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Abstract: Spectroscopy is a widespread technique used in many scientific fields such as in the food 

production. The use of hyperspectral data and specifically in the visible and near infrared (VNIR) 

and in the short-wave infrared (SWIR) regions in grape production is of great interest. Due to its 

fine spectral resolution, hyperspectral analysis can contribute to both fruit monitoring and quality 

control at all stages of maturity with a simple and inexpensive way. This work presents an 

application of a contact probe spectrometer that covers the VNIR–SWIR spectrum (350–2500 nm) 

for the quantitative estimation of the wine grapes’ ripeness. A total of 110 samples of grape vine 

Syrah (Vitis vinifera Syrah) variety were collected over the 2020 harvest and pre-harvest seasons 

from Ktima Gerovassiliou located in Northern Greece. Their total soluble solids content (oBrix) was 

measured in-situ using a refractometer. Two different machine learning algorithms, namely partial 

least square regression (PLS) and random forest (RF) were applied along with several spectral 

pre-processing methods in order to predict the oBrix content from the VNIR–SWIR hyperspectral 

data. Additionally, the most important features of the spectrum were identified, as indicated by the 

most accurate models. The performance of the different models was examined in terms of the 

following metrics: coefficient of the determination (R2), root mean square error (RMSE) and ratio of 

performance to interquartile distance (RPIQ). The values of R2 = 0.90, RMSE =1.51 and RPIQ = 4.41 

for PLS and 0.92, 1.34, 4.96 for RF respectively, indicate that by using a portable VNIR–SWIR 

spectrometer it is possible to estimate the wine grape maturity in-situ. 
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1. Introduction 

The common practice today used by the wine producers to assess the maturity of the grapes is 

to use a refractometer to measure in-situ the oBrix value which is the total soluble solids content in 

the grape. On the other hand, spectroscopy is a widespread technique used in many scientific fields 

such as in the food production [1] and soil science [2]. The regions of the visible and near-infrared 
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(VNIR) and the short-wave infrared (SWIR) in grape production have piqued the interest of 

researchers in the past [3]. The main goal of this research was to estimate the wine grape ripeness in 

a simple, inexpensive, and non-destructive way, taking advantage of the synergy of the 

aforementioned spectral regions with machine learning algorithms.  

2. Materials and Methods 

2.1. Main methodology 

Figure 1a compares the two different techniques (destructive and non-destructive) in order to 

estimate the grape ripeness. Furthermore, for convenience, our methodology is presented in the 

form of a flowchart (Figure 1b). 

 

Figure 1. (a) Different techniques for grape ripeness estimation (b) Methodology flowchart 

2.1. Pilot area measurements – Grape spectra library 

Our pilot area is the vineyard of Ktima Gerovassiliou (https://www.gerovassiliou.gr/), located in 

Northern Greece, 25 km southeast of the city of Thessaloniki (40° 27' 04" N, 22° 55' 23" E). Ktima 

Gerovassiliou is one of the largest wine producers in the country cultivating several varieties of both 

white and red wine.  

The first stage of the methodology was the creation of the grape spectral library. All 

measurements were performed in-situ using a portable contact probe spectrometer namely PSR 

+3500 (Spectral Evolution Inc., Lawrence, Massachusetts, USA) that covers the VNIR–SWIR 

spectrum (350–2500 nm). The final dataset created consists of 110 samples of the Syrah variety 

during the 2020 harvest and pre-harvest season from heterogeneous points in the vineyard. In 

addition, the grapes measured with the spectrometer were also used to measure their oBrix content 

with the help of a portable RHB-32ATC refractometer (Laxco Inc., Bothell, Washington, USA) but 

with a destructive effect of the fruit.  

2.2. Data processing 

2.1.1. Dataset split 

The dataset is usually divided into training and test set in order to train and find the model 

hyperparameters (model selection) and estimate the model prediction error or accuracy, 

respectively. In our case the conditioned Latin hypercube method (cLHS) [4] was used and the grape 

spectra dataset was split with 67% as a training and with 33% as an independent test set. 

2.1.2. Pre-processing methods 

Data pre-processing is an important step in chemometrics analysis and having often a 

significant impact on the generalization performance of a supervised machine learning algorithm. In 

https://www.gerovassiliou.gr/
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this work several pre-processing methods were used (see Table 1). Initially the reflection data 

recorded were converted to pseudo-absorbance, which may present a more linear relationship 

between absorption and concentration of the grape properties according to the Beer–Lambert law. 

Furthermore, the method of the first derivative is a method that removes the baseline from the 

spectra and at the same time emphasizes the absorption characteristics. According to Ertlen et.al. [5] 

important information can be extracted from VNIR spectra if spectral derivatives are obtained. A 

Savitzky–Golay 1st order filter (SG1) is usually used to calculate the first derivative [6]. Furthermore, 

standard normal variate (SNV) and de-trending (DT) are common mathematical transformations 

used in spectroscopy.  

2.1.3. Machine learning prediction algorithms 

The following two algorithms were employed in the present study: (i) the Partial Least Squares 

regression algorithm (PLS) transforms the input space by selecting a number of orthogonal factors 

(named latent variables) that maximize the covariance between predictors and response variable, 

and then builds a linear model on this projection, (ii) the random forest algorithm (RF) which 

constructs a number of decision tree models and uses bagging to sequentially improve the ensemble 

decision. To find the optimal hyperparameters in both models (namely the number of latent 

variables for PLS and the number of trees in RF) an internal five-fold cross-validation was employed 

in the training set. 

3. Results and Discussion 

3.1. Spectra signatures and pre-processing methods 

Figure 2a illustrates the reflectance spectra of the grape spectra library. The continuous line is 

the mean spectrum, while the shaded area indicates the standard deviation. In addition, the 

histogram shown in Figure 2b demonstrates the distribution of the recorded oBrix values in our 

dataset for all the grape samples, with higher values indicating that the grape is ripe.  

 

Figure 2. (a) Dataset reflectance spectra, (b) Distribution of the recorded Brix values for all samples 

3.2. Comparison and evaluation of results 

Table 1 below presents the results of the two machine learning algorithms based on three 

different metrics for the best pre-processing method according to each model. The metrics are 

coefficient of the determination (R2), root mean square error (RMSE) and ratio of performance to 

interquartile distance (RPIQ). We can easily observe high accuracy for all methods with R2 values 

being around 0.9, RMSE values to be at low levels approximately 1.5 degrees of oBrix and RPIQ 

values to be at high levels with values greater than 2; indicating that there is a good performance. 

The best result was achieved by the reflectance SG1 pre-process method with the RF model having 

the lowest prediction errors in the independent test set. In addition, based on the results of the best 

PLS model and using the Variable Importance in Projection (VIP), the region with the most 

information emerged in the range from 700 to 1300 nanometers. 
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Table 1. Accuracy results of the two machine learning models (PLS and RF) using various 

pre-processing methods in the independent test set 

Pre-processing method 
 PLS  RF 

 R2  RMSE  RPIQ  R2  RMSE  RPIQ 

Absorbances  0.83  1.98  3.38  0.70  2.59  2.57 

Absorbances SG1  0.85  1.85  3.62  0.90  1.49  4.49 

Absorbances SG1 SNV  0.90  1.51  4.41  0.89  1.52  4.38 

Absorbances SNV DT  0.83  1.96  3.40  0.88  1.63  4.10 

Absorbances SNV  0.88  1.64  4.07  0.86  1.79  3.74 

Reflectances SG1  0.89  1.58  4.23  0.92  1.34  4.96 

Reflectances SNV  0.86  1.78  3.75  0.85  1.83  3.66 

4. Conclusions 

Overall, by using a portable VNIR–SWIR spectrometer it is possible to estimate the wine grape 

maturity in-situ. The proposed methodology can support the wine producers in estimating the 

ripening grape parameters and making decision on harvest time. Also, some future steps are to 

examine more grape varieties (including white varieties) as well as the use of hyperspectral cameras. 

Author Contributions: “Conceptualization, NS and NTS; methodology, NTS, NS, and NTZ; writing—original 

draft preparation, NS and NTS; writing—review and editing, NS, NTS, and NTZ; visualization, KK; 

supervision, EK; project administration, ZD, GZ and DB;”  

Funding: The research leading to these results has received funding from the European Community’s 

Framework Programme Horizon 2020 under grant agreement No 871704, project BACCHUS. 

Acknowledgments: The authors would like to thank Ktima Gerovassiliou for providing the grape samples. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Peng, J.; Xie W.; Jiang J.; Zhao Z.; Zhou, F.; Liu, F., Fast Quantification of Honey Adulteration with 

Laser-Induced Breakdown Spectroscopy and Chemometric Methods, Foods. 2020, 9, 341. 

https://doi.org/10.3390/foods9030341. 

2. Karyotis, K.; Angelopoulou, T.; Tziolas, N.; Palaiologou, E.; Samarinas, N.; Zalidis, G. Evaluation of a 

Micro-Electro Mechanical Systems Spectral Sensor for Soil Properties Estimation, Land. 2021, 10, 63. 

https://doi.org/10.3390/land10010063. 

3. Giovenzana, V.; Beghi, R.; Malegori, C.; Civelli, R.; Guidetti, R. Wavelength Selection with a View to a 

Simplified Handheld Optical System to Estimate Grape Ripeness, Am. J. Enol. Vitic. 2014, 65, 117–123. 

https://doi.org/10.5344/ajev.2013.13024. 

4. Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of 

ancillary information, Comput. Geosci. 2006, 32, 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009. 

5. Ertlen, D.; Schwartz, D.; Trautmann, M.; Webster, R.; Brunet, D. Discriminating between organic matter 

in soil from grass and forest by near-infrared spectroscopy, Eur. J. Soil Sci. 2010, 61, 207–216. 

https://doi.org/10.1111/j.1365-2389.2009.01219.x. 

6. Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential 

modeling of soil carbon using visible/near-infrared spectra, Geoderma. 2008, 146, 14–25. 

https://doi.org/10.1016/j.geoderma.2008.04.007. 

 


