of the LFS was 32 at the K computer. Through
these results, we determined that the two original cases, T:original and N:original, were
not suited for I/O request processing at OSSes.

While the EARTH use case with good I/O performance (T:agg=1,rr=1,req=4) showed
small number of requests in the queue, as shown in Figure 6.2a. Figure 6.2b also shows the
fact that this case took quite short times to process I/O requests. Additionally, Figure 6.2c
shows many I/O threads were active in this case.

SH

∞

J P This article appeared in the Journal of High-Performance Storage, 2 13/24



Holistic I/O Activity Characterization Through Log Data Analysis . . . August 9, 2021

(a) req qdepth: The vertical axis is expanded
from 600 to 3,500

(b) req waittime: The vertical axis is ex-
panded from 800 ms to 16 s

(c) req active

Figure 6.2: Mean stats values obtained from OSSes using our analysis framework during the
IOR benchmark run, where numbers represent very small values.

Figure 6.3 shows the same statistics obtained in the HPIO benchmark run. Similar to
the IOR run, the original use case was not good compared with the EARTH use case with
good optimization configuration indicated by T:agg=1,rr=1,req=8.

6.4 Bandwidth utilization and waiting times in data transfers on Tofu
interconnects of I/O nodes

Figure 6.4 shows mean values of (a) RBW and (b) Tmax
wait on Tofu links of I/O nodes used. Con-

cerning bandwidth utilization shown in Figure 6.4a, the original MPI-IO use case showed the
lowest utilization, while the full set of EARTH optimizations such as T:agg=1,rr=1,req=4

led to higher levels of bandwidth utilization relative to other cases. While the use cases with-
out two-phase I/O, N:original and N:agg=0,rr=0,req=4, showed larger number of requests
in queue, especially in write operations. By considering effectiveness in data transfers among
I/O nodes via Tofu interconnects, a higher utilization was preferable. Within this context,
the above optimized case was suitable for I/O optimization.

Figure 6.4b shows that the enhanced implementation without aggregator layout optimiza-
tion indicated by T:agg=0,rr=0,req=4 took the longest times. It is also noted that this case
also performed the lowest bandwidth utilization in write operations, as shown in Figure 6.4a.
It is notable that the lack of aggregator layout optimization in the EARTH case led to a
negative impact in data transfers on Tofu interconnects among I/O nodes.

In a similar way, Figure 6.5 shows bandwidth utilization ratios and waiting times in
data transfers on Tofu links of I/O nodes used at the HPIO benchmark run. The EARTH
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(a) req qdepth (b) req waittime

(c) req active

Figure 6.3: Mean stats values obtained from OSSes using our analysis framework during the
HPIO benchmark run, where numbers represent very small values.

use case with the best configuration (T:agg=1,rr=1,req=8) also outperformed other cases
in Figure 6.5a. This case also minimized waiting times in both read and write operations
among the EARTH use cases in Figure 6.5b.

6.5 Load balancing in I/O throughput at OSTs

Figure 6.6 shows write throughput heat-maps ranging from 0 to 160 MiB/s among the 192
OSTs used during the IOR benchmark runs. Horizontal and vertical axes ranging from 0 to
15 and from 0 to 11, indicate subjected relative 2D positions of OSTs used from the logical
3D layout of the K computer.

In the original MPI-IO use case in Figure 6.6a, we can see performance gaps among the
left and right sides separated by the dotted line. Figure 6.6b also shows performance gaps
among OSTs used because of imbalanced aggregator layout although the EARTH was used.
Both cases were not suitable configurations because total I/O performance was limited by
the slowest OSTs in parallel I/O. Meanwhile, the most optimized case in Figure 6.6c shows a
well-balanced situation in write throughput among OSTs used. Within the context of parallel
I/O characteristics, this case was suitable to achieve I/O performance for the benchmark run.

On the other hand, Figure 6.6d and Figure 6.6e show poor I/O throughput in collective
write operations in the original and the EARTH use cases without two-phase I/O, respectively.
These poor performance situations were due to contention in I/O task assignment to I/O
threads by huge number of concurrent I/O accesses from all 12,288 processes as we observed
in Figure 6.2a and Figure 6.2b.

Figure 6.7 shows read throughput heat-maps ranging from 0 to 160 MiB/s among the 192
OSTs used at the IOR benchmark runs. Imbalanced bandwidth situations in the original
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(a) RBW (b) Tmax
wait

Figure 6.4: Mean values for (a) RBW and (b) Tmax
wait on the Tofu interconnects among I/O

nodes used during the IOR benchmark run.

(a) RBW (b) Tmax
wait

Figure 6.5: Mean values for (a) RBW and (b) Tmax
wait on the Tofu interconnects among I/O

nodes used during the HPIO benchmark run.

MPI-IO use case and the EARTH use case without any optimizations were observed in Fig-
ure 6.7a and Figure 6.7b, respectively. Meanwhile, well-balanced situations were achieved in
the EARTH use case with an optimal optimization configuration, which led to high perfor-
mance collective I/O, as shown in Figure 6.7c.

Write and read throughput heat-maps ranging from 0 to 160 MiB/s at the HPIO run
are also shown in Figure 6.8 and Figure 6.9, respectively. In Figure 6.9, the EARTH
use case with insufficient configuration (T:agg=0,rr=0,req=8) showed lower performance
compared with the original MPI-IO use case. Meanwhile, a full set of the three optimizations
in the EARTH use case (T:agg=1,rr=1,req=8) achieved the highest I/O throughput at every
OST used. Read throughput heat-maps in Figure 6.9 show the highest I/O throughput in
the insufficient optimization configuration (T:agg=0,rr=0,req=8), followed by the original
MPI-IO use case and the full optimization configuration case. However, the insufficient
configuration case performed the longest waiting time in the Tofu interconnects among the
I/O nodes used, as shown in Figure 6.5b, and thus high I/O bandwidth could not be achieved
in this configuration.
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(a) T:original (b) T:agg=0,rr=0,req=0 (c) T:agg=1,rr=1,req=4

(d) N:original (e) N:agg=0,rr=0,req=4

Figure 6.6: Write throughput heat-maps ranging from 0 to 160 MiB/s about the 192 OSTs
used during the IOR benchmark run.

Optimization I/O stats Tofu stats I/O rates Overall
configuration req qdepth req waittime req active RBW Tmax

wait OSTmean score
T:original 7 7 1 7 2 5 4.83
T:agg=0,rr=0,req=0 5 4 4 6 7 1 4.50
T:agg=0,rr=0,req=4 1 1 8 4 8 7 4.83
T:agg=1,rr=0,req=4 2 2 5 2 5 6 3.67
T:agg=1,rr=1,req=4 3 3 3 1 6 4 3.33
T:agg=1,rr=1,req=16 6 5 2 3 4 2 3.67
N:original 8 8 6 8 1 8 6.50
N:agg=0,rr=0,req=4 4 6 7 5 3 3 4.67

Table 6.1: Scores of the IOR benchmark run, where lesser is better in each score number.

6.6 Overall evaluation

We conducted the overall evaluation based on the abovementioned results in each target
metric. From the results in write and read operations in each benchmark run, we obtained
mean values of the following metrics:

� Three metrics of I/O stats: (req qdepth, req waittime, and req active)

� Two metrics of Tofu stats: (RBW and Tmax
wait )

� Mean OST I/O bandwidth from I/O rates (OSTmean)

It is preferable to have low values in the two of the three metrics in I/O stats, req qdepth

and req waittime. While having high value is preferable in the req active. Concerning the
two metrics in the Tofu stats, high value is desirable in RBW , while low value is suitable in
Tmax
wait . High value is preferable in OSTmean from I/O rates. We gave them ranks from 1 in

the order from the best one among the evaluated optimizations in each metric according to
the above context. Finally we obtained a stats score as a mean value of the ranks.

Table 6.1 summarizes the scores of the IOR benchmark run. We can see that the case of
T:agg=1,rr=1,req=4 shows the best overall score (3.33) among the evaluated optimization
parameter sets. Although we already examined that this case was the best in the IOR run,
we observed another insight that the bast case achieved such balanced situation among I/O
subsystems from the score.
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(a) T:original (b) T:agg=0,rr=0,req=0 (c) T:agg=1,rr=1,req=4

(d) N:original (e) N:agg=0,rr=0,req=4

Figure 6.7: Read throughput heat-maps ranging from 0 to 160 MiB/s about the 192 OSTs
used during the IOR benchmark run.

(a) T:original (b) T:agg=0,rr=0,req=8 (c) T:agg=1,rr=1,req=8

Figure 6.8: Write throughput heat-maps ranging from 0 to 160 MiB/s about the 192 OSTs
used at the HPIO benchmark run.

Meanwhile, the scores of the HPIO benchmark run are summarized in Table 6.2. From
this table, we can see that the case of T:agg=1,rr=1,req=8 achieves the best score (2.67)
among the evaluated optimization parameter configurations. The best case showed balanced
situation among the I/O subsystems as well as the IOR benchmark run. We can easily observe
the best optimization configuration with the balanced situation using the scoring scheme.

7 Conclusions

We built a holistic log data analysis framework to characterize I/O activities at the LFS and
data transfers through the Tofu interconnects of I/O nodes in I/O optimization at the K
computer. The proposed framework utilized the bandwidth status of the Tofu links among
I/O nodes used and performance metrics of log data generated at the LFS and I/O nodes.
The holistic analysis of data transfer activities on the Tofu links among I/O nodes and I/O
activities on the LFS provided useful information in I/O performance tuning.

The two I/O benchmark runs showed notable differences in I/O activities at the LFS and
data transfers through the Tofu links among I/O nodes between the original MPI-IO and
the enhanced one named EARTH. The EARTH with the optimal optimization configuration
showed a high number of active threads on OSSes with short waiting times in I/O request
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(a) T:original (b) T:agg=0,rr=0,req=8 (c) T:agg=1,rr=1,req=8

Figure 6.9: Read throughput heat-maps ranging from 0 to 160 MiB/s about the 192 OSTs
used at the HPIO benchmark run.

Optimization I/O stats Tofu stats I/O rates Overall
configuration req qdepth req waittime req active RBW Tmax

wait OSTmean score
T:original 5 6 2 5 1 5 4.00
T:agg=0,rr=0,req=0 4 5 4 4 2 6 4.17
T:agg=0,rr=0,req=8 1 1 6 2 6 1 2.83
T:agg=1,rr=1,req=8 3 4 1 1 4 3 2.67
T:agg=1,rr=1,req=2 2 2 5 3 3 4 3.17
T:agg=1,rr=1,req=4 6 3 3 6 5 2 4.17

Table 6.2: Scores of the HPIO benchmark run, where lesser is better in each score number.

operations in comparison with the original MPI-IO. The EARTH case also showed high
scores in bandwidth utilization of the Tofu links and waiting times for data transfers on the
Tofu links in addition to high I/O bandwidth on OSTs. Such obtained profiling information
provided insights to understand why the EARTH gained I/O performance relative to the
original MPI-IO. We had an unknown issue in performance gaps among different optimization
configurations of the EARTH. The framework also informed us how much the impact in I/O
activities at the LFS and bandwidth utilization of the Tofu links of I/O nodes among several
optimization configurations of the EARTH not only individual examinations in the three log
data collections but also overall scoring scheme. By using the framework, we obtained the
same answer about the optimal optimization configuration in the two I/O benchmark runs
compared with the I/O bandwidth values obtained only from benchmark runs. Compared
with traditional evaluation only using I/O benchmarks, our framework can provide more
insights about the I/O activities in each I/O subsystem such as high speed interconnects and
activities on the target file systems.

Our future work is building a similar framework in Fugaku, with more sophisticated
organization of the database to cover all essential metrics from collected log data with a fine-
grained monitoring interval. Although the system configuration of Fugaku is different from
the K computer, the enhanced Tofu interconnects called TofuD [AKO+18] in Fugaku supports
the same metrics used in the proposed framework. This means that we can monitor Tofu data
transfer packet status through TNRs of TofuD. Unfortunately, we did not have any chance
to investigate real application jobs with the proposed framework in the K computer because
the implementation and the evaluation were done as trial only for the last few months before
the K computer termination. Such evaluation would be our future work if we have chance
to deploy the similar framework in Fugaku. The proposed analysis framework with some
enhancements for Fugaku is expected to be useful for I/O performance tuning by monitoring
I/O workloads of I/O nodes and file systems and data transfers on TofuD interconnects.
According to some confidential issues with vendors, we cannot describe anything about the
framework in Fugaku.

We did not have any enhanced works about the proposed framework in other HPC plat-
forms unfortunately. However, we consider that the framework can be easily enhanced in other
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HPC platforms since the framework was built by open source environment such as Python.
Although the proposed framework was partially lack of generality by using logs of Tofu and
FEFS, which were specific subsystems in Fujitsu’s machine, we can enhance it by having an
abstract layer on top of an underlying system-dependent layer. Other interconnects such as
Gemini [ARK10,PVB+13] or Aries [Arib,Aria] from Cray also provide the similar hardware
counters, and they have been used in log analysis studies [CJH+19,AAB+18,ZGL16,PVB+13].
Such abstract layer will cover all the system-dependent layer to provide metrics about data
transfers on interconnects. Besides, metrics extracted from FEFS were ones available in Lus-
tre because FEFS was an enhanced file system based on Lustre. Therefore it would be easy
to utilize the same metrics in other HPC platforms equipped with Lustre file systems. Within
this context, enhancements on other HPC platforms would be another challenge.
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Reviews

This section is optional for reviewers and shows their assessment that lead to the acceptance
of the original manuscript. Reviewers may or may not update their review for a major update
of the paper, the exact trail is available in GitHub repository of this article. The reviews are
part of the article and validate the acceptance. Please check the details on the JHPS webpage.

Reviewer: Lingfang Zeng, Date: 2021-04-16

Overall summary and proposal for acceptance What makes the reviewer deeply in-
fluenced in this manuscript is that the experiment is very rich. The main shortcomings of the
manuscript are: (1) lack of discussion on the optimization scheme and technical details (which
also leads to the lack of support/explanation in the Section “Experimental Evaluation”: what
are the specific measures / improvements to achieve the performance optimization?) (2) The
technical schemes and experimental platform are out of date and lack of novelty. (3) The
unique software and hardware scheme makes the technical schemes of this draft unrepeatable,
which is not in line with the purpose of JHPS. It is suggested that the draft be rejected. Oth-
ers: (1) Page 4, Section 3 “K computer and Its File System Monitoring” – The system was
retired (about two years). In the era of Exascale Supercomputers and intelligent computing,
always new architecture and technology can attract readers. (2) Page 8, Section 5 ”Enhanced
MPI-IO Implementation: EARTH on K”, ”Its advanced functions are summarized in the fol-
lowing three key optimization parameters described by agg, req, and rr, respectively:” – This
is the main contribution of this draft, but the details are too few. Although the reviewer
understands the relevant technical details, the readers may not be sure. On the whole, the
contribution of this draft is too little, lack of novelty. (3) Page 10, Section 6 ”Experimen-
tal Evaluation”, Subsection 6.1 ”Benchmark configuration” – K computer has been running
for many years. It has run many typical applications and must have collected a lot of real
log information. Therefore, I suggest using real application log and system log information
instead of being generated by benchmark.

Scope Yes. Its topic fits the JHPS.

Significance Minor.

Readability Yes.

Presentation It’s clear and easy to understand.

References Yes.

Correctness There are some sound.

Reviewer: Suren Byna, Date: 2021-05-09

Overall summary In contrast to existing I/O performance analysis efforts, this paper
collects interconnection information and detailed parallel file system information on I/O
nodes. This additional information allows authors to analyze I/O performance using OSS
stats files and interconnect bandwidth.

Some of my concerns were related to the overhead for tracing and storing the detailed
information, the impact of other concurrent jobs on the system affecting the bandwidth, and
a comparison with existing logs.
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It seems that the Tofu and I/O stats have been extracted periodically and stored in a
separate database. It was unclear to me if that periodic access cost anything? How large was
the stats database?

In the analysis shown (OSS stats, bandwidth utilization, and load balance of I/O to
OSTs), were there other jobs running concurrently along with the IOR and HPIO jobs that
are being studied? What was the impact of them?

Since the results shown here are mainly for a decommissioned system, is the stats collection
and storing continuing on current production systems? What was the impact of this study?
While various plots were shown for the same configurations across the evaluation section,
how do they (bandwidth utilization, waiting time in data transfer, OSS stats, etc.) correlate
with the I/O throughput?

The last point regarding comparison with existing logs, such as Darshan and Darshan’s
extended tracing (DXT), could we get the information needed for the analysis shown in this
paper? If not, what information is unavailable? It would be good to describe and compare.

Scope Yes. Its topic fits the JHPS.

Significance Minor.

Readability Yes.

Presentation It’s easy to read the paper; I’d suggest some reorganizing in the introduction
to motivate the problem before jumping into the Tofu PA log collection and information.

References Yes.

Correctness The exploration and evaluation are correct.

Reviewer: Anthony Kougkas, Date: 2021-05-16

Overall summary The paper presents a holistic log data analysis framework to character-
ize I/O activities at the LFS and data transfers through the Tofu interconnects of I/O nodes
in I/O optimization at the K computer. Further, the paper presents a comparison between
vanilla MPI-IO and EARTH, an optimized one, and how the obtained profiling information
gave insights to understand why the EARTH demonstrated higher I/O performance relative
to the original MPI-IO. The analysis framework allowed the authors to uncover how much
I/O activities at the LFS and bandwidth utilization of the Tofu links of I/O nodes impacted
the performance of EARTH. Extensive results were presented and analyzed.

I enjoyed reading about this work. The paper is informative on issues stemmed by poor
monitoring and analysis of I/O activities in a large computing environment. This reviewer
found the paper focusing on the K computer a bit restricting in drawing conclusions in general.
A lot of the proposed framework is specific to the architecture (e.g., LIO, GIO, BIO are all
particulars of the K computer) and I am not convinced that the audience can extract generally
useful methodologies on I/O tracking. However, the paper reads well, has a decent motivation
section, and the extensive results presented are only positive. I am recommending a minor
revision with the following three suggestions: a) the authors should invest some time bringing
the manuscript in published quality through detailed proofreading. b) add a subsection
(or a clear paragraph somewhere early in the paper) discussing in detail the intellectual
contributions. c) add a discussions and considerations section (before the evaluation maybe)
where the authors can connect their methodology in a more general architecture (i.e., how
could we achieve the same depth of collected information for another HPC machine? What
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parts of this work are specific to K computer and what are not? Is the framework developed
open sourced? What are the caveats of the proposed analysis?)

Strengths

� The paper addresses issues in an area (i.e., I/O activity monitoring) that needs more
investigation by the community.

� The paper has done a great work presenting the methodology the authors followed and
described the architecture of K computer in great detail making it easy to follow.

� The paper went to great lengths to present detailed performance analysis of MPI-IO
and EARTH.

Weaknesses

� The paper is more of an experience paper. There is nothing general in the findings but
solely focuses on the K computer. Even though this was a production machine, it does
not represent all HPC architectures. There is little (or no) discussion as to how the
reader can replicate their work for a general architecture.

� The paper needs a good proofreading, possibly multiple passes. While it is not poorly
written, there are many areas where grammar and syntax can be polished

Reviewer: George Markomanolis, Date: 20210-05-17

Overall summary The authors present their work, an I/O performance optimization
framework that uses log data of parallel file systems and interconnects in a holistic way.
They discuss the Tofu PA profiling tool on the K computer for the Tofu interconnects. They
present how all the framework works and its usefulness for specific cases. One main disadvan-
tage of this paper is that this is a work for a decommissioned system, the K supercomputer.
The collection of statistics every 1 or 10 minutes depending on the type of the stats can
not correlate with every I/O intensive application. The installed ROMIO version on the K
computer is not optimized for the Lustre, thus a newer version was used and the comparison
between these two is not fair. There are presented some results from their approach and
their metrics are explained. They do achieve better I/O performance with their tuning. The
manuscript is more experimental, sometimes tuning parameters becomes more known case
but the holistic approach on such system is not a common topic. I would like to see more
explanations about the duration of the logs collection as collecting every a few minutes is a
really specific I/O pattern. I assume it is not possible to have more diverse applications as the
K computer is not available anymore. I would also like some discussion regarding overhead
from your tool.

Scope Yes. It fits.

Significance Minor.

Readability Yes but it could be improved

Presentation It is good but a proofreading would help.

References Yes.
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Correctness Yes, although the fact that the research is not reproducible because of the
decommissioned system is always an issue.
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Abstract

One goal of support staff at a data center is to identify inefficient jobs and to improve
their efficiency. Therefore, a data center deploys monitoring systems that capture the
behavior of the executed jobs. While it is easy to utilize statistics to rank jobs based on
the utilization of computing, storage, and network, it is tricky to find patterns in 100,000
jobs, i.e., is there a class of jobs that aren’t performing well. Similarly, when support
staff investigates a specific job in detail, e.g., because it is inefficient or highly efficient,
it is relevant to identify related jobs to such a blueprint. This allows staff to understand
the usage of the exhibited behavior better and to assess the optimization potential.

In this article, our goal is to identify jobs similar to an arbitrary reference job. In
particular, we describe a methodology that utilizes temporal I/O similarity to identify
jobs related to the reference job. Practically, we apply several previously developed time
series algorithms and also utilize the Kolmogorov-Smirnov-Test to compare the distribu-
tion of the metrics. A study is conducted to explore the effectiveness of the approach by
investigating related jobs for three reference jobs. The data stem from DKRZ’s super-
computer Mistral and include more than 500,000 jobs that have been executed for more
than 6 months of operation. Our analysis shows that the strategy and algorithms are
effective to identify similar jobs and reveal interesting patterns in the data. It also shows
the need for the community to jointly define the semantics of similarity depending on the
analysis purpose.

Keywords: performance analysis, monitoring, time series, job analysis
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1 Introduction

Supercomputers execute 1000s of jobs every day. Support staff at a data center have two
goals. Firstly, they provide a service to users to enable them the convenient execution of their
applications. Secondly, they aim to improve the efficiency of all workflows – represented as
batch jobs – in order to allow the data center to serve more workloads.

In order to optimize a single job, its behavior and resource utilization must be monitored
and then assessed. Rarely, users will liaise with staff and request a performance analysis
and optimization explicitly. Therefore, data centers deploy monitoring systems and staff
must pro-actively identify candidates for optimization. Monitoring and analysis tools such as
TACC Stats [EBB+14], Grafana [Cha19], and XDMod [SWD+18] provide various statistics
and time-series data for job execution.

The support staff should focus on workloads for which optimization is beneficial, for
instance, the analysis of a job that is executed once on 20 nodes may not be a good return of
investment. By ranking jobs based on their utilization, it is easy to find a job that exhibits
extensive usage of computing, network, and I/O resources. However, would it be beneficial
to investigate this workload in detail and potentially optimize it? For instance, a pattern
that is observed in many jobs bears potential as the blueprint for optimizing one job may
be applied to other jobs as well. This is particularly true when running one application with
similar inputs, but also different applications may lead to similar behavior. Knowing details
about a problematic or interesting job may be transferred to similar jobs. Therefore, it is
useful for support staff (or a user) that investigates a resource-hungry job to identify similar
jobs that are executed on the supercomputer.

It is non-trivial to identify jobs with similar behavior from the pool of executed jobs. Re-
executing the same job will lead to slightly different behavior, a program may be executed
with different inputs or using a different configuration (e.g., number of nodes). Job names
are defined by users; while a similar name may hint to be a similar workload, finding other
applications with the same I/O behavior would not be possible.

In the paper [BK21], we developed several distance measures and algorithms for the
clustering of jobs based on the time series and their I/O behavior. These distance measures
can be applied to jobs with different runtimes and the number of nodes utilized, but differ
in the way they define similarity. They showed that the metrics can be used to cluster jobs,
however, it remained unclear if the method can be used by data center staff to explore similar
jobs effectively. In this paper, we refine these algorithms slightly, include another algorithm,
and apply them to rank jobs based on their temporal similarity to a reference job.

We start by introducing related work in Section 2. In Section 3, we describe briefly the
data reduction and the algorithms for similarity analysis. We also utilize the Kolmogorov-
Smirnov-Test to illustrate the benefits and drawbacks of the different methods. Then, we
perform our study by applying the methodology to three reference jobs with different behav-
ior, therewith, assessing the effectiveness of the approach to identify similar jobs. In Section 5,
the reference jobs are introduced and quantitative analysis of the job pool is made based on
job similarity. In Section 6, the 100 most similar jobs are investigated in more detail, and
selected timelines are presented. The paper is concluded in Section 7.

2 Related Work

Related work can be classified into distance measures, analysis of HPC application perfor-
mance, inter-comparison of jobs in HPC, and I/O-specific tools.

The ranking of similar jobs performed in this article is related to clustering strategies.
Levenshtein (Edit) distance is a widely used distance metric indicating the number of edits
needed to convert one string to another [Nav01]. The comparison of the time series using
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various metrics has been extensively investigated. In [KS18], an empirical comparison of
distance measures for the clustering of multivariate time series is performed. 14 similarity
measures are applied to 23 data sets. It shows that no similarity measure produces statistically
significant better results than another. However, the Swale scoring model [MP07] produced
the most disjoint clusters.

The performance of applications can be analyzed using one of many tracing tools such
as Vampir [WBW+17] that record the behavior of an application explicitly or implicitly
by collecting information about the resource usage with a monitoring system. Monitoring
systems that record statistics about hardware usage are widely deployed in data centers to
record system utilization by applications. There are various tools for analyzing the I/O
behavior of an application [KBB+19].

For Vampir, a popular tool for trace file analysis, in [WBW+17] the Comparison View is
introduced that allows them to manually compare traces of application runs, e.g., to compare
optimized with original code. Vampir generally supports the clustering of process timelines
of a single job, allowing to focus on relevant code sections and processes when investigating
many processes.

Chameleon [BM18] extends ScalaTrace for recording MPI traces but reduces the overhead
by clustering processes and collecting information from one representative of each cluster.
For the clustering, a signature is created for each process that includes the call-graph. In
[HDRFV20], 11 performance metrics including CPU and network are utilized for agglomer-
ative clustering of jobs, showing the general effectiveness of the approach.

In [RÖE+18], a characterization of the NERSC workload is performed based on job sched-
uler information (profiles). Profiles that include the MPI activities have shown effective to
identify the code that is executed [DSB13]. Many approaches for clustering applications
operate on profiles for compute, network, and I/O [EVGB15, LLK+20, BKW+20]. For ex-
ample, Evalix [EVGB15] monitors system statistics (from proc) in 1-minute intervals but for
the analysis, they are converted to a profile removing the time dimension, i.e., compute the
average CPU, memory, and I/O over the job runtime.

PAS2P [MPW+12] extracts the I/O patterns from application traces and then allows users
to manually compare them. In [WKD+18], a heuristic classifier is developed that analyzes
the I/O read/write throughput time series to extract the periodicity of the jobs – similar to
Fourier analysis. The LASSi tool [TSMS+19] periodically monitors Lustre I/O statistics and
computes a ”risk” factor to identify I/O patterns that stress the file system. In contrast to
existing work, our approach allows a user to identify similar activities based on the temporal
I/O behavior recorded by a data center-wide deployed monitoring system.

3 Methodology

The purpose of the methodology is to allow users and support staff to explore all executed
jobs on a supercomputer in order of their similarity to the reference job. Therefore, we first
need to define how a job’s data is represented, then describe the algorithms used to compute
the similarity, and, the methodology to investigate jobs.

3.1 Job Data

On the Mistral supercomputer at DKRZ, the monitoring system [BK20] gathers in ten seconds
intervals on all nodes nine I/O metrics for the two Lustre file systems together with general
job metadata from the SLURM workload manager. The results are 4D data (time, nodes,
metrics, file system) per job. The distance measures should handle jobs of different lengths
and node count. In the open-access article [BK21], we discussed a variety of options from 1D
job-profiles to data reductions to compare time series data and the general workflow and pre-

SH

∞

J P This article appeared in the Journal of High-Performance Storage, 2 3/18



A Workflow for Identifying Jobs with Similar I/O Behavior Utilizing . . . August 9, 2021

processing in detail. We will be using this representation. In a nutshell, for each job executed
on Mistral, they partitioned it into 10 minutes segments1 and compute the arithmetic mean
of each metric, categorize the value into NonIO (0), HighIO (1), and CriticalIO (4) for values
below 99-percentile, up to 99.9-percentile, and above, respectively. The values are chosen
to be 0, 1, and 4 because we arithmetically derive metrics: naturally, the value of 0 will
indicate that no I/O issue appears; we weight critical I/O to be 4x as important as high
I/O. This strategy ensures that the same approach can be applied to other HPC systems
regardless of the actual distribution of these statistics on that data center. After the mean
value across nodes is computed for a segment, the resulting numeric value is encoded either
using binary (I/O activity on the segment: yes/no) or hexadecimal representation (quantizing
the numerical performance value into 0-15) which is then ready for similarity analysis. By
pre-filtering jobs with no I/O activity – their sum across all dimensions and time series is
equal to zero, the dataset is reduced from 1 million jobs to about 580k jobs.

Binary coding Binary coding is a data reduction technique that represents monitoring
data as a sequence of numbers, where each number stands for a specific I/O behavior. It
is applied on the hypercube, produced by the previous pre-processing steps (segmentation
and categorization). This hypercube has four dimensions (nodes, metrics, file systems and
time) and is filled with categories. The data is reduced in two steps. First, reduction of two
dimensions (nodes and file systems) and aggregation by the sum() function creates a new two-
dimensional data structure (metrics and time) filled with integer values. Second, reduction of
a dimension (metrics) and mapping of integer values to a unique number (behavior mapping)
creates a one dimensional data structure (time) filled with I/O behavior. Behavior mapping
is a function that maps 9 metrics to 9-bit numbers where each bit represents activity of a
metric. If the value of a metric is LowIO, then the bit is set to 0 (compute intense state), else
(for values HighIO and CriticalIO) it is set to 1 (IO intense state). The following example
shows a 15 segment long binary coding:

1 jobA (after coding): [1:5:0:0:0:0:0:0:96:96:96:96:96:96:96] , ’length ’:15

Hexadecimal coding Hexadecimal coding is a data reduction technique, that can be
applied to the hypercube to obtain further data reduction. After the first two pre-processing
steps (segmentation and categorization), a four dimensional hypercube (nodes, metrics, file
systems and time) stores performance categories. Hexadecimal coding operates in two steps.
First, it aggregates two dimensions (nodes and file systems) by the mean() function. What
remains are two dimensions (metrics and time) and the mean values between 0 an 4. Second,
the mean values are quantized to 16 levels – 0 = [0,0.25), 1 = [0.25,0.5), . . . , F = [3.75, 4].
The following example shows a five segment long hexadecimal coding:

1 jobB: ’length ’: 6, ’coding ’:
2 ’metric_read ’ : [0:2:2:2:9] ,
3 ’metric_write ’ : [0:0:0:0:0] ,
4 ...,
5 ’metric_md_other ’: [0:0:0:F:F]

3.2 Algorithms for Computing Similarity

We reuse the B and Q algorithms developed in [BK21]: B-all, B-aggz(eros), Q-native, Q-
lev, and Q-phases. They differ in the way data similarity is defined; either the time series

1We found in preliminary experiments that 10 minutes provide sufficient resolution while reducing compute
time and noise, i.e., the variation of the statistics when re-running the same job.
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is encoded in binary or hexadecimal quantization, the distance measure is the Euclidean
distance or the Levenshtein distance. B-all determines similarity between binary codings by
means of Levenshtein distance. B-aggz is similar to B-all, but computes similarity on binary
codings where subsequent segments of zero activities are replaced by just one zero. Q-lev
determines similarity between quantized codings by using Levenshtein distance. Q-native
uses a performance-aware similarity function, i.e., the distance between two jobs for a metric

is
|mjob1−mjob2|

16 . There are various options for how a longer job is embedded in a shorter
job, for example, a larger input file may stretch the length of the I/O and compute phases;
another option can be that more (model) time is simulated. In this article, we consider these
different behavioral patterns and attempt to identify situations where the I/O pattern of a
long job is contained in a shorter job. Therefore, for jobs with different lengths, a sliding-
windows approach is applied which finds the location for the shorter job in the long job with
the highest similarity. Q-phases extracts phase information and performs a phase-aware and
performance-aware similarity computation. The Q-phases algorithm extracts I/O phases from
our 10-minute segments and computes the similarity between the most similar I/O phases of
both jobs. In this paper, we add a similarity definition based on Kolmogorov-Smirnov-Test
that compares the probability distribution of the observed values which we describe in the
following.

Kolmogorov-Smirnov (KS) algorithm. For the analysis, we perform two preparation
steps. Dimension reduction by computing means across the two file systems and by concate-
nating the time series data of the individual nodes (instead of averaging them). This reduces
the four-dimensional dataset to two dimensions (time, metrics). The reduction of the file sys-
tem dimension by the mean function ensures the time series values stay in the range between
0 and 4, independently of how many file systems are present on an HPC system. Unlike
the previous similarity definitions, the concatenation of time series on the node dimension
preserves the individual I/O information of all nodes while it still allows comparison of jobs
with a different number of nodes.

For the analysis we use the kolmogorov-smirnov-test 1.1.0 Rust library from the official
Rust Package Registry “cargo.io”. The similarity function calculates the mean inverse of

reject probability preject computed with the ks-test across all metrics M : sim =
∑

m 1−preject(m)

|M | .

3.3 Methodology

Our strategy for localizing similar jobs works as follows:

� A user2 provides a reference job ID and selects a similarity algorithm.

� The system iterates over all jobs of the job pool, computing the similarity to the refer-
ence job using the specified algorithm.

� It sorts the jobs based on the similarity to the reference job.

� It visualizes the cumulative job similarity allowing the user to understand how job
similarity is distributed.

� The user starts the inspection by looking at the most similar jobs first.

The user can decide about the criterion when to stop inspecting jobs; based on the similarity,
the number of investigated jobs, or the distribution of the job similarity. For the latter, it is
interesting to investigate clusters of similar jobs, e.g., if there are many jobs between 80-90%
similarity but few between 70-80%.

2This can be support staff or a data center user that was executing the job.
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For the inspection of the jobs, a user may explore the job metadata, search for similarities,
and explore the time series of a job’s I/O metrics.

4 Reference Jobs

For this study, we chose several reference jobs with different compute and I/O characteristics:

� Job-S: performs post-processing on a single node. This is a typical process in climate
science where data products are reformatted and annotated with metadata to a standard
representation (so-called CMORization). The post-processing is I/O intensive.

� Job-M: a typical MPI parallel 8-hour compute job on 128 nodes that write time series
data after some spin up.

� Job-L: a 66-hour 20-node job. The initialization data is read at the beginning. Then
only a single master node writes constantly a small volume of data; in fact, the generated
data is too small to be categorized as I/O relevant.

The segmented timelines of the jobs are visualized in Figure 4.1 – remember that the mean
value is computed across all nodes on which the job ran. This coding is also used for the Q
algorithms, thus this representation is what the algorithms will analyze; B algorithms merge
all timelines together as described in [BK21]. The figures show the values of active metrics
( 6= 0); if few are active, then they are shown in one timeline, otherwise, they are rendered
individually to provide a better overview. For example, we can see in Figure 4.1a, that several
metrics increase in Segment 6. We can also see an interesting result of our categorized coding,
the write bytes are bigger than 0 while write calls are 03. Figure 4.2 summarizes hexadecimal
codings of Job-S and Job-M to histograms: A specific histogram contains the metric of each
node at every timestep – without being averaged across the nodes. Essentially, this data is
used to compare jobs using Kolmogorov-Smirnov-Test. The metrics at Job-L are not shown
as they have only a handful of instances where the value is not 0, except for write bytes: the
first process is writing out at a low rate. In Figure 4.1c, the mean value is mostly rounded
down to 0 except for the first segment as primarily Rank 0 is doing I/O.

5 Evaluation

In the following, we assume a reference job is given (we use Job-S, Job-M, and Job-L), and we
aim to identify similar jobs. For each reference job and algorithm, we created CSV files with
the computed similarity to all other jobs from our job pool (worth 203 days of production
of Mistral). During this process, the runtime of the algorithm is recorded. Then we inspect
the correlation between the similarity and number of found jobs. Finally, the quantitative
behavior of the 100 most similar jobs is investigated.

5.1 Performance

To measure the performance for computing the similarity to the reference jobs, the algorithms
are executed 10 times on a compute node at DKRZ which is equipped with two Intel Xeon E5-
2680v3 @2.50GHz and 64GB DDR4 RAM. A boxplot for the runtimes is shown in Figure 5.1.
The runtime is normalized for 100k jobs, i.e., for B-all it takes about 41 s to process 100k
jobs out of the 500k total jobs that this algorithm will process. Generally, the B algorithms
are fastest, while the Q algorithms often take 4-5x as long. Q phases is slow for Job-S and

3The reason is that a few write calls transfer many bytes; less than our 90%-quantile, therefore, write calls
will be set to 0.

SH

∞

J P This article appeared in the Journal of High-Performance Storage, 2 6/18



A Workflow for Identifying Jobs with Similar I/O Behavior Utilizing . . . August 9, 2021

0

10

fil
e_

cr
ea

te

0

10

fil
e_

de
le

te

0

10

m
d_

m
od

0

10

m
d_

ot
he

r

0

10

m
d_

re
ad

0

10

re
ad

_b
yt

es

0

10

re
ad

_c
al

ls

0

10

wr
ite

_b
yt

es

0 5 10 15 20
Segment number

0

10

wr
ite

_c
al

ls

(a) Job-S (runtime=15,551 s, segments=25)
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(b) Job-M (runtime=28,828 s, segments=48)

Figure 4.1: Reference jobs: segmented timelines of mean I/O activity
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Figure 4.1: Reference jobs: segmented timelines of mean I/O activity
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Figure 4.2: Reference jobs: histogram of I/O activities
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Job-M while it is fast for Job-L. The reason is that just one phase is extracted for Job-L.
The Levenshtein-based algorithms take longer for longer jobs – proportional to the job length
as it applies a sliding window. The KS algorithm is faster than the others by 10x, but it
operates on the statistics of the time series. Note that the current algorithms are sequential
and executed on just one core. They could easily be parallelized, which would then allow for
an online analysis.

5.2 Quantitative Analysis

In the quantitative analysis, we explore the different algorithms how the similarity of our
pool of jobs behaves to our reference jobs. The support team in a data center may have time
to investigate the most similar jobs. Time for the analysis is typically bound, for instance,
the team may analyze the 100 most similar jobs and rank them; we refer to them as the
Top 100 jobs, and Rank i refers to the job that has the i-th highest similarity to the reference
job – sometimes these values can be rather close together as we see in the histogram in

(a) Job-S (segments=25) (b) Job-M (segments=48)

(c) Job-L (segments=400)

Figure 5.1: Runtime of the algorithms to compute the similarity to reference jobs
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Figure 5.2 for the actual number of jobs with a given similarity. As we focus on a feasible
number of jobs, we crop it at 100 jobs (total number of jobs is still given). It turns out that
both B algorithms produce nearly identical histograms, and we omit one of them. In the
figures, we can see again a different behavior of the algorithms depending on the reference
job. Especially for Job-S, we can see clusters with jobs of higher similarity (e.g., at Q-lev at
SIM=75%) while for Job-M, the growth in the relevant section is more steady. For Job-L, we
find barely similar jobs, except when using the Q-phases and KS algorithms. Q-phases find
393 jobs that have a similarity of 100%, thus they are indistinguishable, while KS identifies
6880 jobs with a similarity of at least 97.5%. Practically, the support team would start with
Rank 1 (most similar job, e.g., the reference job) and walk down until the jobs look different,
or until a cluster of jobs with close similarity is analyzed.

5.2.1 Inclusivity and Specificity

When analyzing the overall population of jobs executed on a system, we expect that some
workloads are executed several times (with different inputs but with the same configuration)
or are executed with slightly different configurations (e.g., node counts, timesteps). Thus,
potentially our similarity analysis of the job population may just identify the re-execution of
the same workload. Typically, the support staff would identify the re-execution of jobs by
inspecting job names, which are user-defined generic strings4.

To understand if the analysis is inclusive and identifies different applications, we use two
approaches with our Top 100 jobs: We explore the distribution of users (and groups), runtime,
and node count across jobs. The algorithms should include different users, node counts,
and across runtime. To confirm the hypotheses presented, we analyzed the job metadata
comparing job names which validate our quantitative results discussed in the following.

User distribution. To understand how the Top 100 are distributed across users, the data
is grouped by user ID and counted. Figure 5.3 shows the stacked user information, where
the lowest stack is the user with the most jobs and the topmost user in the stack has the
smallest number of jobs. For Job-S, we can see that about 70-80% of jobs stem from one
user, for the Q-lev and Q-native algorithms, the other jobs stem from a second user while B
algorithms include jobs from additional users (5 in total). For Job-M, jobs from more users
are included (13); about 25% of jobs stem from the same user; here, Q-lev, Q-native, and
KS include more users (29, 33, and 37, respectively) than the other three algorithms. For
Job-L, the two Q algorithms include (12 and 13) a bit more diverse user community than the
B algorithms (9) but Q-phases cover 35 users. We didn’t include the group analysis in the
figure as user count and group ID are proportional, at most the number of users is 2x the
number of groups. Thus, a user is likely from the same group and the number of groups is
similar to the number of unique users.

Node distribution. Figure 5.4 shows a boxplot for the node counts in the Top 100 – the
red line marks the reference job. All algorithms reduce over the node dimensions, therefore,
we naturally expect a big inclusion across the node range as long as the average I/O behavior
of the jobs is similar. For Job-M and Job-L, we can observe that indeed the range of nodes
for similar jobs is between 1 and 128. For Job-S, all 100 top-ranked jobs use one node. As
post-processing jobs use typically one node and the number of post-processing jobs is a high
proportion, it appears natural that all Top 100 are from this class of jobs, which is confirmed
by investigating the job metadata. The boxplots have different shapes which is an indication
that the different algorithms identify a different set of jobs – we will analyze this later further.

4As they can contain confidential data, it is difficult to anonymize them without perturbing the meaning.
Therefore, they are not published in our data repository.
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(a) Job-S

(b) Job-M

(c) Job-L

Figure 5.2: Histogram for the number of jobs (bin width: 2.5%, numbers are the actual job
counts). B-aggz is nearly identical to B-all and therefore omitted.
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(a) Job-S (b) Job-M

(c) Job-L

Figure 5.3: User information for all 100 top-ranked jobs. Each color represents a specific user
for the given data.

Runtime distribution. The job runtime of the Top 100 jobs is shown using boxplots in
Figure 5.5. While all algorithms can compute the similarity between jobs of different lengths,
the B algorithms and Q-native penalize jobs of different lengths preferring jobs of very similar
length. For Job-M and Job-L, Q-phases and KS are able to identify much shorter or longer
jobs. For Job-L, for Q-phases and KS, the job itself isn’t included in the chosen Top 100 (see
Figure 5.2c, 393 jobs have a similarity of 100%) which is the reason why the job runtime isn’t
shown in the figure itself. Also, as there are only few jobs of similar lengths to Job-L and
the B-* algorithms penalize job-length differences, the Top 100 similar jobs have a significant
difference in job length.

(a) Job-M (ref. job runs on 128 nodes) (b) Job-L (reference job runs on 20 nodes)

Figure 5.4: Distribution of node counts for Top 100 (for Job-S always nodes=1)
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(a) Job-S (job = 15, 551s)

(b) Job-M (job = 28, 828s)

(c) Job-L (job = 240ks)

Figure 5.5: Distribution of runtime for all 100 top-ranked jobs
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(a) Job-S (b) Job-M

(c) Job-L

Figure 5.6: Intersection of the 100 top-ranked jobs for different algorithms

5.2.2 Algorithmic differences

To verify that the different algorithms behave differently, the intersection for the Top 100
is computed for all combinations of algorithms and visualized in Figure 5.6. B-all and B-
aggz overlap with at least 99 ranks for all three jobs. While there is some reordering, both
algorithms lead to a comparable set. All algorithms have a significant overlap for Job-S. For
Job-M, however, they lead to a different ranking, and Top 100, particularly KS determines a
different set. Generally, Q-lev and Q-native are generating more similar results than other
algorithms. From this analysis, we conclude that one representative from B is sufficient as it
generates very similar results while the other algorithms identify mostly disjoint behavioral
aspects.

6 Assessing Timelines for Similar Jobs

To verify the suitability of the similarity metrics, for each algorithm, we carefully investigated
the timelines of each of the jobs in the Top 100. We subjectively found that the approach
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B-aggz B-all Q-lev Q-native Q-phases KS

38 38 33 26 33 0

Table 6.1: Job-S: number of jobs with “control” in their name in the Top-100
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(a) Non-cmor job: Rank 76, SIM=69%
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(b) Non-control job: Rank 4, SIM=81%

Figure 6.1: Job-S: jobs with different job names when using B-aggz

works very well and identifies suitable similar jobs. To demonstrate this, we include a selection
of job timelines and selected interesting job profiles. These can be visually and subjectively
compared to our reference jobs shown in Figure 4.1. For space reasons, the included images
will be scaled down making it difficult to read the text. However, we believe that they are
still well suited for a visual inspection and comparison.

6.1 Job-S

This job represents post-processing (CMORization) which is a typical step. It is executed for
different simulations and variables across timesteps. The job name suggests that it is applied
to the control variable. In the metadata, we found 22,580 jobs with “cmor” in the name of
which 367 jobs mention “control”.

The B and KS algorithms identify one job whose name doesn’t include “cmor”. All other
algorithms identify only “cmor” jobs and 26-38 of these jobs are applied to “control” (see
Table 6.1) – only the KS algorithm doesn’t identify any job with control. A selection of
job timelines on control variables is given in Figure 6.2. The single non-cmor job and a
high-ranked non-control cmor job is shown in Figure 6.1. While we cannot visually see many
differences between these two jobs compared to the control job, the algorithms indicate that
jobs processing the control variables are more similar as they are more frequent in the Top 100
jobs. For Job-S, we found that all algorithms work well and, therefore, omit further timelines.

6.2 Job-M

Inspecting the Top 100 for this reference job is highlighting the differences between the al-
gorithms. All algorithms identify a diverse range of job names for this reference job in the
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Top 100. Firstly, the same name of the reference job appears 30 times in the whole dataset.
Additional 932 jobs have a slightly modified name. So this job type isn’t necessarily executed
frequently and, therefore, our Top 100 is expected to contain other names. All algorithms
identify only the reference job but none of the other jobs with the identical name but 1 (KS),
2 (B-* and Q-native) to 3 (Q-lev and Q-phases) jobs with slightly modified names. Some
applications are more prominent in these sets, e.g., for B-aggzero, 32 jobs contain WRF
(a model) in the name. The number of unique names is 19, 38, 49, and 51 for B-aggzero,
Q-phases, Q-native, and Q-lev, respectively.

When inspecting their timelines, the jobs that are similar according to the B algorithms
(see Figure 6.4) subjectively appear to us to be different. The reason lies in the definition of
the B-* similarity, which aggregates all I/O statistics into one timeline. The other algorithms
like Q-lev (Figure 6.5) and Q-native (Figure 6.6) seem to work as intended: While jobs
exhibit short bursts of other active metrics even for low similarity, we can eyeball a relevant
similarity particularly for Rank 2 and Rank 3 which have the high similarity of 90+%. For
Rank 15 to Rank 100, with around 70% similarity, a partial match of the metrics is still given.
The KS algorithm working on the histograms ranks the jobs correctly on the similarity of
their histograms. However, as it does not deal with the length of the jobs, it may identify jobs
of very different length. In Figure 6.3, we see the 3rd ranked job whose profile is indeed quite
similar but the time series differs but it is just running for 10min (1 segment) on 10 nodes.
Remember, for the KS algorithm, we concatenate the metrics of all nodes together instead
of averaging it in order to explore if node-specific information helps the similarity.

6.3 Job-L

The B algorithms find a low similarity (the best 2nd ranked job is 17% similar), the inspection
of job names (14 unique names) leads to two prominent applications: bash and xmessy with
45 and 48 instances, respectively. In Figure 6.7, it can be seen that the found jobs have little
in common with the reference job.

The Q-lev and Q-native algorithms identify a more diverse set of applications (18 unique
names and no xmessy job). Q-native Figure 6.8 finds long jobs with only little activity which,
therefore, is similar to our reference job. The Q-phases algorithm finds 85 unique names but
as there is only one short I/O phase in the reference job, it finds many (short) jobs with
100% similarity as seen in Figure 6.9. The KS algorithm is even more inclusive having 1285
jobs with 100% similarity; the 100 selected ones contain 71 jobs ending with t127, which is a
typical model configuration. As expected, the histograms mimic the profile of the reference
job, and thus, the algorithm does what it is expected to do.

7 Conclusion

We conducted a study to identify similar jobs based on timelines of nine I/O statistics.
Therefore, we applied six different algorithmic strategies developed before and included this
time as well a distance metric based on the Kolmogorov-Smirnov-Test. The quantitative
analysis shows that a diverse set of results can be found and that only a tiny subset of the
500k jobs is very similar to each of the three reference jobs. For the small post-processing
job, which is executed many times, all algorithms produce suitable results. For Job-M, the
algorithms exhibit a different behavior. Job-L is tricky to analyze, because it is compute-
intense with only a single I/O phase at the beginning. Generally, the KS algorithm finds
jobs with similar histograms which are not necessarily what we subjectively are looking for.
We found that the approach to compute similarity of reference jobs to all jobs and ranking
these was successful to find related jobs that we were interested in. The Q-lev and Q-native
work best according to our subjective qualitative analysis. Typically, a related job stem from
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the same user/group and may have a related job name, but the approach was able to find
other jobs as well. The pre-processing of the algorithms and distance metrics differ leading
to alternative definitions of similarity. The data center support/user must define how to
define similarity to select the algorithm that suits best. Another consideration could be to
identify jobs that are found by all algorithms, i.e., jobs that meet a certain (rank) threshold
for different algorithms. That would increase the likelihood that these jobs are very similar
and what the user is looking for.

Our next step is to foster a discussion in the community to identify and define suitable
similarity metrics for the different analysis purposes.
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[EVGB15] Joseph Emeras, Sébastien Varrette, Mateusz Guzek, and Pascal Bouvry. Evalix:
classification and prediction of job resource consumption on HPC platforms. In
Job Scheduling Strategies for Parallel Processing, pages 102–122. Springer, 2015.

SH

∞

J P This article appeared in the Journal of High-Performance Storage, 2 17/18



A Workflow for Identifying Jobs with Similar I/O Behavior Utilizing . . . August 9, 2021

[HDRFV20] Mohamed S Halawa, Rebeca P Dı́az Redondo, and Ana Fernández Vilas. Un-
supervised KPIs-Based Clustering of Jobs in HPC Data Centers. Sensors,
20(15):4111, 2020.

[KBB+19] Julian Kunkel, Eugen Betke, Matt Bryson, Philip Carns, Rosemary Francis,
Wolfgang Frings, Roland Laifer, and Sandra Mendez. Tools for Analyzing
Parallel I/O. In High Performance Computing: ISC High Performance 2018
International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised
Selected Papers, number 11203 in Lecture Notes in Computer Science, pages
49–70. Springer, 01 2019.

[KS18] Hassan Khotanlou and Amir Salarpour. An Empirical Comparison of Distance
Measures for Multivariate Time Series Clustering. International Journal of En-
gineering, 31(2):250–262, 2018.

[LLK+20] Zhengchun Liu, Ryan Lewis, Rajkumar Kettimuthu, Kevin Harms, Philip
Carns, Nageswara Rao, Ian Foster, and Michael E Papka. Characterization
and identification of HPC applications at leadership computing facility. In Pro-
ceedings of the 34th ACM International Conference on Supercomputing, pages
1–12, 2020.

[MP07] Michael D Morse and Jignesh M Patel. An efficient and accurate method for
evaluating time series similarity. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, 2007.

[MPW+12] Sandra Méndez, Javier Panadero, Alvaro Wong, Dolores Rexachs, and Emilio
Luque. A new approach for Analyzing I/O in parallel scientific applications.
Computer Science & Technology Series, 2012.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM com-
puting surveys (CSUR), 33(1):31–88, 2001.
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Figure 6.2: Job-S with Q-Lev, selection of similar jobs
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Figure 6.3: Job-M with KS, for Rank 3, SIM=78%
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Figure 6.4: Job-M with Bin-Aggzero, selection of similar jobs
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Figure 6.5: Job-M with Q-lev, selection of similar jobs
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Figure 6.6: Job-M with Q-native, selection of similar jobs
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Figure 6.7: Job-L with B-aggzero, selection of similar jobs
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Figure 6.8: Job-L with Q-native, selection of similar jobs
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Figure 6.9: Job-L with Q-phases, selection of similar jobs
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