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ABSTRACT
We present a new method for time-frequency representation
(TFR), which combines the Fourier-Bessel (FB) transform
and the Wigner-Ville distribution (WVD). The FB trans-
form decomposes a multi-component signal into a number
of mono-component signals, and then the WVD technique
is applied on each component of the composite signal to
analyze its time-frequency distribution (TFD). The simula-
tion results show that the proposed technique based on the
FB decomposition is a powerful tool for analyzing multi-
component non-stationary signals and for obtaining the TFR
of the signal without cross terms.

1. INTRODUCTION

In many engineering applications such as speech analysis,
speech synthesis, radar, sonar and telecommunications, the
signals under considerations are known to be non-stationary,
for which the signal parameters are time-varying. For spec-
tral analysis of such type of signals, the discrete Fourier
transform (DFT) can not be employed. The time-frequency
analysis technique [1], among other methods, was proposed
to deal with such signals.

The short-time Fourier transform (STFT) is one of the
earliest methods used for time-frequency analysis. A moving
window cuts out a slice of the signal, and the Fourier trans-
form of this slice gives the local properties of the signal. The
spectrogram, which is the squared magnitude of the STFT, is
used for the analysis of non-stationary signals. The result of
analysis depends on the choice of the window function lead-
ing to a trade off between time localization and frequency
resolution [1].

Another commonly used TFD is the Wigner-Ville distri-
bution (WVD) [1, 2]. Theoretically the WVD has an infinite
resolution in time due to the absence of averaging over any
finite time interval. Moreover for infinite lag length, it has an
infinite frequency resolution. The WVD being quadratic in
nature introduces cross terms for a multi-component signal.
The cross terms can have significant amplitudes and they can
corrupt the transform space. A particular application where
the cross terms can have serious implications is speech analy-
sis, because speech can be modeled as a sum of amplitude
modulated (AM) and frequency modulated (FM) signals cor-
responding to the formant frequencies [3, 4].

In the last two decades, the research has been carried out
for effective suppression of the cross terms and improvement
of the frequency resolution, preserving the desired properties
of the quadratic TFDs [1]. The Choi-Williams distribution
[5] has a tradeoff between cross term suppression and the
frequency resolution. On the other hand, in the cone shaped

kernel [6], the cross term suppression and the frequency res-
olution are achieved without much importance for the TFR
properties. The reduced kernel [7] is an improved and gen-
eralized version of Choi-Williams distribution. In this direc-
tion, an application specific signal-dependent optimal kernel
design [8], useful for different class of signals, is a major
step. Based on orthogonal expansion like Gabor expansion
[9], a decomposition of the WVD achieves a balance between
cross terms and useful properties. A denoising approach [10]
based on the shift-invariant wavelet packet (WP) decomposi-
tion has been proposed for adaptive suppression of the cross
terms.

The WVD approach based on signal decomposition real-
ized by a perfect reconstruction filter bank (PRFB) has been
proposed [11]. The PRFB decomposes the multi-component
signal into its components. The summation of the WVDs of
the individual components results in the WVD of the com-
posite signal, where cross terms and noise are significantly
reduced [11].

In this paper, a new technique based on the FB transform
has been proposed. The present technique combines the FB
transform and the WVD. The FB transform decomposes a
multi-component signal into its constituents like the PRFB
in [11]. However, the major difference between the two ap-
proaches is that while using the PRFB-based technique we
must know a priori the frequency-band of the signal, whereas
no such information will be required for the proposed tech-
nique based on the FB transform.

2. THE WIGNER-VILLE DISTRIBUTION

The WVD of a signalx(t) is defined in the time domain as

Wx(t,ω) =
∫ ∞

−∞
x(t + τ/2)x∗(t− τ/2)e− jωτdτ (1)

wherex∗(t) is the complex conjugate ofx(t). In the fre-
quency domain, the WVD is defined as follows:

Wx(t,ω) =
∫ ∞

−∞
X (ω +ξ/2)X∗(ω −ξ/2)ejξ tdξ (2)

whereX(ω) is the Fourier transform ofx(t). The various de-
sirable properties of the WVD such as preservation of time
and frequency support, infinite time and frequency resolu-
tions etc., make the WVD a useful tool for signal analysis [2].
The main drawback of this distribution is that it is quadratic
and the method based on the WVD introduces the cross terms
in the time-frequency domain making the transform space
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difficult to interpret [12]. The WVD of the sum ofM signals

x(t) =
M

∑
i=1

xi(t) (3)

is given by

Wx(t,ω) =
M

∑
i=1

Wxi (t,ω)︸ ︷︷ ︸
autocomponents

+
M−1

∑
k=1

M

∑
l=k+1

2ℜ
[
Wxkxl (t,ω)

]
︸ ︷︷ ︸

crosscomponent

(4)

which shows that the WVD of the composite signalx(t)
hasM autocomponents and

(
M
2

)
cross-components, i.e., a

cross term for every pair of autocomponents. The geom-
etry of these cross terms on the time-frequency plane has
been well defined in [13]. Let the base signalx0(t) be a lin-

ear chirp,x0(t) = ej(ω0t+ 1
2β t2) and letx1(t) = x0(t − t1)ejω1t

andx2(t) = x0(t− t2)ejω2t be the time and frequency shifted
versions of the base signal. We form the composite signal
x(t) = x1(t)+x2(t), then, the WVD ofx(t) is given by

Wx(t,ω) = 2πδ (ω − (ω1 +ω0)−β (t− t1)

+2πδ (ω − (ω2 +ω0)−β (t− t2)

+4πδ (ω − (ωm+ω0)−β (t− tm)

×cos[ωd(t− tm)− td(ω −ωm)+ωdtm] (5)

whereδ (ω) is the Dirac delta function that is zero every-
where except at the origin,ωd = (ω2 − ω1), td = (t2 −
t1), ωm = (ω1+ω2

2 ), tm = ( t1+t2
2 ). It is observed from the

above equation that the cross term(i) occurs mid-time, mid-
frequency,(ii) oscillates at a frequency proportional to the
difference in frequency- and time-shifts of the signals,(iii )
oscillates in the direction orthogonal to the line that connects
the autocomponents, and(iv) can have an amplitude twice
as large as the amplitude of the WVD of each signal under
consideration.

3. FOURIER-BESSEL (FB) TRANSFORM

A signal exhibiting characteristics of amplitude or frequency
modulation or both may be more compactly represented by
the Bessel function bases rather than by pure sinusoids [14].
The FB transform of order zero of a signalx(t) is given by
[15],

F0(α) =
∫ ∞

0
t x(t) J0(αt) dt (6)

whereJ0 is the Bessel function of the first kind of order zero.
The inverse FB transform is defined as:

x(t) =
∫ ∞

0
α F0(α) J0(αt) dα (7)

The Bessel functions are orthogonal with respect to the
weighting functionst andα. The orthogonality relations are
given by ∫ ∞

0
t J0(αt) J0(α ′t) dt =

δ (α −α ′)
α

(8)

and ∫ ∞

0
α J0(αt) J0(αt ′) dα =

δ (t− t ′)
t

(9)

The integral in(6) is also known as Hankel transform. We
note that the FB transform coefficientsF0(α) are unique for
a given signalx(t), similar to the Fourier coefficients. Unlike
the sinusoidal basis functions in the Fourier transform, the
Bessel functions decay within the range of the signal, similar
to the rise and fall of speech within a pitch interval [16, 17].
Let the signalx(t) be a damped cosine signal given by

x(t) = e−σt cos(ω0t), σ > 0 (10)

Then the 0th order FB transform can be computed as [18]

F0(α) =
α

2

[
α2 +(σ + jω0)2

] 3
2 +

[
α2 +(σ − jω0)2

] 3
2[

(α2 +σ2−ω2
0)2 +4σ2ω2

0

] 3
2

(11)
After simplification(11) can be rewritten as

F0(α) =
α cos

(
3
2θ

)
r

3
2

(12)

where

θ = tan−1
(

−2σω0

α2 +σ2−ω2
0

)
and

r =
[
(α2 +σ

2−ω
2
0)2 +4σ

2
ω

2
0

] 1
2

It can be shown with a little effort that for small damping con-
stantσ , the FB transformF0(α) will have peak-amplitude
occurring atα ≈ω0, and far away from that pointF0(α) will
tend to become zero. Whenx(t) is the superposition ofM
sub-signalsxi(t), (3) expressed as

x(t) =
M

∑
i=1

e−σi t cos(ωit) (13)

then the FB transform,

F0(α) =
M

∑
i=1

α cos
(

3
2θi

)
r

3
2
i

(14)

where

θi = tan−1
(

−2σiωi

α2 +σ2
i −ω2

i

)
and

r i =
[
(α2 +σ

2
i −ω

2
i )2 +4σ

2
ω

2
i

] 1
2

It can be identified now that for small damping constantsσi
and well-separated circular frequenciesωi , each term on the
right-hand side of(14) will represent a region of the FB vari-
ableα where the coefficients are non-zero corresponding to
a sub-signal of the composite signalx(t). Since coefficients
are real, each componentxi(t) can be directly reconstructed
from the FB coefficient plot.

When the signalx(t) is available only for a finite duration
of time, we use the Fourier-Bessel series expansion of the
signal to separate the signal components [19].
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4. TECHNIQUE BASED ON FB TRANSFORM

In order to carry out the time-frequency analysis of a multi-
component non-stationary signal, the components of the sig-
nal are separated by using the FB transform. First, the FB
coefficients are calculated for multi-component signal from
(6). Every component of multi-component signal has non-
overlapping coefficients. Since coefficients are real; each
component is directly reconstructed from FB coefficient plot.
Next, each reconstructed component is converted into an ana-
lytic component signal. The analytic signal ofx(n) is defined
as,xa(n) = x(n)+ j x̂(n), where ˆx(n) is the Hilbert transform
of x(n). The use of an analytic signal ensures that the spec-
trum of xa(n) has nonzero values only for positive frequen-
cies, and the corresponding WVD has no spurious cross term
at zero frequency. We apply WVD for each analytic compo-
nent to analyze its time-frequency distribution, and finally
summation of these distributions gives the WVD of com-
posite signal. The block diagram of the proposed technique
based on FB transform and WVD is shown in Figure 1.

Figure 1: Block diagram of the proposed technique

5. SIMULATION RESULTS

We now discuss a few representative examples that are cho-
sen to study the performance of this proposed technique
based on the FB transform and the WVD.

5.1 Gaussian modulated signal

For the test signal we use the Gaussian modulated (GM) sig-
nal given by

x[n] =
1
τ

exp

(
−πn2

τ2

)
sin(2π fcn) (15)

whereτ is a variable parameter andfc is the center frequency
of the modulated signal [20]. A set of 512 samples of the GM
signal with center frequency 100Hz is processed. Figures 2–
4 and Figures 5–7 show the original and regenerated signals,
power spectral density (PSD) plot of original and regenerated
signals and plot of the FB coefficients at two different values
of τ.

Table 1 shows the range of the FB variable where the
coefficients are non-zero. Note that for smaller value ofτ,

Table 1: Results for Gaussian modulated (GM) signal

Value ofτ Required Fourier-Bessel (FB) variables
0.1 550-700 (150)
0.3 600-660 (60)

the coefficients over larger range of variable are required in
the reconstruction of the signal.

Figure 2: GM signal: original (Dotted line), regenerated
(Solid line),τ = 0.1

Figure 3: PSD of the GM signal: original (Dotted line), re-
generated (Solid line),τ = 0.1

5.2 Multicomponent signals

This section presents numerical examples of the proposed
method with the multicomponent signals which are syntheti-
cally generated. The signals being considered are as follows
[5]:

g1(n) = 4.cos
[
2π

(n
8

)
.

n
256

]

+4.cos

[
2π

(
(512−n)

8
+40

)
.

n
256

]

g2(n) = 4.cos
[(

2π.32+70.
( n

500

)) n
500

]
+4.cos

[(
2π.80+100.

( n
500

)) n
500

]
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Figure 4: FB transform of the GM signal,τ = 0.1

Figure 5: GM signal: original (Dotted line), regenerated
(Solid line),τ = 0.3

Figure 6: PSD of the GM signal: original (Dotted line), re-
generated (Solid line),τ = 0.3

Figure 7: FB transform of the GM signal,τ = 0.3

Figure 8: WVD of the signalg1(n)

Figure 9: WVD of the signalg1(n) after separation using FB
transform

Figure 10: WVD of the signalg2(n)

Figure 11: WVD of the signalg2(n) after separation using
FB transform
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The signalg1(n) is a chirp signal which has two fre-
quency components at each time instant; the frequency of
one component is increasing with time and the frequency of
the other is decreasing with time, but the rate of the change is
same in both cases. For the simulation, we have considered
170 sample points of the signalg1(n).

The signalg2(n) is another chirp signal which has two
frequency components at each time instant, the frequencies
of both components ofg2(n) are increasing with time and
also the rate of change is different. For the simulation, we
have considered 512 sample points of the signalg2(n).

The WVD of the signalsg1(n) andg2(n) are shown in
the Figures 8 and 10 respectively. Observe that due to pres-
ence of strong cross terms, the magnitude of an individual
signal does not remain same. This may mislead us to inter-
pret that the test signal is a three component signal. However,
the ambiguity is resolved when the components of the signal
are separated by using the FB transform. The WVD of the
separated components are computed, and summation of these
distributions gives the WVD of the composite signalsg1(n)
andg2(n) with out cross terms, as shown in Figures 9 and 11
respectively.

6. CONCLUSION

In this paper, we have demonstrated that undesirable cross
terms in the WVD of a multi-component signal can be ef-
fectively removed by the method based on the FB transform.
The proposed method decomposes the signal into its con-
stituent components, and the components can be processed
individually.

It has been illustrated through simulation that by using
the FB decomposition technique, the frequencies of the linear
chirp signals of a multi-component signal can be estimated
accurately.

A particular application where this method will be useful
is speech analysis, because speech can be modeled as a sum
of AM and FM signals corresponding to formant frequen-
cies, and one of the main objectives in the analysis of speech
signals is estimating the formant frequencies.

The method for decomposition of the signal as presented
in this paper is advantageous over the technique based on the
filter bank approach, because here we do not need any prior
information about the frequency-band of the signal.
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