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Abstract 
In-memory computing is an emerging computing paradigm 

where certain computational tasks are performed in place in a 
computational memory unit by exploiting the physical 
attributes of the memory devices. Here, we present an 
overview of the application of in-memory computing in deep 
learning, a branch of machine learning that has significantly 
contributed to the recent explosive growth in artificial 
intelligence. The methodology for both inference and training 
of deep neural networks is presented along with experimental 
results using phase-change memory (PCM) devices.  
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Introduction 
Deep neural networks (DNNs), loosely inspired by biological 
neural networks, consist of parallel processing units called 
neurons interconnected by plastic synapses. By tuning the 
weights of these interconnections, these networks are able to 
perform certain cognitive tasks remarkably well. These 
networks are typically trained via a supervised learning 
algorithm based on gradient descent. During the training phase, 
the input data is forward propagated through the neuron layers 
with the synaptic networks performing multiply-accumulate 
operations. The final layer responses are compared with input 
data labels and the errors are back-propagated. Both steps 
involve sequences of matrix-vector multiplications. 
Subsequently, the synaptic weights are updated to reduce the 
error. This optimization approach can take multiple days or 
weeks to train state-of-the-art networks on conventional 
computers and hence, there is a significant effort towards the 
design of custom ASICs based on reduced precision arithmetic 
and highly optimized dataflow [1,2]. However, one of the 
primary reasons for the inefficiency, namely the need to shuttle 
millions of synaptic weight values between the memory and 
processing units, remains unaddressed. In-memory computing 
is an emerging computing paradigm that addresses this 
challenge of processor-memory dichotomy [3,4]. For example, 
a computational memory unit with resistive memory 
(memristive) devices organized in a crossbar configuration is 
capable of performing matrix-vector multiply operations in-
place by exploiting the Kirchhoff’s circuits laws. Moreover, 
the computational time complexity reduces to O(1) [5,6].  

Key enabling properties 
There are two key properties of memristive devices that 
facilitate computational memory-based deep learning. First, 
these devices can achieve a continuum of conductance values 
(analog storage capability) by applying suitable electrical 
pulses. For example, Fig. 2(a) shows the conductance values of 
phase-change memory (PCM) devices as a function of the 
applied programming current. The measurements are obtained 
using over 10,000 PCM devices fabricated in the 90nm 
technology node. Using this so-called “programing curve”, it 
is possible to program a single PCM device to a target 
conductance value via iterative programming [7] (Fig. 2(b)).  

 
The second key property is the accumulative behavior, which 
for PCM arises from the crystallization dynamics [8]. The 
conductance of these devices progressively increases with the 
successive application of crystallizing pulses albeit with 
significant randomness and nonlinearity (see Fig. (3)). For 
deep learning, the analog storage capability facilitates the 
forward and backward propagations while the accumulative 
behavior is typically exploited for synaptic weight updates. 
 

Fig. 3 (a) The mean conductance values as a function of the number 
of programming pulses. (b) The STD shows the significant 
randomness associated with the accumulative behavior.  

 
DNN inference 

Deep learning inference refers to just the forward propagation 
in a DNN once the weights have been learned. When using 
computational memory for inference, the key challenges are 
the inaccuracies associated with programming the devices to a 
specified synaptic weight as well as drift, noise etc. associated 
with the conductance values. Due to these reasons, the synaptic  

Fig. 1 The various layers of a neural network are mapped to a 
computational memory unit where resistive memory devices are 
organized in a crossbar configuration. 

Fig. 2 (a) Mean and STD of conductance values as a function of 
the programming current. (b) The cumulative distribution of the 
PCM devices, where each device is programmed to 32 levels. 

JFS3-2 (Invited)



T1692019 Symposium on VLSI Technology Digest of Technical Papers

weights that are obtained by training in high precision 
arithmetic (eg. 32-bit floating point) cannot be mapped directly 
to computational memory. However, it can be shown that by 
customizing the training procedure to make it aware of the 
device-level non-idealities, it is possible to obtain synaptic 
weights that are suitable for being mapped to computational 
memory [9]. Fig. 4 shows mixed hardware/software 
experimental results using a prototype multi-level PCM chip. 
The synaptic weights are mapped to PCM devices organized in 
a 2-PCM differential configuration (541,812 PCM devices in 
total). It can be seen that the custom training scheme 
approaches the FP32 baseline, whereas the direct mapping 
approach fails to deliver sufficient accuracy. The slight 
temporal decline in accuracy is attributed to the conductance 
drift exhibited by PCM devices [10]. However, in spite of the 
drift, a classification accuracy of close to 90% is maintained 
over a significant duration of time. 

DNN training 
Recent DL research shows that when training DNNs, it is 
possible to perform the forward and backward propagations 
rather imprecisely while the gradients need to be accumulated 
in high precision [11]. This observation makes the DL training 
problem amenable to the mixed-precision in-memory 
computing approach that was recently proposed [12].  The 
computational memory unit is used to store the synaptic 
weights and to perform the forward and backward passes, 
while the weight changes are accumulated in high precision 
(Fig. 5(a)) [13]. When the accumulated weight exceeds a 
certain threshold, pulses are applied to the corresponding 
memory devices to alter the synaptic weights. This approach 
was tested using the handwritten digit classification problem 
based on the MNIST data set. A two-layered neural network 
was employed with 2-PCM devices in differential 
configuration (approx. 400,000 devices) representing the 
synaptic weights. Resulting test accuracy after 20 epochs of 
training was approx. 98% (Fig. 5(b)). After training, inference 
on this network was performed for over a year with marginal 

reduction in the test accuracy [14].  
The crossbar topology also facilitates the estimation of the 
gradient and the in-place update of the resulting synaptic 
weight all in O(1) time complexity [15,16]. By obviating the 
need to perform gradient accumulation externally, this 
approach could yield better performance than the mixed-
precision approach. However, significant improvements to the 
memristive technology, in particular the accumulative 
behavior, is needed to apply this to a wide range of DNNs. 

Outlook 
Our system-level studies show that even with today’s PCM 
technology, we can achieve significantly higher performance 
compared to conventional approaches for both inference and 
training. This performance improvement is expected to be 
substantially higher with future generations of PCM devices. 
Phase change materials are known to undergo reversible phase 
transition down to nanoscale dimensions and on the order of 
nanoseconds. Moreover, the retention time, which is a key 
requirement for traditional memory applications is less 
important for DL training and this could enable the exploration 
of new material classes such as elemental Antimony [17]. 
However, there are also numerous roadblocks associated with 
using PCM devices for computational purposes. One key 
challenge is the structural relaxation of the melt-quenched 
amorphous phase that results in a conductance drift which was 
mentioned earlier. There are also temperature-induced 
conductance variations as well as 1/f noise that reduces the 
precision associated with the matrix-vector multiply operations. 
One very promising research avenue towards addressing the 
challenge of conductance variations is that of projected phase-
change memory where a shunt path is provided for read current 
to bypass the amorphous phase-change material [18,19]. 
Recently, it was shown that it is possible to achieve remarkably 
high precision in-memory scalar multiplication (equivalent to 
8-bit fixed point arithmetic) using projected PCM devices [20]. 
Another challenge is the limited endurance of PCM devices, 
which is relatively high (approx. 109 to 1012) and sufficient for 
inference applications but may not be adequate for certain 
training applications. The limited endurance and various other 
non-idealities associated with the accumulative behavior such 
as limited dynamic range, nonlinearity and stochasticity can be 
partially circumvented with multi-memristive synaptic 
architectures [21]. Hence, in spite of the various challenges, 
computational memory-based co-processors for DL are 
expected to usher in a new era of non-von Neumann computing.  
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Fig. 4 Experimental results on ResNet-20 using the CIFAR-10 
dataset. The classification accuracies obtained via the direct 
mapping and custom training approaches are compared to the FP32 
baseline. 
 

Fig. 5 (a) Schematic illustration of the mixed-precision 
architecture for training DNNs. (b) The synaptic weight 
distributions and classification accuracies are compared between 
the experiments and floating point baseline. 


