
Case Study: AI Task Planning Setup
for an Industrial Scenario with Mobile Manipulators

Stefan-Octavian Bezrucav, Malte Kaiser, Burkhard Corves
Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University

{bezrucav, kaiser, corves}@igmr.rwth-aachen.de

Abstract

AI task planning approaches are increasingly used in projects
with flexible processes, where it must be autonomously de-
liberated about the selection and scheduling of the actions for
the involved actors. In order to implement AI task planning
in such cases, the considered scenario must be modelled as a
planning problem and a specific planning system for solving
it needs to be chosen. However, multiple models for such a
planning problem are possible and there exist numerous plan-
ning systems. The main challenge at this point is to choose
those pairs (planning problem - planning system) that deliver
the best results for that specific scenario.
In this paper, an industrial scenario derived from the use-cases
of an EU-Project Sharework is targeted. In this scenario mo-
bile manipulators, humans and Autonomous Grounded Vehi-
cles (AGVs), share the working area in order to manipulate
items and to execute tasks. After the presentation of a first
model for the planning problem for this scenario and its lim-
itation, three further alternatives are introduced. We evaluate
the effects on the relevant metrics for such scenarios of these
three different modelling variants for the required task plan-
ning problems, in combination with four state-of-the-art AI
planning systems. The results suggest, that the most suitable
combination is the one of a distance-based variant and the
TFD planning system.

Introduction
In the last years, in the context of Industry 4.0, the tran-
sition to more flexible workspaces shared by humans and
robots was started (Kadir, Broberg, and Da Souza Conceição
2018). In order to coordinate the actions of the involved
actors in such applications and to react fast to new orders
or changes in the environment powerful task planning ap-
proaches are required. They should be able to generate fast
and autonomously plans through which the system can be
brought in a state in which all goals are achieved. Given
the required high flexibility, the focus is set on plan syn-
thesis approaches and not only on scheduling approaches,
that are ordering and allocating a set of predefined actions.
Such plan synthesis strategies are AI planning techniques, as
classical planning or temporal planning, that both determine
the required actions to reach the set goals and schedule them
(Ghallab, Dana, and Traverso 2016).

In order to use these planning strategies the characteris-
tics of the considered scenario must firstly be abstracted and

represented as a planning problem. This modelling step is a
quite challenging one because no explicit rules for this pro-
cess are given in the literature. Thus, the modelling process
is usually an iterative one, where the experience of the de-
veloper plays a critical role.

On the other hand, several off-the-shelf planning systems
for solving the generated planning instances are available in
the community. Most of them follow the same strategies, but
they still differ in the way in which they combine different
basic approaches, as heuristics functions, for their search al-
gorithms. These differences can have an impact on the qual-
ity of the generated results for different models of the same
planning problem.

In this paper we consider an exemplary industrial sce-
nario, that is derived from three of the four use-cases of the
EU-funded project Sharework project1. This is a generic sce-
nario in the sense that it combines standard environment el-
ements, such as benches, tools and items and typical actors,
such as mobile manipulators executing common tasks, such
as manipulating objects. Here, humans and AGVs cooperate
in order to process a set of items and execute a set of generic
tasks. If required, this scenario can be further specialized to a
high variety of concrete scenarios, for example, a train door
assembly scenario.

As humans are directly involved in these processes, it
should be ensured that their acceptance for a high-level coor-
dination system dictating them the actions to be carried out
is given. In order to sustain their acceptance, long idle times,
for example for the planning process, are not allowed. Thus,
we impose a hard deadline for solving the planning prob-
lems of 60 seconds.

The main contribution of this paper is the extensive ex-
periment done for different task planning models for the in-
dustrial scenario and different planning systems, given the
hard planning time constraints. The interpretation of the ob-
tained results may give the first hints about a suitable AI task
planning setup for this kind of scenarios.

In the following sections the industrial scenario and a
comprehensive model for its corresponding task planning
instances are introduced. The model is encoded in a lan-
guage that can be understood by the considered planning
systems. In our case, this is the Planning Domain Defini-

1https://sharework-project.eu/

tion Language (PDDL) (McDermott et al. 1998). We have
selected four planning systems to solve the initial planning
instances for the industrial scenario. These planning systems
are also used for the further analysis. They all have delivered
good results in the Temporal Track of the 2018 International
Planning Competition (Coles et al. 2018) and were available
online at the time point when this work was done. They are
POPF, OPTIC, TFD and TFLAP. Given the results obtained
with these planning systems, we present in a short analysis
the limitations of the initial model for the planning problems
of the industrial scenario and introduce three alternatives. In
the last sections we present the setup of the main experiment
with the three modelling alternatives and four planning sys-
tems and the obtained results. We conclude this paper with
a comprehensive interpretation of these results.

Background
AI or Automatic task planning enables computer systems to
deliberate about their actions rather than only act reactively
by using if-else-trees or finite state machines. In classical
task planning the planning domain is modelled as a state
transition system Σ = (S,A, γ, cost), where:

• S is a finite set of states described by grounded atoms φ
that the system can be in.

• A is a finite set of actions, with preconditions and effects,
that can be performed in the system.

• γ : S × A → S is a function that maps a state and an
action to a state.

• cost : S ×A→ [0,∞) is a function assigning a cost to a
combination of a state and an action.

The planning problem P is defined as the triple P =
(Σ, s0, g) with Σ being a state transition system, s0 the ini-
tial state of the system and g a set of atoms that are supposed
to be true in a goal state. (Ghallab, Dana, and Traverso
2016)

A plan π = 〈a1, a2, . . . , an〉 is a sequence of actions that
transforms the initial state to a goal state and its cost is the
sum of the costs of the actions in that plan. The objective of
classical planning is to find a valid plan π with minimal cost
for the given problem P .

An extension of classical task planning is the temporal
task planning. It is capable of considering the temporal di-
mension of actions while reasoning about a plan. This is im-
plemented through extending the action representation from
classical task planning by assigning a duration to the action
and defining points in time during this duration at which the
conditions must hold and at which the effects are applied.
(Ghallab, Dana, and Traverso 2016)

This yields the representation of a simple durative action
da as the tuple:

da = (c`, c↔, ca, a`, aa, d`, da,∆) (1)

where

• c`, c↔, ca are the conditions that must hold at the be-
ginning, during the entire execution and at the end of the
durative action.

• a`, aa are the add effects that are applied at the beginning
and at the end of the durative action.

• d`, da are the delete effects that are applied at the begin-
ning and at the end of the durative action.

• ∆ is the duration of the durative action.

In this representation the effects are separated into two dif-
ferent sets. The add and the delete effects. Add effects set
atoms to true and delete effects set atoms to false. (Coles
et al. 2010)

In order to solve temporal task planning problems several
planers that use different heuristics in different setups exist.
POPF is one of them. It was developed by Coles et al. and
it combines grounded forward search with linear program-
ming in order to solve planning problems with continuous
linear numeric change. Moreover, is able to handle temporal
planning problems with required concurrency. This is imple-
mented through the planner scheduler interaction. Its most
important characteristics is the approach of achieving a par-
tial ordering of the actions by delaying the commitment to
action choices during forward search. The information from
the partial ordering is also used to modify the FF heuristic
(Hoffmann and Nebel 2001). This modified heuristic is then
used to guide the search. (Coles et al. 2010)

OPTIC stands for Optimizing Preferences and TIme-
dependent Costs and is based on POPF, but unlike POPF it
uses a mixed integer program. The mixed integer program is
used to optimize preferences during the construction of the
plan. Similar to POPF, OPTIC also uses a temporal relaxed
planning graph heuristic for search guidance. Additionally,
an admissible heuristic is used for search pruning. (Benton,
Coles, and Coles 2012).

Further on, TFLAP is a temporal forward partial-order
planner that works similar to OPTIC but it follows the par-
tial order planning approach more closely. It does not com-
mit to an action ordering if that is not required. This way
TFLAP is able to insert actions at any point of the plan
in contrast to OPTIC where actions are only inserted in
the frontier state. Thus TFLAP achieves a higher flexibil-
ity and possibly higher plan quality. However, this results in
a higher computational effort. TFLAP uses an A* search in
plan-space guided by the FF heuristic and a landmark heuris-
tic. (Sapena, Marzal, and Onaindia 2018)

Last but not least, TFD stands for Temporal Fast Down-
ward. It is a temporal planning system that can handle tem-
poral problems with numeric fluents. TFD uses the context-
enhanced additive heuristic by (Helmert and Geffner 2008)
to guide its A* search in the space of time-stamped states.
The context-enhanced additive heuristic is an inadmissible
heuristic defined for sequential planning tasks. In order to
use this heuristic for temporal planning the durative actions
have to be modified. The durative actions are replaced by
non-temporal instant actions. These instant actions are either
compressed actions, start actions, wait actions or actions de-
rived from the application of logical axioms. TFD is able
to find plans for some problems which require concurrency
in the plan but not for all kinds of concurrencies. (Eyerich,
Mattmüller, and Gabriele Röger 2009)

Related Work

Automated task planning was and is used in many applica-
tions. For each of them, the considered planning problem
must be modelled, usually in Planning Domain Definition
Language (PDDL), and solved with a corresponding plan-
ning system. Unfortunately, only very few works in the lit-
erature present the PDDL modelling process of the planning
problems for industrial scenarios. Some works describe this
process for other domains of interest or for other automated
planning concepts, as timeline-based planning, such as in
(Borgo et al. 2019).

The medication and the physical activity units required
by a patient depending on the level of pain he or she is
experiencing was modelled as a planning problem in (Al-
aboud and Coles 2019). They have used the more powerful
version of the PDDL language, PDDL+, to model both dis-
crete events and continuous processes. Alaboud and Coles
also compared the results obtained for their planning prob-
lem with two PDDL+ solvers: OPTIC (Benton, Coles, and
Coles 2012) and ENHSP (Scala et al. 2016).

A PDDL+ model for the path planning problem of UAVs
was presented in (Kiam et al. 2018). Kiam et al. have also
used the ENHSP planer (Scala et al. 2016) to generate reli-
able plans. Cashmore et al. have formulated their planning
problem for the mission control of AUVs as a temporal prob-
lem in PDDL2.1 (Cashmore et al. 2014) and have used only
one planner to solve it: POPF (Coles et al. 2010).

In (Crosby et al. 2017) an industrial kitting scenario,
where more robots are involved, is considered. For the high-
level control of the actors two modules, a Mission Planner
and a Task Planner are used. In the task planning process the
robots’ skills and the state of the environment are mapped to
PDDL structures and together with the goals are sent to the
automated planner Fast Downward (Helmert 2006). Crosby
et al. do not require specialized models of the planning prob-
lems solved in the Task Planner module. Furthermore, they
also do not compare the results obtained with different au-
tomated planning systems, as their models do not bring the
Fast Downward planner to its limits. (Crosby et al. 2017)

In (Huckaby, Vassos, and Christensen 2013) and (Bezru-
cav and Corves 2020) comprehensive models of planning
problems for manufacturing or industrial scenarios are pre-
sented. In the first work the modelling of the planning prob-
lems in PDDL is done based on the representation of the
considered system and of the processes in the System Model
Language (SysML). In the second work the PDDL mod-
elling is done by an expert, considering the requirements of
the different use-cases an European project. Furthermore, in
both works only the OPTIC (Benton, Coles, and Coles 2012)
planner was used to solve the planning instances.

In this work, we go beyond the related work and conduct
an experiment with different modelling approaches and dif-
ferent planning systems. Based on the results, we offer a set
of suggestions about the most suitable modelling process for
an industrial scenario with multiple mobile manipulators. In
the next section this scenario is described in more detail.

Toolbenches
with Tools

Itembenches
Workstations

Figure 1: Overview of the Gazebo simulation of the indus-
trial scenario

Scenario and Planning Problem
In this section the scenario and the corresponding planning
problems are presented.

Scenario
In this work, an industrial scenario that consists of an en-
vironment, tools, items and two types of actors in the form
of mobile manipulators is considered. The characteristics of
this scenario were derived from three of the four use-cases
of the EU-Project Sharework. It combines those features that
are common in the three use-cases and, therefore, typical for
such an industrial scenario.

Figure 1 shows an overview of the environment. It models
a shop floor containing two toolbenches, two itembenches
and two workstations with two workplaces each. The loca-
tions from where the benches and workstations can be ac-
cessed are marked on the floor with grey rectangles. Move-
ment is possible in the entire area and each location can be
reached from every other location. The toolbenches serve to
store the tools at the beginning of each simulated working
cycle. The tools need to be attached by the agents in order to
perform tasks or process items.

The items are stored at the itembenches and must be trans-
ported to the workstations for processing. The workstations
are just plain tables where items can be unloaded and pro-
cessed or tasks can be executed.

The involved actors are of type human and AGV and they
are both considered mobile manipulators, as they can nav-
igate in the environment and execute specific trajectories
with one or two of their arms. The agents can execute the
following actions:

• move between two poses.

• load/unload items from/to any bench.

• attach/detach tools from the toolbenches.

• process item with a tool at a specific workstation.

• execute task with a tool at a specific workstation.

All actions beside the first one must be executed at the
locations of the benches or workstations. Further on, only
through the move action the actors can navigate between
these locations. Thus, the move action can be a bottleneck
in the planning process.

Listing 1: Excerpt from the PDDL domain file with the move
action
1 (: d u r a t i v e− a c t i o n move_agent
2 : p a r a m e t e r s (?agent - agent ?from ?to ←↩

- agentpose)
3 : d u r a t i o n (= ?duration 2)
4 : c o n d i t i o n
5 (and (at start (at ?agent ?from))
6 (at start (not_acting ?agent))
7 (at start (free ?to)))
8 : e f f e c t
9 (and (at start (n o t (at ?agent ?from))←↩

)
10 (at start (n o t (free ?to)))
11 (at start (free ?from))
12 (at start (n o t (not_acting ?agent)))
13 (at end (at ?agent ?to))
14 (at end (not_acting ?agent))

Furthermore, these actions are modelled such that the fol-
lowing requirements are met:

• Only one actor can be at a specific location at the same
time.

• One actor can not execute two actions at the same time

• Different actors can be engaged in different actions at the
same time.

• The tasks must be executed at the workstations with spe-
cific tools.

• The items must be moved from the itembenches to the
workstations and be processed with specific tools.

The planning problem related to this scenario is presented
in the next section.

Planning Problem
For the above industrial scenario a first task planning prob-
lem is described in PDDL. The original model contains the
definition of the required PDDL types (e.g. locations, agents,
etc.), PDDL predicates (e.g. free ?location − location,
at ?object1 − object ?object2 − object, etc.) and of the
actions presented above. Some special characteristics of the
model are the different positions types agentpose, toolpose
and itempose, each being defined for specific objects. In this
way, a more flexible allocation of the objects to the poses
is achieved. For example, an agent that has an toolpose can
carry a tool with it, while another agent that has only one
itempose can carry only an item.

In Listing 1 the basic PDDL description of the move ac-
tion is presented. The action is modelled with a fixed du-
ration of 2 time units (line 2). It can be executed when the
from and to locations correspond to the correct benches or
workstations, the agent is at the beginning at the from loca-
tion, is not acting and the to location is free (lines 5-9). If
the execution of the action can be started, the from position
is marked as free (line 13), as the agent is not anymore there

Listing 2: Excerpt from the PDDL domain file with the exe-
cute task action for the human actor
1 (: d u r a t i v e− a c t i o n execute_task_human
2 : p a r a m e t e r s (?agent - human ?agentpose←↩

- agentpose ?task - task ?tool - ←↩
tool ?toolpose - toolpose)

3 : d u r a t i o n (= ?duration 2)
4 : c o n d i t i o n
5 (and (at start (at ?agent ?agentpose))
6 (at start (not_acting ?agent))
7 (at start (at ?tool ?toolpose))
8 (at start (at ?toolpose ?agent))
9 (at start (tool_for_task ?tool ?task))

10 (at start (pose_for_task_execution ? ←↩
agentpose ?task))

11 (at start (task_pending ?task)))
12 : e f f e c t
13 (and (at start (n o t (task_pending ?task←↩

)))
14 (at start (n o t (not_acting ?agent)))
15 (at end (task_executed ?task))
16 (at end (not_acting ?agent))

(line 11). Concurently, the predicate marking the to location
as free is deleted (line 12). Further on, the special construct
with the not acting predicate in lines 14 and 16 ensures that
the actor can execute only one action at a time.

Different to the move action, the execute task human ac-
tion is carried out at the specific location agentpose, as pre-
sented in Listing 2, line 5. Furthermore, the action can start
when the agent has the corresponding tool, the tool is the one
required for the given task and the task was not yet executed
(lines 6-11). When finished, the task is marked as executed
(line 15). The same construct with the not acting predicate
impose the execution only of this action at a time by the hu-
man (lines 14 and 16). All other actions beside the move one
are modelled similarly to the execute task human action.

In each planning problem at least two agents (one human
and one AGV or two AGVs) are considered and at least one
task must be executed or one item must be processed.

Limitations
One important issue of the current modelling approach is
that the plans found by all considered domain independent
automatic task planning algorithms for quite simple plan-
ning instances, where only two to three tasks must be exe-
cuted or items must be processed by the two actors involved,
are suboptimal. Most of them contain a lot of unnecessary
move actions. Listing 3 shows excerpts taken from such a
plan. This plan was computed by the automatic task plan-
ning algorithm POPF.

It can be seen that the agent agv1 performs a move ac-
tion from the location tb1 pose to the location wb21 pose at
time 6. The next action performed by agv1 is another move
action to location ib1 pose at time 16. agv1 does not per-
form any action at location wb21 pose. Therefore it is not
necessary for agv1 to move to the location wb21 pose. Ad-

Listing 3: Excerpts from a plan obtained with the initial
model
1 6 . 0 1 : (move_base agv2 tb2_pose ←↩

wb22_pose)
2 6 . 0 1 : (move_base agv1 tb1_pose ←↩

wb21_pose)
3 1 6 . 0 2 : (generic_action_2 agv2 tool2 ←↩

task8 wb22_pose)
4 1 6 . 0 2 : (move_base agv1 wb21_pose ←↩

ib1_pose)
5 2 6 . 0 3 : (load_item_on_agv agv1 item4 ←↩

ib1_pose nr0 nr1 nr2) . . .

ditionally, the other agent agv2 does not occupy the target
location ib1 pose of the second move action of agv1 during
the relevant time. These types of issues appear more often
in longer plans. This means that the computed plans lead to
unnecessarily long execution times.

New Modelling Variants
In order to tackle the issues of generating suboptimal plans
with unnecessary move actions from the modelling side,
three different approaches are implemented:

1. Consider the distance moved by the agents and use it as
metric for the planning problem (referred to as the basic
approach).

2. Include a special precondition for move actions that is
only true if the move action is reasonable (referred to as
the reasonable approach).

3. Completely eliminate the explicit move action by merg-
ing it with the other actions (referred to as the combined
approach).

Basic Approach The first approach is implemented us-
ing numeric fluents in the PDDL model. A variable called
moved distance is increased after each move action by the
geometric distance between the initial and the target loca-
tion. A distance is a function of two locations, the initial and
the goal pose. This function is evaluated in the effects of the
move action according to the parameters of the move action.
The result from the distance function is then used to increase
the value of the moved distance (see Listing 4) which is also
set as the optimization function of the planning problem.

Reasonable Approach The second approach for prevent-
ing unnecessary move actions is based on the idea that there
are situations where it is reasonable for an agent to move
and other situations where it is not. Through the use of a
special precondition the movement is made only possible in
situations where it is reasonable. The challenge with this
approach is to find as general specifications of such situa-
tions as possible. The reason is that by preventing actions in
certain situations the space of possible solution plans is re-
duced. If the solution space is reduced too much, the plans
lose flexibility and it might even lead to the problem becom-
ing unsolvable. For example, consider a situation from the

Listing 4: Excerpt from the PDDL domain file with inte-
grated moved distance variable
1 (: d u r a t i v e− a c t i o n move_agent
2 : p a r a m e t e r s (?agent - agent ?from ?to ←↩

- agentpose)
3 [. . .]
4 : e f f e c t (and
5 [. . .]
6 (i n c r e a s e (moved_distance) (distance ?←↩

from ?to))))

industrial scenario where an AGV is supposed to transport
three items from a location A to another location B. The
AGV is capable of transporting two items at once, thus it
is reasonable to load two items at location A before moving
the first time to locationB. This would reduce the total num-
ber of move actions and thereby the makespan. However, if
it were defined that movement is only reasonable when the
AGV is completely loaded or unloaded, there would not ex-
ist a solution to the example problem. The AGV would not
be allowed to move from location A to B for the second
time, since only one item remains at location A. In the end,
this only leads to the conclusion that movement is reason-
able whenever the AGV is loaded as much as is reasonable
in that current state. However, determining which amount of
items to load is reasonable in a certain state is a planning
problem itself and can not generally be answered.

Therefore, the second approach is reduced to one restric-
tion. It is defined to be reasonable for an agent to move only
if the last action performed by this agent was not a move
action. This restriction is fairly general, yet still there exist
scenarios when it does not apply. Consider a scenario with
only two locations and two agents, for example. One of the
agents has to perform tasks at both locations while the other
agent already finished its tasks. However, the latter agent still
has to move in order to unblock its location for the other
agent. This example is rather artificial and it does not apply
to most industrial scenarios. Therefore, the proposed restric-
tion might still create good results for planning problems in
industrial scenarios. The implementation is straightforward.
A new predicate with an agent as variable is introduced in
the PDDL domain (see Listing 5). The predicate controls
whether it is reasonable to move for the agent in question.
This reasonable predicate is added to the preconditions and
the delete effects of the move action (see Listing 5) and to
the add effects of all other actions.

Thereby, whenever any action except a move action is per-
formed by an agent the reasonable predicate becomes true
for this agent. Whether more than one of those actions are
performed has no additional effect on the reasonable predi-
cate. Performing a move action is only possible for an agent
when its reasonable predicate is true and has the effect that
the predicate becomes false. Thus, it is not possible for a
plan to contain two or more consecutive move actions for
one agent.

Listing 5: Excerpt from the PDDL domain file with reason-
able to move predicate
1 (: p r e d i c a t e s
2 (reasonable_to_move ?agent - agent))
3 [. . .]
4 (: d u r a t i v e− a c t i o n move_agent
5 [. . .]
6 : c o n d i t i o n (and
7 [. . .]
8 (reasonable_to_move ?agent))
9 : e f f e c t (and

10 [. . .]
11 (n o t (reasonable_to_move ?agent))))

Combined Approach The last approach also aims at pre-
venting consecutive move actions but with a different tech-
nique. The explicit move action is removed from the PDDL
model and integrated into the other actions. An other action
means here every action that is not a move action. For exam-
ple, a load action becomes a move and load action. In order
to combine two actions, their preconditions and effects have
to be merged. During this merge the preconditions of the
second action that are satisfied by the effects of the first ac-
tion have to be omitted in the combined action. For example,
a load action has the precondition that the agent performing
the load operation is at a location adjacent to the loaded item.
If this load action is combined with a move action, the men-
tioned precondition can be removed since the move action
satisfies it through its add effects. The conditions and effects
of the combination of a move and an other action therefore
are as follows:

• combined condition: cond = cmove ∪ (cother \ amove)

• combined add effects: add = (amove \ dother) ∪ aother

• combined delete effects: del = (dmove \ aother) ∪ dmove

For simplicity the move and the other action are regarded
as instant actions considering only their total conditions cx,
add effects ax and delete effects dx with x = move for the
move action and x = other for the other action. However,
the concept is applicable to durative actions with minor ad-
justments as well.

Furthermore, when combining the move action with every
other action, it is important to consider states where only an
other action has to be performed without a move action be-
cause the agent already is at the right location. In these states
it is not possible to use the combined action with a dummy
movement where the initial and the goal location are equal.
The reason is, that such a move action would require the
agent performing it to be at the same location that is also
required to be free. This constitutes a logical contradiction.
Therefore, all the other actions also have to be included in
the domain model in their single form in addition to the com-
bined variants.

Planner OPTIC POPF TFD TFLAP
Failed plans[%] 9.78 7.53 1.58 12.56
Modelling variant basic reasonable combined
Failed plans[%] 4.66 11.25 7.68
Optimization variable makespan distance
Failed plans[%] 7.01 8.73

Table 1: Percentage of failed plans for the different values of
the independent variables.

Experiment and Results
In order to find out the most suitable modelling method and
automated planner an extensive experiment was conducted
for the above presented scenario. Firstly the experiment was
designed, afterwards results were generated and interpreted.

Design of Experiments
Three independent inputs variables for the experiment and
their values are set as follows:

• The approach with which the PDDL domain and problem
are modelled (Modelling variant): basic, combined, rea-
sonable

• The metric which is supposed to be optimized (Optimiza-
tion variant): makespan, distance

• The planning system used (Planning system): OPTIC,
POPF, TFD, TFLAP

Beside those variables the number and types of agents
(e.g. one AGV and one human, two AGVs, etc.), as well as
the number of items and tasks (e.g. 1 task, 1 item, 3 tasks and
3 items, etc.) were varied, in order to give more generality
to the obtained results. The dependent variables measured
in the experiment are properties of the computed plans and
they are:

• Validity: Does the planner solve the planning problem in
60 seconds

• Makespan: If generated, what is the duration of the plan

• Moved distance: If generated, what is the total moved dis-
tance according to the actions from the plan

In total 3 (Modelling variants) * 2 (Optimization variants) *
4 (Planning systems) * 252 (variations of the agents, items
and tools) = 6048 tests were run using a computer with an
Intel® Core™ i7-7700 processor and 31.3 GB of memory.

Presentation of the Results
In the following, the effects on the percentage of failed
plans, on the average makespan and on the average moved
distance are presented. Each value from the following tables
and figures is a mean value for a specific instantiation of a in-
dependent input, given the test results for all other variations
of the other independent inputs and the agents, items and
tasks variations. For example, the values of the dependent
variables obtained for the planner OPTIC are mean values
over all tests executed for all possible combinations of the
three modelling variants, the two optimization variants and

OPTIC POPF TFD TFLAP
0

10

20

30

Planner

Pe
rc

en
ta

ge
of

fa
ile

d
pl

an
s

[%
]

basic
reasonable
combined

Figure 2: Interaction of the planning system and the mod-
elling variant regarding the percentage of failed plans

Planner OPTIC POPF TFD TFLAP
Average makespan[-] 28.49 30.02 25.47 27.73
Modelling variant basic reasonable combined
Average makespan[-] 31.13 32.52 31.54
Optimization variable makespan distance
Average makespan[-] 30.15 29.84

Table 2: Average makespan for the different values of the
independent variables.

the 252 variations related to the different number of tasks,
items and agents.

In Table 1 the percentage of planning problems for which
no valid plan was generated depending on the different val-
ues of the independent variables is depicted. It can be ob-
served that the planner TFD, the basic modelling variant and
the planning instances for which it was optimized with re-
spect to the makespan return the best results in each of their
categories.

The interactions between the four planning systems and
the two modelling variants with respect to the percentage of
failed plans is depicted in Figure 2. The TFD planner returns
the best results for all modelling variants.

In the following, the unsuccessful plans can be eliminated.
In order to generate consistent results, all of the following
results are an average of the dependent variables over all
planning problems for which all four planning systems have
generated a valid plan.

When analysing the next experiment output, the average
makespan, it can be observed from the values of Table 2 that
the planner TFD returns once again the best results in its
category and the basic modelling variant is the most suitable
one. Further on, the average makespan is almost the same
for both optimization methods.

The interaction of the planning system and the modelling
variant regarding the average makespan is depicted in Fig-
ure 3. The main acknowledgement is related to the planner
TFD for which the best makespan values are obtained inde-
pendent of the modelling variant used.

The last output of the experiment which is evaluated is the
average moved distance. The obtained values are depicted in
Table 3. In this case the planner TFLAP and the reasonable
modelling variant return the best results. Further on, for both

OPTIC POPF TFD TFLAP
18

20

22

24

Planner

A
ve

ra
ge

m
ak

es
pa

n
[-

]

basic
reasonable
combined

Figure 3: Interaction of the planning system and the mod-
elling variant regarding the average makespan

Planner OPTIC POPF TFD TFLAP
Average moved
distance[-] 35.11 37.89 28.34 26.86

Modelling variant basic reasonable combined
Average moved
distance[-] 37.33 32.25 35.14

Optimization variable makespan distance
Average moved
distance[-] 34.34 34.37

Table 3: Average moved distance for the different values of
the independent variables.

optimization variants almost the same values are obtained.
The results of the interactions between the planning sys-

tem and the modelling variants are depicted in Figure 4. It is
clear that the most appropriate planner is TFLAP, followed
closely by TFD. Moreover, the reasonable approach is the
one that delivered the results of the highest quality for all
planning systems.

Interpretation of the Results
In this section the effects of the independent variables (mod-
elling variant, optimization variant, planning system) on
the dependent variables (validity, makespan and moved dis-
tance) are discussed.

At first, the effect of the modelling variant on the percent-
age of failed plans is investigated. A first important conclu-
sion that can be made, is that the approaches for reducing
unnecessary move actions generally lead to a higher percent-

OPTIC POPF TFD TFLAP

20

25

30

Planner

A
ve

ra
ge

m
ov

ed
di

st
an

ce
[-

]

basic
reasonable
combined

Figure 4: Interaction of the planning system and the mod-
elling variant regarding the average moved distance

age of failed plans (see Figure 2). The reason is probably that
it is harder for the planning systems to compute a solution
plan when using these modelling approaches, especially un-
der the hard time constraints of only 60 seconds. However,
the effect is more significant for the planning systems OP-
TIC and POPF while it is smaller for the planning systems
TFLAP. TFD even manages to find a valid plan for all plan-
ning problems independent from the modelling variant, ex-
cept for the unsolvable ones. A possible reason for this may
be, that TFD as well as TFLAP use other heuristic functions
to guide their search. This might make them less suscepti-
ble for dead ends while planning. These dead ends may be
a reason why the reasonable approach leads to the highest
percentage of failed plans. If in the reasonable approach a
move action is planned that leads to an agent being at a loca-
tion where the agent can not perform any other action, this
agent is blocked for the entire rest of the plan. If all agents
become blocked the search results in a dead end. In compari-
son, these kinds of dead ends are not possible when using the
basic approach, because the agent could simply move again.
When using the combined approach these dead ends are also
not possible, since an agent can always move, as long as
there are actions it can perform at its destination. When the
planning system encounters a dead end while searching for
a plan, it needs to backtrack and restart the search from an
earlier state resulting in a longer search time. Thus, the dead
ends in the reasonable approach might be responsible for the
higher percentage of failed plans when using this modelling
variant.

Further on, it can be observed that the approaches to re-
duce unnecessary move actions through the modelling of the
PDDL planning problem actually results in a lower average
moved distance (see Figure 4). Thus, those approaches not
only prevent sequential unnecessary move actions but also
reduce the total averaged moved distance. However, as dis-
cussed in this section this improvement comes at the price of
higher planning complexity and therefore more failed plans.

The optimization for the distance variable was introduced
in order to reduce unnecessary move actions by reducing
movement in general. However, as can be seen in Table 3 it
does not lead to a decrease in the average moved distance
compared to optimizing for the makespan. On the other
hand, the optimization of the distance leads to a higher per-
centage of failed plans (see Table 1). Thus, using a numeric
fluent to track the distance and setting this value as the met-
ric that is supposed to be minimized in the planning process
fails to have the desired effect of reducing the moved dis-
tance. A possible reason may be that the planning systems
might require more time to optimize their solution plans as
desired. Or the complexity of the planning problems is al-
ready too high for the planning systems and they do not
manage to perform an effective optimization.

As already mentioned in the previous sections, the plan-
ning system used to solve the PDDL planning problem has
various effects on the planning process. Moreover, the ef-
fects of the other independent variables strongly interact
with the choice of the planning system. All in all, TFD
shows the best performance with the lowest percentage of
failed plans (see Table 1), the lowest average makespan (see

Table 2) and only outperformed by TFLAP regarding the
average moved distance (see Table 3). The latter being the
only drawback of TFD, since it is not capable of minimizing
the moved distance. The reason for this result might be that
TFD is only able to handle temporal planning problems with
a limited requirement of concurrency. However, since these
features are not necessary in the current planning problems
in the industrial scenario TFD is able to outperform the more
complex planning systems, which offer more features at the
price of a more complex planning process.

Conclusion and Future Work
In this paper a generic industrial scenario derived from real
use-cases with an initial model for its corresponding task
planning problems are introduced. Given this scenario con-
figuration and the constraints, for example that at a specific
time point each actor can execute only one action and can
be only alone at a location, suboptimal plans are generated
by all selected planning systems. In order to tackle this issue
different modelling variants are introduced. In a comprehen-
sive experiment they are tested in combination with different
planning systems. The obtained results are analysed given a
set of relevant metrics. The interpretation of these results
concludes this paper.

The generated results may give a first direction to follow
when setting up an AI task planning setup for these kind
of industrial applications, with move and specialized actions
and with multiple mobile manipulators agents that are active
at the same time. The suggested choice is the basic plan-
ning model in combination with the TFD planning system.
Further on, the set of experiments already contains many
variations of the planning problem for the considered sce-
nario, given by the different number and types of items, tasks
and agents, as well as by the various initial states and goals.
Thus, these results can also be used as a preliminary proof
of concept for the deployment of the suggested modelling
variant and planning system in real use-cases.

As a next step, the results of the experiment can be further
analysed, especially in order to determine further synergies
between the modelling approaches and the planning sys-
tems. Further on, the authors think to slightly modify some
of the planning systems in order to add spatial information
as guidance in their search strategies.

Acknowledgements
This article was created as part of the Sharework project,
that has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 820807.

References
Alaboud, F. K.; and Coles, A. 2019. Personalized Med-
ication and Activity Planning in PDDL+. In Benton, J.;
Lipovetzky, N.; Onaindia, E.; Smith, D. E.; and Srivastava,
S., eds., Proceedings of the Twenty-Ninth International Con-
ference on Automated Planning and Scheduling, 492–500.
AAAI Press.

Benton, J.; Coles, A.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In McCluskey, L.; Williams, B.; Silva, J. R.; and
Bonet, B., eds., Proceeding of the Twenty-Second Interna-
tional Conference on Automated Planning and Scheduling.
AAAI Press. ISBN ISBN 978-1-57735-562-5.

Bezrucav, S.-O.; and Corves, B. 2020. Improved AI Plan-
ning for Cooperating Teams of Humans and Robots. In
Cashmore, M.; Orlandini, A.; and Finzi, A., eds., Workshop
on Planning and Robotics (PlanRob) at International Con-
ference on Automated Planning.

Borgo, S.; Cesta, A.; Orlandini, A.; and Umbrico, A. 2019.
Knowledge-based adaptive agents for manufacturing do-
mains. Engineering with Computers 35(3): 755–779. ISSN
0177-0667. doi:10.1007/s00366-018-0630-6. PII: 630.

Cashmore, M.; Fox, M.; Larkworthy, T.; Long, D.; and Mag-
azzeni, D. 2014. AUV mission control via temporal plan-
ning. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), 6535–6541. IEEE. ISBN 978-1-
4799-3685-4. doi:10.1109/ICRA.2014.6907823.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
Chaining Partial-Order Planning. In Brafman, R., ed., Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling, 42–49. AAAI Press. ISBN 978-
1-57735-449-9.

Coles, A.; Coles, A.; Martinez, M.; and Sidiropoulos, P.
2018. International Planning Competition 2018. URL
https://ipc2018-temporal.bitbucket.io/.

Crosby, M.; Petrick, R. P. A.; Rovida, F.; and Krueger, V.
2017. Integrating Mission and Task Planning in an Industrial
Robotics Framework. In Barbulescu, L., ed., Proceedings of
the Twenty-Seventh International Conference on Automated
Planning and Scheduling, 471–479. AAAI Press. ISBN 978-
1577357896.

Eyerich, P.; Mattmüller, R.; and Gabriele Röger. 2009. Us-
ing the Context-enhanced Additive Heuristic for Temporal
and Numeric Planning. In Gerevini, A.; Howe, H.; Cesta, A.;
and Refanidis, R., eds., Proceedings of the Nineteenth Inter-
national Conference on Automated Planning and Schedul-
ing, 114–121. ICAPS and International Conference on Au-
tomated Planning and Scheduling, AAAI Press. ISBN 978-
1-57735-406-2. URL https://aaai.org/ocs/index.php/ICAPS/
ICAPS09/paper/view/754/1101.

Ghallab, M.; Dana, N.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press. ISBN
9781107037274.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246. doi:
10.1613/jair.1705.

Helmert, M.; and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Proceedings of the Eigh-
teenth International Conference on Automated Planning and
Scheduling, 140–147. AAAI Press. ISBN 978-1-57735-386-
7.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning Sys-
tem. In Journal of Artificial Intelligence, 253–302. AI Ac-
cess Foundation and Morgan Kaufmann Publishers.
Huckaby, J.; Vassos, S.; and Christensen, H. I. 2013. Plan-
ning with a task modeling framework in manufacturing
robotics. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 5787–5794. IEEE. ISBN
978-1-4673-6358-7. doi:10.1109/IROS.2013.6697194.
Kadir, B. A.; Broberg, O.; and Da Souza Conceição, C.
2018. Designing human-robot collaborations in Industry
4.0. In Proceedings of the DESIGN 2018 15th International
Design Conference, Design Conference Proceedings, 601–
610. Faculty of Mechanical Engineering and Naval Archi-
tecture, University of Zagreb, Croatia and The Design Soci-
ety, Glasgow, UK. doi:10.21278/idc.2018.0319.
Kiam, J. J.; Scala, E.; Ramirez, M.; and Schulte, A. 2018.
Using a Hybrid AI-Planner to Plan Feasible Flight Paths for
HAPS-Like UAVs. In Finzi, A.; Karpas, E.; Nejat, G.; Or-
landini, A.; and Srivastava, S., eds., Workshop on Planning
and Robotics (PlanRob) at International Conference on Au-
tomated Planning, 55–64.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. URL https://
homepages.inf.ed.ac.uk/mfourman/tools/propplan/pddl.pdf.
Sapena, O.; Marzal, E.; and Onaindia, E. 2018. TFLAP:
a temporal forward partial-order planner. URL https://
ipc2018-temporal.bitbucket.io/planner-abstracts/team2.pdf.
Scala, E.; Haslum, P.; Thiebaux, S.; and Ramirez, M. 2016.
Interval-Based Relaxation for General Numeric Planning. In
Kaminka, G. A., ed., Proceedings of the Twentysecond Eu-
ropean Conference on Artificial Intelligence, number 285 in
Frontiers in artificial intelligence and applications, 655–663.
IOS Press. ISBN 978-1-61499-672-9.

