TEACHING - Trustworthy autonomous cyber-physical applications through human-centred intelligence
Creators
- Bacciu, Davide1
- Akarmazyan, Siranush2
- Armengaud, Eric3
- Bacco, Manlio4
- Bravos, George2
- Calandra, Calogero5
- Carlini, Emanuele4
- Carta, Antonio1
- Cassara, Pietro4
- Coppola, Massimo4
- Davalas, Charalampos6
- Dazzi, Patrizio4
- Degennaro, Maria Carmela5
- Di Sarli, Daniele1
- Dobaj, Jürgen7
- Gallicchio, Claudio1
- Girbal, Sylvain8
- Gotta, Alberto4
- Groppo, Riccardo9
- Lomonaco, Vincenzo1
- Macher, Georg7
- Mazzei, Daniele1
- Mencagli, Gabriele1
- Michail, Dimitrios6
- Micheli, Alessio1
- Peroglio, Roberta9
- Petroni, Salvatore5
- Potenza, Rosaria5
- Pourdanesh, Farank5
- Sardianos, Christos6
- Tserpes, Konstantinos6
- Tagliabò, Fulvio5
- Valtl, Jakob10
- Varlamis, Iraklis6
- Veledar, Omar3
- 1. Università di Pisa
- 2. ITML
- 3. AVL
- 4. ISTI-CNR
- 5. Marelli
- 6. Harokopio University of Athens
- 7. TU Graz
- 8. Thales Research & Technology
- 9. Ideas & Motion
- 10. Infineon Technologies AG
Description
This paper discusses the perspective of the H2020 TEACHING project on the next generation of autonomous applications running in a distributed and highly heterogeneous environment comprising both virtual and physical resources spanning the edge-cloud continuum. TEACHING puts forward a human-centred vision leveraging the physiological, emotional, and cognitive state of the users as a driver for the adaptation and optimization of the autonomous applications. It does so by building a distributed, embedded and federated learning system complemented by methods and tools to enforce its dependability, security and privacy preservation. The paper discusses the main concepts of the TEACHING approach and singles out the main AI-related research challenges associated with it. Further, we provide a discussion of the design choices for the TEACHING system to tackle the aforementioned challenges
Files
IEEE COINS 2021.pdf
Files
(611.9 kB)
Name | Size | Download all |
---|---|---|
md5:ec92b69e68f775dd32675556f41917a7
|
611.9 kB | Preview Download |
Additional details
Related works
- Is identical to
- Conference paper: arxiv.org/abs/2107.06543 (Handle)