
Optimized programs from (non-constructive) proofs

by the light (monotone) Dialectica interpretation

(revised version of doctoral thesis)

Mircea–Dan Hernest

14 March 2007





Abstract

This thesis presents a new optimization of Gödel’s Dialectica interpretation

for the extraction of more efficient exact realizers from (classical) arithmeti-

cal proofs. The “light” variant of Dialectica also combines and even more

smoothly with Kohlenbach’s “monotone” optimization of Gödel’s functional

interpretation for the extraction of more efficient majorants and bounds from

(classical) monotonic arithmetical and even analytical proofs. “Light Dialec-

tica” is obtained by adapting Berger’s “uniform” or “non-computational”

quantifiers. Moreover, its presentation is given in Natural Deduction style,

as an improvement of Jørgensen’s recent adaptation of pure Gödel’s Dialec-

tica. A number of concrete examples are treated on the computer by means

of the novel technique. The machine comparison with the more established

program-synthesis technique of refined A-translation shows a very good per-

formance of Light Dialectica, which is outperformed only in the case of Dick-

son’s Lemma. Also the theory of synthesis of feasible, poly-time computable

programs is developed for the new “Light Monotone Dialectica” extraction

technique. Two pre-existent frameworks due to Cook-Urquhart-Ferreira and

respectively Kohlenbach are crossbreeded for this purpose into a “poly-time

bounded Analysis”. The theoretical result is promising, yet practical examples

are to be found for the difference with the pure Kohlenbach’s “polynomially

bounded Analysis”.

Keywords: Program extraction from (classical) proofs, Proof Mining, com-

plexity of extracted programs, Gödel’s functional Dialectica interpretation,

non-computational-meaning (uniform) existential and universal quantifiers,

proof complexity, functionals of finite type, software and systems verification,

combinatorial logic, computational complexity, proof-carrying code.





Contents

Introduction 10

Outline of the following sections . . . . . . . . . . . . . . . . . . . . 12

1 Arithmetical systems for Gödel functionals 16

1.1 Languages, types, terms and formulas . . . . . . . . . . . . . . 18

1.2 Logical axioms and rules and Boolean axioms . . . . . . . . . 24

1.2.1 Stability, Case Distinction, Decidability and

Disjunction Introduction/Elimination . . . . . . . . . . 29

1.3 Weakly extensional Intuitionistic Arithmetics

WeZ, WeZ∃, WeZnc and WeZ∃,nc . . . . . . . . . . . . . . . . . . . 37

1.3.1 The “no-undischarged-assumptions” Induction Rule . . 37

1.3.2 The rules of Equality for all simple types . . . . . . . . 38

1.3.3 Equality axioms induced by the Conversion Relation ↪→ 40

1.3.4 The definition of systems WeZ, WeZ∃, WeZnc and WeZ∃,nc . 40

1.3.5 Equivalence between three formulations of Induction . 42

1.4 Immediate extension of systems WeZnc and WeZ∃,nc . . . . . . . 44

1.5 The monotonic intuitionistic Arithmetics WeZ∃m and WeZ∃,nc+m . . 47

1.6 The classical (monotonic) Arithmetics WeZnc,c+ and WeZ∃,nc,c+m . 54

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2 The light (monotone) functional Dialectica interpretation 58

2.1 The light Gödel functional “Dialectica” interpretation . . . . . 60

2.2 The light monotone functional “Dialectica” interpretation . . 76

2.3 Extensions of the light (monotone) Dialectica interpretation to

extractions from fully classical proofs . . . . . . . . . . . . . . 83

2.4 Light Monotone Dialectica extractions from classical analytical

proofs by elimination-of-extensionality and ε-arithmetization . 93

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4



Contents 5

3 Feasible systems of Arithmetic and Analysis 102

3.1 A poly-time Arithmetic/Analysis due to Oliva, Cook-Urquhart

and Ferrreira . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2 A polynomial bounded Arithmetic/Analysis due to Kohlenbach 110

3.2.1 Elimination of the non-standard analytical axiom F− . . 116

3.2.2 Verification in the full set-theoretic type structure . . . 117

3.3 Our proposal for a feasible Arithmetic/Analysis system . . . . 121

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies 126

4.1 The BBS refined A-translation . . . . . . . . . . . . . . . . . . 127

4.1.1 Theoretical comparison with the BBS technique . . . . 129

4.2 Berger’s hsh example . . . . . . . . . . . . . . . . . . . . . . . 129

4.2.1 MinLog source code for Berger’s hsh example . . . . . . 130

4.3 The (semi-)classical Fibonacci proof . . . . . . . . . . . . . . . 134

4.3.1 Motivation for treatment of Fibonacci in MinLog . . . . 134

4.3.2 The semi-classical Fibonacci proof in MinLog . . . . . . 136

4.3.3 The light functional “Dialectica” interpretation . . . . 137

4.3.4 A comparison of the three extraction techniques . . . . 138

4.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . 143

4.5 The integer square root example . . . . . . . . . . . . . . . . . 143

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5 Synthesis of moduli of uniform continuity by the

LMD-interpretation in the proof-system MinLog 148

5.1 The minimal arithmetic HeExtEq proof in the

computer-system MinLog . . . . . . . . . . . . . . . . . . . . . 150

5.2 The MinLog machine majorant extraction . . . . . . . . . . . . 152

5.3 Machine results for the HeExtEq case-study . . . . . . . . . . . 153

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Conclusions 158

Bibliography 160

Index of Chapters 1 and 2 172



6 Contents

A A complexity analysis of functional interpretations 178

A.0.1 Outline of the main results . . . . . . . . . . . . . . . . 182

A.0.2 Notational conventions . . . . . . . . . . . . . . . . . . 185

A.1 The weak base system EILω . . . . . . . . . . . . . . . . . . . 186

A.1.1 The type structure FT . . . . . . . . . . . . . . . . . . 188

A.1.2 Intuitionistic Equality Logic over FT (IELω) . . . . . . 188

A.1.3 Extended Intuitionistic Equality Logic over FT (EILω) . 193

A.2 A quantitative analysis of functional interpretation . . . . . . 197

A.2.1 Axiom extensions of EILω.

The system EILω++AC+IP∀+MK . . . . . . . . . . . . . 200

A.2.2 The treatment of EILω rules . . . . . . . . . . . . . . . 201

A.2.3 Bounds for realizing terms for

EILω++AC+IP∀+MK axioms . . . . . . . . . . . . . . . . 205

A.2.4 Better bounds on the size of extracted terms . . . . . . 219

A.2.5 Space and time complexity of the

term extraction algorithm . . . . . . . . . . . . . . . . 223

A.3 Immediate extensions of the quantitative analysis . . . . . . . 224

A.3.1 Treatment of classical EILω. The system ECLω++AC0 . . 224

A.3.2 A quantitative analysis of the

monotone functional interpretation . . . . . . . . . . . 228

A.4 Extensions to Arithmetic and fragments of Analysis . . . . . . 233

A.4.1 Treatment of Primitive Recursive Arithmetic PRAω . . . 233

A.4.2 Extension to the analytical system PRAω+AC0+WKL. . . 235

A.4.3 The case of Peano Arithmetic PAω and PAω+AC0+WKL . 238

Index of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 240





Acknowledgements

In the first place I would like to thank my thesis co-directors, Prof. Jean-

Pierre Jouannaud and Prof. Helmut Schwichtenberg for having accepted to

supervise my work on the original topic of adapting the non-computational

quantifiers to the Dialectica Interpretation in a Natural Deduction setting.

Thanks also to Prof. Ulrich Kohlenbach for having advised me throughout

the whole period of my doctoral studies. I am grateful to Ulrich Berger and

to Michel Parigot for having accepted to referee this thesis and also to Prof.

Christine Paulin for her participation and presiding of my examination board.

A few of my colleagues contributed indirectly to my work by proof-reading

and discussions: Philipp Gerhardy, Laurenţiu Leuştean, Paulo Oliva, Monika

Seisenberger and Daniele Varacca. There is a long list of people to whom I

am indebted concerning my formation. This list includes teachers from high-

school in Slatina, college in Bucharest (Romania) and graduate schools in

Aarhus (Denmark), Munich (Germany) and Paris (France). I here mention

only a few of them: Prof. Olivier Danvy, Prof. Gilles Dowek, Prof. George

Georgescu, Prof. Gheorghe Ştefănescu and Prof. Marin Toloşi.

I owe a deep debt of gratitude for having provided me a wonderful work

environment to the scientific and administrative collectives from the Chair of

Fundamentals of Computer Science of the University of Bucharest (Romania),

from BRICS/DAIMI in Aarhus (Denmark), from GKLI/the Munich Logic

group (Germany) and from the LogiCal group at LIX-Ecole Polytechnique in

Paris (France). For a supporting attitude I would like to thank in particular to

the following persons: Luca Castelli Aleardi, Janne Kroun Christensen, Laura

Crosilla, Daniel Damian, Claudiu Dobre, Felix Joachimski, Maciej Koprowski,

Gyesik Lee, Pierre Letouzey, Ioana Leuştean, Ian Mackie, Catherine Moreau,

Karen Kjaer Möller, Julien Narboux, Mogens Nielsen, Diana Raţiu, George

Rodolakis, Grigore Roşu, Jiri Srba, Frank Valencia, Luminiţa Vı̂ţâ, Bogdan

Warinschi and Benjamin Werner.

Last but not least, I hereby thank to my family members for their under-

standing and support during the adventure of my doctoral studies.

Thanks to all who helped me directly or indirectly!

Mircea-Dan Hernest





Introduction

1 Important practical results2 have been obtained in recent years in the field

of extractive Proof Theory (also dubbed proof mining [80]). The implemented

algorithms coming from metamathematical research have yielded interesting

and in many cases quite unexpected programs (see, e.g., [9, 14, 49, 54, 103,

105]). Various approaches to program extraction from classical3 proofs have

been developed over years of research [3, 5, 9, 19, 22, 67, 86, 87, 90, 92,

100, 101, 105]. These can be roughly divided into two main groups inside

which one may distinguish many more sub-groups. On one hand we have

the historically more recent line of research coming more from theoretical

computer science, which aims at extending the Curry-Howard correspondence

to full classical logic [5, 19, 86, 101]. This research direction originates in the

attempt of giving algorithmic interpretations to various classical principles,

since Griffin [45] noticed that Felleisen’s C operator [28, 29] can be typed as

the stability scheme ¬¬A → A. One recent impressive practical result in this

line was obtained by Raffalli [105], which extracted an amazingly (keeping the

relative proportions) fast algorithm for Dickson’s Lemma in its most general

form by means of a so-called “Mixed Logic”.

On the other hand we have the more traditional proof-theoretic line of

research on so-called “Proof Interpretations”, see [62] for many nicely orga-

nized and commented historical references. The use of proof interpretations

instead of the direct application of cut-elimination has opened the path to the

obtaining of better practical results by means of such modular techniques, see

[49] for a discussion on this issue. Gödel’s functional “Dialectica” interpreta-

1The first two chapters of this thesis constitute a large extension of the work reported

in [50], including its technical appendix [51].
2Here by practical we understand both concrete new mathematical proofs like the ones

presented in [62, 80] but also new computer algorithms like those reported in [9, 14, 49, 54,

103, 105].
3Constructive proofs have a more or less explicit computational content, see, e.g., [6].

10



Contents 11

tion [44, 4] directly applies to (far) more complex proofs than its simpler, but

weaker form, Kreisel’s Modified Realizability [84]. The latter’s combination

with refinements [3, 9, 22] of Friedman’s A-translation4 [35] only partly repairs

this disparity (see [49] or [62] for discussions on this issue). However, the

(rough) exact realizers yielded by the Dialectica interpretation are generally

(far) more complex than those produced by, e.g., the technique of Berger,

Buchholz and Schwichtenberg [9].

The main reason for such a situation seems to be the inclusion of the

Dialectica-relevant contraction formulas in the rough (i.e., not yet normalized)

Dialectica realizing terms. Even though in some cases the primary realizers

extracted via the two techniques normalize to basically the same programs (see

[49] for such an example), the normalization of programs extracted by proof

interpretations is generally far more expensive than their synthesis5. The sim-

pler the rough extracted term is, the lower the overall cost of producing the

final normalized realizer becomes. In order to handle this contraction problem

of the Dialectica interpretation, Kohlenbach [67] devised the monotone fun-

ctional interpretation, an adaptation of Gödel’s technique to the extraction of

majorants/uniform bounds for the exact realizers (see also [32] for the more

recent bounded functional interpretation of Ferreira and Oliva). While so pro-

lific (see [62] or [80]) in the context of mathematical Analysis, Kohlenbach’s

monotone functional interpretation, used literally and alone, is generally not

as practically useful for the synthesis of exact realizers in discrete mathemat-

ics. Except for some situations when the input specification is monotonic in

the variable to be realized, the production of an exact realizer, given a majo-

rant, requires a bounded search and is possible only in some cases. See the

end of Section 4 in [55] for an extended comment or [62] for more complete

(and technical) details.

We propose in this thesis a different kind of optimization of Gödel’s fun-

ctional interpretation by the elimination already from the primary extracted

terms (i.e., during the extraction process) of a number of Dialectica-relevant

contraction formulas which are identified as “computationally redundant” by

means of an adaptation of Berger’s uniform quantifiers from [8] to the context

of Dialectica interpretation. These are called “quantifiers without computa-

4Such refined A-translations usually combine some double-negation translation from clas-

sical to intuitionistic proofs with the so-called Friedman-Dragalin A-translation, see [25] for

the Russian (independently discovered) variant of the latter.
5See the appendix Chapter A for a detailed theoretical exposition on the (very low)

computational complexity of the Dialectica extraction meta-algorithms.



12 Contents

tional content” in [110] and, following [50], we will here call them quantifiers

without computational meaning (abbreviated ncm, with n from non).

We here name Light6 Dialectica (or “light functional interpretation”, like

in [50]) this optimized exact realizer extraction technique which is based on

Gödel’s Dialectica interpretation. We also name Light Monotone Dialectica,

or “light monotone functional interpretation”, like in [54], its monotone (in

the sense of Kohlenbach [67]) counterpart, which is an optimized technique

for the extraction of majorants/uniform bounds.

Following [50], we will denote in this thesis by ∀ the ncm universal quantifier

and by ∃ the ncm existential quantifier. While our ∃ is identical7 to Berger’s

{∃}, our ∀ requires a further strengthening of the restriction set by Berger on

his {∀}+ introduction rule in [8], see [50]. This is because we must take into ac-

count the inclusion of the so-called “computationally persistent” contractions

into the Light Dialectica realizing terms. Since these are no longer included

into the Light Monotone Dialectica majorizing terms, in the monotone setting

both ∃ and ∀ are identical to Berger’s. Also for the monotone systems there

will be no restriction on the Implication Introduction rule. This has to be

added to the non-monotonic systems in order to ensure that in a persistent-

contraction situation the introduction formula can effectively be included into

the realizing terms. Thus the “monotone” and the “light” optimizations of Di-

alectica will combine much better in a much simpler arithmetical system which

can be more easily extended to full classical proofs, as usual. On the contrary,

the ncm non-monotonic systems will not extend to full classical proofs unless

we eliminate from them the strong existential quantifiers, and even then such

an extension is far more technically complicated.

We generally abbreviate (both regular and ncm) quantifier free by qfr. We

will use expressions like “qfr formula”, “ncm variable” or “ncm quantifiers”

with the obvious meanings.

Outline of the following sections

In Chapter 1 we introduce all logical, arithmetical and analytical systems

which will be used throughout the whole thesis, except for the so-called feasible

systems of Arithmetic and Analysis from Chapter 3. The latter will neverthe-

less be presented in a framework which immediately adapts the one given in

6Where “light” is to be understood as the opposite of “heavy”.
7Modulo the formulation as axioms like in [110] of Berger’s rules for {∃} from [8].



Contents 13

Chapter 1 to the various feasible settings. The reader should be cautious that

a great number of intermediate logical systems are here introduced in order to

clarify which logical principles are strictly necessary to prove certain particular

principles. Their use is limited to Chapter 1 only, hence the reader may want

to skip the detail at a first reading and come back by need, during the reading

of the core Chapter 2. The Index section placed after the Bibliography may

get very useful for this purpose.

Chapter 2 presents our Natural Deduction formulations of the “light” re-

finements of both Gödel’s functional interpretation and Kohlenbach’s Mono-

tone Dialectica. For the design of Dialectica Light we transformed Jørgensen’s

Natural Deduction formulation [60] of the pure Gödel Dialectica translation

by eliminating his “Contraction Lemma” 8 and by allowing free variables in

the extracted terms9. We also adapted Berger’s uniform existential and uni-

versal quantifiers from [8] to the Dialectica-extraction context. The use of

such quantifiers without computational meaning permits the identification and

isolation of contraction formulas which would otherwise become redundantly

included in the pure-Dialectica extracted terms. We also give the combination

of our simplification of Gödel’s Dialectica interpretation with its adaptation

to the extraction of majorants/uniform bounds due to Kohlenbach into a light

monotone functional interpretation. In the end, we extend to classical proofs.

In Chapter 3 we give an exposition of two well-established frameworks for

specifying poly-time computable programs, together with the adaptation of

the corresponding arithmetical systems to the Dialectica-extraction of such

feasible programs from proofs. We thus have Cook and Urquhart’s “poly-

time Arithmetic” [21] and Kohlenbach’s “polynomially bounded Analysis”

(abbreviated PBA), both presented as adaptations of the arithmetical systems

exposed in Chapter 1. Light Dialectica interpretations are designed for both

frameworks as adaptations of the proof interpretations defined in Chapter 2.

In the end, a syncretic framework is proposed, which combines the two. The

advantage of our proposed system of “feasible Arithmetic and Analysis” is

that generally poly-time computable programs are allowed to be extracted by

the (light) monotone Dialectica, and not just polynomials (as is the case for

Kohlenbach’s PBA). Hence our framework is more expressive than Kohlen-

bach’s, by adding the elements due to Cook and Urquhart.

8Which we found too complicated, particularly for the practical purpose of a computer-

implemented (light, monotone) Dialectica extraction.
9Which is more suitable in a Natural Deduction setting, see [56] for a discussion on this.



14 Contents

Chapter 4 presents an extensive comparison of (light) Dialectica with the

other well-established proof-interpretational technique for extracting programs

from (semi-)classical proofs, namely the refined A-translation due to Berger,

Buchholz and Schwichtenberg. The latter is actually a tool for translating

minimal logic proofs of weak existence into intuitionistic proofs of strong ex-

istence. Modified Realizability is then used for reading the concrete realizer.

The comparison is given both in theory and in practice. Not less than four

case-studies are performed on the computer, in Schwichtenberg’s MinLog sys-

tem. These are Berger’s hsh, the classical Fibonacci and the square-root ex-

ample. In both theory and practice, Dialectica Light appears to be at least as

good as the BBS A-translation, actually even better for Berger’s hsh, and much

better for the square-root. In contrast, for the Dickson-2-2 Lemma example,

Gödel’s Dialectica has a much worse performance than the BBS technique and

unfortunately the “light” optimization (which is the central topic of this the-

sis) does not apply in this case. We also mention other methods for program

synthesis from classical proofs and outline a tentative comparison with Light

Dialectica, particularly in the afore-described case of Dickson’s Lemma.

The Chapter 5 outlines one of the most complex examples which we treated

on the computer as a case-study for program-extraction by the new Light Mo-

notone Dialectica interpretation. One basically extracts in the proof-system

MinLog [48, 115] some moduli of uniform continuity for concrete terms of

Gödel’s T of type (N→N)→(N→N). These are just the first three elements

in a sequence of terms, for which the generic solution can then be imme-

diately inferred by the human from the limited machine output. The nov-

elty here is that we used a certain variant of the Light Monotone Dialectica

which produces terms in NbE-normal form by means of a recurrent partial

NbE-normalization. This form of partial evaluation was strictly necessary in

order to obtain the machine results in due time.

In the appendix Chapter A we give a quantitative analysis of Gödel’s

functional interpretation and its monotone variant. We give upper bounds

in basic proof data on the depth, size, maximal type degree and maximal

type arity of the extracted terms as well as on the depth of the verifying

proof. In all cases terms of size linear in the size of the proof at input can be

extracted and the corresponding extraction algorithms have cubic worst-time

complexity. The verifying proofs have depth linear in the depth of the proof at

input and the maximal size of a formula of this proof. Although these results

were obtained for Hilbert-style and combinatorial systems, they immediately



Contents 15

adapt to the kind of systems which we use throughout the main body of this

thesis, i.e. Natural Deduction systems with lambda-abstraction as primitive.

Last, but not least, the source code of our computer implementation of the

Light (Monotone) Dialectica, together with all the examples treated mostly in

comparison with the BBS refined A-translation is public available for download

at http://www.brics.dk/̃ danher/MinLogForDialectica . Enjoy! :)



Chapter 1

Arithmetical systems for

Gödel functionals

1 We devise a weakly extensional variant WeZ of the intuitionistic arith-

metical system Z of Berger, Buchholz and Schwichtenberg from [9]. Relative

to Z, system WeZ simply restricts extensionality of equality. For this reason,

equality in WeZ is handled by means of a functional constant (denoted Eq,

see Definition 1.1) instead of the more usual predicate constant. Such treat-

ment of equality is peculiar to Gödel’s Dialectica interpretation2. We also

give a suite of extensions of WeZ basically with the strong (intuitionistic) ex-

istential quantifier on one hand and, on the other hand, with the so-called

non-computational-meaning (abbreviated ncm) variants of the universal and

(if present) existential quantifiers, which were mentioned above in the In-

troduction chapter. We thus have the extensions denoted WeZ∃ , WeZnc and

respectively the most complete WeZ∃,nc , see Section 1.3. At its turn, system

WeZ is built in stages, as the most complete in the sequence of extensions

ML0 ⊂ ML ⊂ IL0 ⊂ IL ⊂ WeZ. System ML0 is a pure predicate minimal logic

system. System ML is minimal logic ML0 enhanced with the axioms for boolean

1The reader should beware that a great number of the intermediate logical systems which

are introduced in this chapter have a limited local use. Only the more important, arith-

metical systems like WeZ, . . . , WeZ∃,nc are later used in the core Chapter 2, hence the reader

may want to skip part of the technical details of the present chapter. The intermediate,

local systems are intended to clarify which logical principles are strictly necessary to prove

certain particular purely logical principles. The Index section placed after the Bibliography

may get very useful in the reading of both Chapters 1 and 2.
2See,e.g., the corresponding sections of [122], [4] or [62] for large and detailed discussions

on this issue.

16



17

truth and falsity and system IL0 further adds the so-called “boolean Induction

Axiom” and thus contains all axioms governing the boolean atomic formulas.

Finally, system IL is the pure predicate intuitionistic logic which simply adds

to IL0 the equivalence between boolean and logical falsity. Moreover, each of

ML0 , ML, IL0 and IL has its version with ∃ or/and ncm quantifiers, hence we

have the systems:

ML∃0 ⊂ ML∃ ⊂ IL∃0 ⊂ IL∃ ⊂ WeZ∃

MLnc0 ⊂ MLnc ⊂ ILnc0 ⊂ ILnc ⊂ WeZnc

ML
∃,nc
0 ⊂ ML∃,nc ⊂ IL

∃,nc
0 ⊂ IL∃,nc ⊂ WeZ∃,nc .

Sections 1.2 and 1.3 in the sequel contain the detailed definitions of all the

above systems. The ncm arithmetics WeZnc and WeZ∃,nc will then be extended in

Section 1.4 with both the usual non-intuitionistic principles directly realized

by the Dialectica interpretation, here extended to the new ncm setting but also

with new principles. The latter are obtained by replacing the strong ∃ with

the weak ∃cl in (certain restrictions of) the usual axioms of Independence of

Premises and Axiom of Choice. See Section 1.4 for full details.

We also further device in Section 1.5 the monotonic variants of the above

ncm intuitionistic and extended Arithmetics. The most important quality

of these new monotone ncm Arithmetics WeZncm , WeZ
∃,nc
m , WeZnc+m and WeZ∃,nc+m

is that the quite drastic restriction on the Implication Introduction rule is

no longer necessary, see Remark 1.16. The light Monotone Dialectica inter-

pretation will thus be able to mine more proofs which make use of the ncm

quantifiers, see Theorem 2.12. In the end we extend both monotonic and non-

monotonic ncm arithmetics with full classical logic, in Section 1.6. We will see

later in Section 2.3 that the Light Dialectica extraction has big difficulties to

extend to a full classical logic context. On the contrary, the Light Monotone

Dialectica quickly extends to full classical logic in the usual way, due to the

lack of restriction on Implication Introduction.

According to its authors, system Z3 is an extension of Gödel’s T with the

logical and arithmetical apparatus which renders it suitable to the applied

program extraction from classical proofs by means of the refined A-translation

of [9]. A corresponding statement can be made about the triple of systems

WeZ∃ , WeZnc and WeZ∃,nc , relative to the machine extraction by the hereby pre-

3Together with its natural companion Z∃ , which simply adds to Z the axioms defining the

strong ∃. The intuitionistic ∃ is already present in [9], but rather implicitly. It is nevertheless

somewhat more explicitly presented and treated in [110].



18 Arithmetical systems for Gödel functionals

sented Light Dialectica interpretation. Similarly, systems WeZ∃m , WeZ
∃,nc+
m and

WeZ∃,nc,c+m appear to be the optimal logical-and-arithmetical extensions of T in

view of majorant and bound extraction by means of the Light Monotone Di-

alectica (in combination with Kuroda or Gödel-Gentzen negative translations

for full classical logic, see Section 2.3).

1.1 Languages, types, terms and formulas

Finite types are inductively generated from base types by the rule that if

σ and τ are types then (στ) is a type. For simplicity we take as base types

only the type ι for natural numbers and o for booleans. Types are normally

denoted by the symbols δ, γ, ρ, σ and τ , which are in principle reserved for such

purpose. We make the convention that concatenation is right associative and

consequently omit unnecessary parenthesis, writing δ σ τ instead of (δ(στ)).

We denote tuples of types by σ :≡σ1, . . . , σn . We abbreviate by στ the type

σ1 . . . σnτ . It is immediate that every type τ can be written as either τ ≡ σι

or τ ≡ σo.

The term system, which we denote by T , is a variant of Gödel’s T for-

mulated over the finite types with lambda-abstraction as primitive. This is

most appropriate in a Natural Deduction context. Terms are hence built from

variables and term constants by lambda-abstraction and application. We re-

present the latter as concatenation and we agree that it is left-associative in

order to avoid excessive parenthesizing. All variables and constants have an

a priori fixed type and terms have a type fixed by their formation. Written

term expressions are always assumed to be well-formed in the sense that types

match in all applications between sub-terms.

Definition 1.1 As particular term constants we distinguish the following:

tto and ffo which denote boolean truth and falsity;

for each type τ the selector Ifτ of type o τ τ τ which denotes choice

according to a boolean condition with the usual if-then-else semantics;

Oι (zero), Sucιι (successor) and Gödel’s recursor Rτ of type τ (ι τ τ) ι τ ;

equality Eq ι ι o - a functional constant and not predicate in our system.

Variables are denoted by a, b, c, p, q, u, v, x, y, z, U, V,X, Y, Z such that, if

not otherwise specified, a, b, c are free and u, v, x, y, z are bound variables of



1.1. Languages, types, terms and formulas 19

type ι. Here free and bound are meant w.r.t. the formula quantifiers, intro-

duced later in the sequel. Also p, q denote variables of type o (be them free or

bound) and U, V,X, Y, Z are functional variables (i.e., not of base type). We

denote terms by r, s, t, S, T . Relative to lambda-abstraction we distinguish the

sets of lambda-free and lambda-bound variables of a term.

Convention 1.2 We use sub- or super- scripts to enlarge the classes of sym-

bols. We use underlined letters to denote tuples of corresponding objects.

Tuples are just comma-separated lists of objects. If t ≡ t1, . . . , tn we denote

by s(t) or even st the term st1 . . . tn , i.e., ((st1) . . .)tn by the left-associativity

convention. Also s(t) and s t denote the tuple s1(t), . . . , sm(t).

Definition 1.3 As particular terms we distinguish the following:

Boolean conjunction, implication and disjunction, which have their usual

boolean semantics, all defined in terms of tt, ff and Ifo only:

Andooo :≡ λp, q. Ifo p q ff (1.1)

Impooo :≡ λp, q. Ifo p q tt (1.2)

Orooo :≡ λp, q. Ifo p tt q (1.3)

For each higher-order type τ ≡ σδ with δ ∈ {ι, o} we define the zero

term Oτ of type τ to be λxσ. Oδ , where Oι :≡ O and Oo :≡ ff. Hence every

type is inhabited by a zero term.

For each positive integer n and type τ we define the n-selector Ifnτ of

type
n︷ ︸︸ ︷

o . . . o

n︷ ︸︸ ︷
τ . . . τ τ τ by Ifτ :≡ Ifτ and for n ≥ 2,

Ifnτ :≡ λp1, . . . , pn, xn+1, xn, . . . , x1 .

Ifτ p1 (Ifn−τ p2 . . . pn xn+1 xn . . . x2)x1 (1.4)

hence generally Ifnτ (r1, . . . , rn, tn+1, tn, . . . , t1) selects the first ti with

i ∈ 1, n for which ri is false, if it exists, otherwise (if all {ri}ni=1 are true)

it selects tn+1.

Our base logical systems IL, IL∃ , ILnc and IL∃,nc will be Natural Deduction

formulations of Intuitionistic Logic which are inspired mostly by [9], [110] and



20 Arithmetical systems for Gödel functionals

also by the more recent paper [8], see Section 1.2 below. We will also distin-

guish4 the Minimal Logic5 subsystems ML0/ML
∃
0/ML

nc
0 /ML

∃,nc
0 , ML/ML∃/MLnc/ML∃,nc

and IL0/IL
∃
0/IL

nc
0 /IL

∃,nc
0 . Details are in Definitions 1.20, 1.24 and finally 1.26.

We will therefore use ∧ (logical conjunction), → (logical implication), ∀
(forall) and optionally ∃ (strong, “intuitionistic” exists) as base logical con-

stants. The only predicate symbols are the unary at, which takes a sin-

gle boolean argument, and the zeroary ⊥ which denotes logical falsity. If

to is a boolean term then at(t) is the atomic formula which (informally)

denotes the fact that t is true. Prime formulas are the atomic formulas

{at(t)| t term of type o} plus the logical falsity ⊥. The prime formula ⊥ is

not a priori equivalent to the so-called boolean falsity at(ff). It becomes so

only after the explicit inclusion of ⊥ → at(ff) in the intuitionistic systems,

see Definition 1.24. The weak (“classical”) existential quantifier ∃cl is defined

in terms of ∀ and ⊥ as

∃clxA(x) :≡ (∀x.A(x)→ ⊥)→ ⊥ (1.5)

Negation ¬ and equivalence ↔ are defined as usual, i.e., ¬A :≡A→ ⊥ and

A↔ B :≡ ((A→ B) ∧ (B → A)). Disjunction is defined by

A ∨B :≡ ∃po [ (p =o tt→ A) ∧ (p =o ff→ B) ] (1.6)

Here predicate equality at base types is defined for boolean terms s and t by

s =o t :≡ at(s)↔ at(t) (1.7)

and for natural terms s and t by s =ι t :≡ at(Eq s t). Equality between terms

s and t of type τ ≡ σ1 . . . σnσ, with σ ∈ {o, ι}, is extensionally defined as

s =τ t :≡ ∀xσ11 , . . . , xσnn (s x1 . . . xn =σ t x1 . . . xn) (1.8)

We also denote by s 6=τ t :≡ ¬(s =τ t) the non-equality between s and t. We

will often omit to specify the type τ of equality or non-equality wherever there

is no ambiguity.

Definition 1.4 (Quantifier-free formula) By quantifier-free (abbreviated

qfr) formula we understand a formula built from prime formulas at(to) and

4We do so because of the prominent place the minimal arithmetic Z0 has in the mech-

anism of the refined A-translation extraction technique of [9]. This distinction will be very

useful for the comparison with the BBS refined A-translation exposed in Section 4.1.1.
5The historically first Minimal Logic system is due to Johansson [59].



1.1. Languages, types, terms and formulas 21

⊥ by means of ∧, → and, if ∃ is available, also ∨. All qfr formulas will

be decidable in our systems, as soon as these include intuitionistic logic, see

Lemma 1.36. The qfr formulas will be denoted by A0 , B0 , C0 , etc. . . .

Definition 1.5 For a type σ we define the degree (also known as level) of σ,

denoted dg(σ), by dg(ι) := dg(o) := 0 and dg(ρτ) := max{dg(ρ) + 1 , dg(τ)}.
The definition extends to terms tσ (i.e., t of type σ) by dg(t) :≡ dg(σ).

Definition 1.6 We denote by mdg(t), d(t) and S(t) the maximal type degree

of a subterm, the depth and respectively the size of t.

We also introduce in our system an adaptation of Berger’s [8] uniform

quantifiers, here denoted ∀ (forall ncm) and ∃ (exists ncm) to the extraction of

(more efficient) programs by Gödel’s Dialectica interpretation. From a logic

viewpoint ∀ and ∃ behave exactly like ∀ and ∃ - a metatheorem stating that

“the (purely syntactic) replacement of ∀ and ∃ with their computationally

meaningful6 (or regular) correspondents in a proof P yields a(nother) proof in

the same system” can be established. However, the converse to this metathe-

orem does not hold (in general) because of the (necessary) restriction which

is set on the introduction rule of the ncm-universal quantifier (see Section 1.2

below). The special rôle of ∀ and ∃ is played in the program-extraction process

only. There they act like some kind of labels for parts of the proof at input

which are to be ignored since they are a priory (i.e., at the proof-building

stage) distinguished as having no computational content.

They also bring an important optimization with respect to the maximal

type degree of programs extracted from those proofs for which the use of

the computationally meaningful correspondents would have just brought an

unjustified increase of this maximal type degree (upon which the run-time

complexity of the normalization algorithm directly depends, regardless of the

reduction strategy, see Berger’s paper [8] for more on this).

Definition 1.7 We denote by L the language which does not contain any of

∃, ∃, ∀ and by F the corresponding set of formulas. By L∃/F∃ and Lnc/Fnc

the languages / respectively sets of formulas which may contain ∃ but none

of ∃, ∀ and respectively which may contain ∀ but none of ∃, ∃. Finally, by

L∃,nc/F∃,nc we denote the full language / set of formulas, in which all of ∃, ∃,
∀ are allowed.

6Notice that ∀ is as computationally meaningful as ∃ in the context of program extraction

by the (light, monotone) Dialectica interpretation, see Definition 2.1 and Theorem 2.10.



22 Arithmetical systems for Gödel functionals

Definition 1.8 Similar to ∃cl - see (1.5) - we define a weak ncm-existential

quantifier ∃cl by

∃clxA(x) :≡ (∀x.A(x)→ ⊥)→ ⊥ (1.9)

In order to avoid excessive parenthesizing we make the usual conventions

that ∀, ∀, ∃cl , ∃, ∃cl , ∃, ¬, ∧, ∨, →, ↔ is the decreasing order of precedence

and that → is right associative. For (more efficient) program-extraction pur-

poses we will impose that all axioms are closed formulas and for optimization

purposes - at the example of Schwichtenberg’s MinLog system [110, 115] - their

closure is ensured with ∀ rather than ∀. The only (but notable) exception7 to

this rule is the Induction Axiom IA, see Section 1.3 for the various definitions

of Induction within system WeZ∃,nc . Therefore it will be understood that even

though a formula presented below as axiom is literally open, in fact the axiom

it denotes is the ∀ closure of the respective formula.

Positive and negative occurrences of quantifiers ∀, ∃, ∀, ∃ in formulas

Definition 1.9 (Quantifier-counting meta-functions) Given that Q is a

universal or existential (ncm) quantifier – hence Q ∈ {∀,∃,∀,∃}, we define by

induction on the structure of the formula A the following meta-functions:

occ?(Q, A) – which counts all occurrences of the quantifier Q in A

occ+(Q, A) which counts all the so-called positive occurrences of Q in A

occ−(Q, A) which counts all the so-called negative occurrences of Q in A

Hence the (mutually recursive) definition is as follows:

1. For prime formulas P :

occ?(Q, P ) := 0

occ+(Q, P ) := 0

occ−(Q, P ) := 0

7This exception is necessary (only) in the context of Light Dialectica extraction (pre-

sented in Chapter 2) because the Dialectica realizers of IA integrate the induction formula

via an →+ with contraction, see Section 1.3.5 and the proof of Theorem 2.10 below.



1.1. Languages, types, terms and formulas 23

2. For the “same-quantified” formulas QxA(x) :

occ?(Q, QxA(x)) := occ?(Q, A(x)) + 1

occ+(Q, QxA(x)) := occ+(Q, A(x)) + 1

occ−(Q, QxA(x)) := occ−(Q, A(x))

3. For the “different-quantified” formulas Q′xA(x), where Q′ ∈ {∀,∃,∀,∃}
such that Q 6≡ Q′ :

occ?(Q, Q′xA(x)) := occ?(Q, A(x))

occ+(Q, Q′xA(x)) := occ+(Q, A(x))

occ−(Q, Q′xA(x)) := occ−(Q, A(x))

4. For the conjunctive formulas:

occ?(Q, A ∧B) := occ?(Q, A) + occ?(Q, B)

occ+(Q, A ∧B) := occ+(Q, A) + occ+(Q, B)

occ−(Q, A ∧B) := occ−(Q, A) + occ−(Q, B)

5. For the implicative formulas:

occ?(Q, A→ B) := occ?(Q, A) + occ?(Q, B)

occ+(Q, A→ B) := occ−(Q, A) + occ+(Q, B)

occ−(Q, A→ B) := occ+(Q, A) + occ−(Q, B)

Definition 1.10 (Positive/negative occurrence/position of Q in A)

We say that “Q has (at least) a positive occurrence in A”, which we abbreviate

Occ+(Q,A), if occ+(Q, A) > 0 and also that “Q has (at least) a negative

occurrence in A”, abbreviated Occ−(Q,A), if occ−(Q, A) > 0. The instances

of the quantifiers Q which count up into occ+ are named “occurrences of Q

in positive positions” and also symmetrically “occurrences of Q in negative

positions” when such instances of Q count up into occ− .

Remark 1.11 The meta-predicates Occ+(Q,A) and Occ−(Q,A) can also be

recursively defined more directly.



24 Arithmetical systems for Gödel functionals

Proposition 1.12 (Soundness of the occ meta-functions) For every

quantifier Q ∈ {∀,∃,∀,∃} and formula A, the following equality holds:

occ?(Q, A) = occ+(Q, A) + occ−(Q, A)

Proof: An occurrence of Q in A is either positive or negative. 2

Definition 1.13 (Strictly positive occurrence/position of Q in A)

An occurrence of the quantifier Q in the formula A is said to be strictly positive

(or “in a strictly positive position”) if it counts up into the modified variant

of occ+ , which defines occ+(Q, A→ B) := occ+(Q, B).

Remark 1.14 (Relation with Berger’s homonymic notions) The notions

of Definition 1.10, although related to the similar notions of Q-negative and Q-

positive formulas (with Q ∈ {∀, ∃}) from Berger [8], are nonetheless different.

Basically, for Berger, a formula A is Q-negative iff occ?(Q, A) = occ−(Q, A)

and is Q-positive iff occ?(Q, A) = occ+(Q, A). On the other hand, our no-

tion from Definition 1.13 of “strictly positive” occurrence/position of Q in a

formula coincides with Berger’s similar notion from [8].

1.2 Logical axioms and rules and

Boolean axioms

We begin by adapting the set of rules for the first-order Minimal predicate

Logic from [110] and/or [9] 8 to the setting of program-extraction by the light

(monotone) Dialectica interpretation (defined in Chapter 2). First of all we

define the following two variable conditions which will be used to constrain

the rules concerning the (ncm-)universal quantifier:

– VC(z) : the variable z does not occur free in any of the undischarged

assumptions of the proof of the premise of the rule;

– VC(z, t) : the term t is “free for” z in the conclusion, i.e., no free variable

of t gets quantified after substituting {z← t} in the conclusion.

We also define an ncm - formula condition which is required to constrain the

rule of Implication Introduction (abbreviated “Imp Intro”) which has that kind

8These purely logical rules are the same as those from the first-order restriction of the

Uniform Arithmetic HAu of [8].



1.2. Logical axioms and rules and Boolean axioms 25

of contraction formula which is computationally relevant to the Light Dialec-

tica (see below for this terminology). Such a restriction will be necessary in or-

der to attain soundness of program-extraction by the light (monotone) Dialec-

tica interpretation in Theorems 2.10 and respectively 2.12 from Chapter 2.

Definition 1.15 (The ncm−FC restriction) For some given formula A, ifA

contains (at least) a positive universal or a negative existential (regular) quan-

tifier, then A does not contain any ncm quantifier. We abbreviate this “ncm -

Formula Condition” restriction set onA by the shorter expression ncm−FC(A).

Remark 1.16 (Rôle of ncm−FC during LD-extraction) If the ncm−FC(A)

restriction holds, then the LD-interpretation of A (see Definition 2.1) will have

a quantifier-free base formula AD . Therefore AD will be decidable, cf. Propo-

sition 1.35 / Lemma 1.36. If A is the formula-type of the (parcel) assumption

variable u which is to be cancelled at some Imp Intro with LDR-contraction

(see below), the decidability of AD will be strictly and unavoidably necessary

for determining, according to actual values, which of the terms Light Dialec-

tica realizing the multiple instances of A is chosen to Light Dialectica realize

the new single implicative assumption A of the conclusion formula of such an

Imp Intro. See Definition 2.6 and the proof of Theorem 2.10 for details.

The logical rules of our systems are then as follows:

1. Deduction from an (arbitrary, undischarged) assumption: A ` A .

2. Conjunction elimination left:
A ∧B

A
∧−l , Conjunction elimination

right:
A ∧B

B
∧−r and Conjunction introduction:

A , B

A ∧B
∧+ .

3. Implication elimination:
A , A→ B

B
→− (Modus Ponens).

4. Implication introduction:
[u : A] . . . /B

A→ B
→+ , where a particular (pos-

sibly empty) class u 9 of instances of the introduction formula A among

9This is called a “parcel” in [42], which is just a different terminology for the very same

notion of “assumption variable” from [110].



26 Arithmetical systems for Gödel functionals

the undischarged assumptions of the proof of B gets discharged. If at

least two such instances of A get discharged one says that the→+ is with

(logical) contraction and that A is its contraction formula. In such a situ-

ation the ncm−FC(A) restriction applies. If none or just one instance of A

gets cancelled, then one says that the→+ is without (logical) contraction.

Definition 1.17 (n-contraction) Let n ∈ N. We say that an →+ is

with n-contraction if n is the number of instances of its introduction

formula which are discharged in the respective →+ . For n ∈ {0, 1} no

(logical) contraction occurs, but it is technically useful to specify in this

way the lack of (even) logical contraction.

Definition 1.18 (computationally relevant contraction formula)

A contraction formula A is said to be computationally relevant to the LD-

interpretation (abbreviated “computationally LD-relevant”) if the premise

of ncm−FC(A) holds, i.e., if A contains at least a positive universal or a

negative existential (regular) quantifier. If this is the case, we say that

A is a “Light Dialectica relevant contraction” (abbreviated “LD-relevant

contraction” and even shorter, “LDR-contraction”) formula. We also say

about the corresponding →+ that it is “with LD-relevant contraction”.

Otherwise, the formula A is said to be computationally irrelevant to the

LD-interpretation and the corresponding→+ is “without LD-relevant con-

traction” or, equally, that it is “with LD-irrelevant contraction”. Notice

that, relative to the LD-interpretation, the only “true” contractions are

the LD-relevant contractions. All the other, “purely logical” contractions

have absolutely no computational impact under the LD-interpretation.

Remark 1.19 (computationally D-redundant contraction) LetA

be a contraction formula. Because of the ncm−FC(A), ifA is computation-

ally LD-relevant then it contains regular quantifiers only. Hence if A con-

tains (at least) a positive universal or a negative existential ncm quantifier

then it must be computationally LD-irrelevant. Such D-relevant contrac-

tion formula A would certainly have some computational content under

the pure Gödel Dialectica interpretation. However, its computational

contribution to the extracted terms of interest gets eliminated in the

very final normalization process, see Section 4.5 for such an example.

Such computationally LD-irrelevant contraction formulas are thus truly

computationally redundant under the pure Dialectica interpretation.



1.2. Logical axioms and rules and Boolean axioms 27

5. ForAll elimination:
∀z A(z)

A(t)
∀−z,t , such that VC(z, t) .

6. ncm-ForAll elimination:
∀z A(z)

A(t)
∀ −z,t , such that VC(z, t) .

7. ForAll introduction:
A(z)

∀zA(z)
∀+z , such that VC(z) .

8. ncm-ForAll introduction:
P: A(z)

∀zA(z)
∀ +

z , such that VC(z) and VC(z,P).

The latter (third) variable condition applies to the ∀-quantified variables

only. Although partly the same as the pre-condition set by Berger on

his {∀}+ rule in [8], an addition peculiar to light-Dialectica extraction is

necessary, but also a relaxation is possible in both kinds of situation:

– VC(z,P) : the variable z does not occur free in the instantiating

terms t involved by the ForAll eliminations ∀−•,t from the proof P
(so far Berger’s restriction) and z is also not free in the computa-

tionally LD-relevant contraction formulas involved by Implication

Introductions →+ from P (see Definition 1.18), except10 for the

cases when at some point in P subsequent to such a ∀− or →+ ,

the variable z gets to no longer be free in any of the uncancelled

assumption or conclusion formulas of such a sub-proof of P .

Definition 1.20 (Minimal Logics MLnc0 /ML0, ML
nc/ML and ILnc0 /IL0)

We denote by MLnc0 the above ncm minimal logic deduction system and by ML0

the system MLnc0 without the rules ∀ − and ∀ +
. Hence the languages of both

MLnc0 and ML0 do include the ncm quantifiers and also the ncm−FC restriction

on →+ , but ML0 does not include ∀ − and ∀ +
. We denote by MLnc and ML the

extensions of MLnc0 and respectively ML0 with the following two boolean axioms :

10This exception is not necessary for the soundness of the “light” program extraction,

but allows an enlargement of the class of admissible proofs. The condition is easy to verify

by always keeping a list of variables which are free in the uncancelled assumptions or in the

conclusion formula of the current (sub-)proof. It is effectively possible that z disappears

from such a dynamic list, subsequent to its introduction by a ∀−•,t or a →+ , hence it makes

sense to spend some (few, linear overhead) resources on verifying this exception.



28 Arithmetical systems for Gödel functionals

AxFLS : at(ff)→ A (Boolean Ex-Falso-Quodlibet)

AxTRH : at(tt) (Boolean Truth Axiom)

Systems ILnc0 and IL0 are obtained by extending MLnc, respectively ML with the

following third boolean axiom:

AxBIA : A(tt) ∧ A(ff) → ∀poA(p) (Boolean Induction Axiom)

and also all equality axioms introduced in the subsequent Section 1.3 restricted

to terms built from variables and constants of type o only. The latter addi-

tion is purely technical – we make it in order to enhance the expressiveness of

our non-arithmetical systems so that equivalence between boolean and logical

conjunction, implication and (if available) disjunction can be proved in the

minimal systems already, see Lemma 1.34.

Remark 1.21 Modulo the ncm−FC restriction, system ML0 is the regular Min-

imal Logic system. Deduction in ML0 is thus simply regular Minimal Logic

deduction if the language of the formulas involved does not contain any ncm

quantifier. On the contrary, if this language contains ncm quantifiers, then the

ncm−FC restriction applies to all→+ with contraction of such ML0 deductions.

Remark 1.22 Axioms AxFLS and AxTRH give the desired logical behaviour of

the boolean constants ff, respectively tt. They are also essential for proving

the aforementioned Lemma 1.34. Whereas AxTRH establishes the equivalence

of boolean and logical truth, AxFLS only implies that boolean falsity is stronger

than logical falsity, see also Remark 1.25 below.

Remark 1.23 Axiom AxBIA is necessary for attaining in our formulation the

usual logical behaviour of ∨. Only the “disjunction introduction” theorems

A→ A ∨B and B → A ∨B can be ensured in ML∃ by the definition (1.6) of

∨ alone. The proof of the “elimination of disjunction” schema

A→ C , B → C ` (A ∨B) → C

requires the further addition of AxBIA, see Proposition 1.33 below.

Definition 1.24 (Intuitionistic Logics ILnc/IL) Systems ILnc and IL are

obtained by extending ILnc0 , respectively IL0 with the logical axiom

AxEFQ : ⊥ → at(ff) (Logical Ex-Falso-Quodlibet)



1.2. Logical axioms and rules and Boolean axioms 29

Remark 1.25 The addition of AxEFQ is essential for attaining the equiva-

lence of boolean and logical falsity in the systems ILnc/IL, see Remark 1.22

above. For this reason, axiom AxEFQ will also be essential in the treatment of

quantifier-free formulas as atomic formulas, see Proposition 1.35.

Following [9] rather than [8] we consider that the strong existential quan-

tifiers are not automatically part of minimal or intuitionistic logics. They can

be modularly adjoined to the above logical systems, via the following axioms:

Ax∃− : ∃z1A(z1) ∧ ∀z2 [A(z2) → B ] → B (∃ elimination)

Ax∃+ : ∀z1 [A(z1) → ∃z2A(z2) ] (∃ introduction)

Ax∃− : ∃z1A(z1) ∧ ∀z2 [A(z2) → B ] → B (∃ elimination)

Ax∃+
: ∀z1 [A(z1) → ∃z2A(z2) ] (∃ introduction)

with the usual restriction that z2 is not free in B. We thus obtain the following:

Definition 1.26 (Minimal|Intuitionistic Logics with strong existence)

Systems ML∃0/ML
∃/IL∃0|IL∃ are obtained by adding Ax∃− and Ax∃+ to ML0/ML/IL0 ,

respectively IL. Systems ML
∃,nc
0 /ML∃,nc/IL∃,nc0 |IL∃,nc are obtained by adding to

MLnc0 /ML
nc/ILnc0 |ILnc all four axioms defining ∃ and ∃ : Ax∃−, Ax∃+, Ax∃−, Ax∃+

.

Notation. We will denote by IL(∃) :≡ IL/IL∃ , i.e., IL(∃) acts like a placeholder

for both IL and IL∃ . Similarly IL
(∃)
0 :≡ IL0/IL

∃
0 and IL

(nc)
0 :≡ IL0/IL

nc
0 .

The strong existential quantifiers (including ∨) could have equally been

introduced by means of rules instead of axioms, see, e.g., the presentations

from the more recent paper [8] or the more complete book [122]. We here

follow [110] in choosing a formulation which we also find more suitable for

the computer-applied program extraction from (classical) proofs, particularly

when using the implemented MinLog proof-system [48, 115].

1.2.1 Stability, Case Distinction, Decidability and

Disjunction Introduction/Elimination

Notational Convention. For simplicity we here-on abbreviate at(tt) by T

and at(ff) by F. We also abbreviate by eA :≡ A → F the so-called “boolean

negation” of the formula A.



30 Arithmetical systems for Gödel functionals

Lemma 1.27 The following hold in minimal logics ML, respectively IL0 :

ML ` ∀q. q =o tt ↔ at(q) (1.10)

ML ` ∀q. q =o ff ↔ (at(q)→ F) ≡ eat(q) (1.11)

ML ` ∀q. eat(q) → ¬at(q) (1.12)

ML ` [∀q. ¬at(q) →eat(q) ] ↔ (⊥ → F) (1.13)

IL0 ` [∀q. ¬¬at(q) → at(q) ] ↔ (⊥ → F) (1.14)

Proof: Even without using AxBIA, (1.10), (1.11) and (1.12) are simply imme-

diate from the definition (1.7) of =o , AxTRH and AxFLS. Also without AxBIA,

at (1.13) the direction “←” follows immediately and the direction “→” fol-

lows from AxTRH after setting q := tt. The direction “←” of (1.14) can only be

proved by boolean induction AxBIA on q. Hence for q ≡ tt, ¬¬at(tt) → at(tt)

follows from AxTRH.On the other hand, for q ≡ ff, ¬¬at(ff) → at(ff) rewrites

as ((F→ ⊥)→ ⊥)→ F which is immediately seen to be equivalent to ⊥ → F

in minimal logic ML. This also proves the direction “→” of (1.14). 2

Corollary 1.28 (Boolean/Logical Stability of atomic formulas)

In the same lines of the above proof of (1.14) it immediately follows that:

IL0 ` ∀qo . eeat(q) → at(q) (1.15)

On the other hand, from (1.14) it immediately follows that

IL ` ∀qo . ¬¬at(q) → at(q) (1.16)

where the axiom AxEFQ : ⊥ → F is strictly necessary in the proof of (1.16).

Lemma 1.29 (Boolean/Logical Case Distinction on atomic formulas)

The following hold in minimal logic IL0 for every formula A of F∃,nc :

IL0 ` ∀qo. (q =o tt→ A) ∧ (q =o ff→ A) → A

IL0 ` ∀qo. (at(q)→ A) ∧ (eat(q)→ A) → A

IL0 ` ∀qo. (at(q)→ A) ∧ (¬at(q)→ A) → A

Proof: Immediate by AxBIA, AxTRH, AxFLS, (1.10), (1.11) and the definitions

of e, respectively ¬. Since all→+ involved in these proofs are without contrac-

tion, the ncm−FC restriction is satisfied even when A contains ncm quantifiers.

2



1.2. Logical axioms and rules and Boolean axioms 31

Lemma 1.30 (Boolean Multiple Distinction over atomic formulas)

Let p1, . . . , pn be variables of type o. Then for every formula B of F∃,nc , the

following sentence is a theorem of IL0 (below one omits the display of the

leading ∀ quantification over p1, . . . , pn , which is self-understood):

( eat(p1) → B ) → [ at(p1) ∧ eat(p2) → B ] → . . .

. . . → [∧i−1j=1at(pj) ∧ eat(pi) → B ] → . . .

. . . → [∧n−1j=1at(pj) ∧ eat(pn) → B ] → ∧ni=1at(pi) → B

Proof: Multiple boolean induction over p1, . . . , pn and use of AxTRH, AxFLS.

2

Lemma 1.31 (Boolean/Logical Decidability of atomic formulas)

The following hold in minimal logic IL∃0 :

IL∃0 ` ∀qo. q =o tt ∨ q =o ff

IL∃0 ` ∀qo. at(q)∨ eat(q)

IL∃0 ` ∀qo. at(q) ∨ ¬at(q)

Proof: By unfolding the definition (1.6) of ∨ and using (1.10), (1.11) and

the definitions of e, respectively ¬, the conclusions become

IL∃0 ` ∀q ∃p . ( at(p) → at(q) ) ∧ [ (at(p)→ F) → (at(q)→ F) ]

IL∃0 ` ∀q ∃p . ( at(p) → at(q) ) ∧ [ (at(p)→ F) → (at(q)→ ⊥) ] (1.17)

which are immediate after we set p :≡ q, also using AxFLS for (1.17). 2

Lemma 1.32 (Boolean/Logical Multiple Decidability of atmc fmlas)

Let p1, . . . , pn be variables of type o. Then the following hold both in IL∃0 :

` eat(p1) ∨ [at(p1)∧eat(p2)] ∨ . . . [∧i−1j=1at(pj)∧eat(pi)] . . . ∨ [∧ni=1at(pi)]

` ¬at(p1) ∨ [at(p1)∧¬at(p2)] ∨ . . . [∧i−1j=1at(pj)∧¬at(pi)] . . . ∨ [∧ni=1at(pi)]

Proof: Multiple boolean induction over p1, . . . , pn , unfolding of the definition

(1.6) of ∨ and use of AxTRH, AxFLS. 2

Proposition 1.33 (Disjunction Introduction and Elimination)

For all n ∈ N, all i ∈ 1, n, and B,Ai ∈ F∃,nc the following hold:

ML∃ ` Ai → ∨ni=1Ai (1.18)

IL∃0 ` (A1 → B)→ . . .→ (An → B)→ (∨ni=1Ai → B) (1.19)



32 Arithmetical systems for Gödel functionals

Proof: In both minimal logic proofs which we provide for (1.18) and (1.19),

the →+ are without (logical) contraction, hence the ncm−FC restriction is

obviously satisfied. In both cases it is sufficient to establish such proofs for

n = 2. These immediately give the induction step in the meta-proof for a more

general n. For (1.18) we have

ML ` A1 → (tt =o tt→ A1) ∧ (tt =o ff→ A2)

ML ` A2 → (tt =o ff→ A1) ∧ (tt =o tt→ A2)

from which (1.18) follows immediately by Ax∃+ . After using Ax∃− once, for

(1.19) we only need to prove that the following holds in IL0 :

A1 → B , A2 → B ` ∀po. (p =o tt→ A1) ∧ (p =o ff→ A2) → B

which reduces to finding a proof of B from assumptions A1 → B, A2 → B,

p =o tt→ A1 and p =o ff→ A2 . It is then enough to find a proof of B from the

assumptions p =o tt→ B and p =o ff→ B. This is just a Case Distinction.

2

Lemma 1.34 The following lemmas hold in the minimal logic IL0 , respec-

tively IL∃0 . They establish the equivalence for terms of boolean and logical

conjunction, implication and respectively disjunction. This will permit the

treatment of qfr formulas as atomic formulas in IL(∃) , see Proposition 1.35.

LmAND : IL0 ` ∀po, qo . at(And p q) ↔ at(p) ∧ at(q)

LmIMP : IL0 ` ∀po, qo . at(Imp p q) ↔ at(p)→ at(q)

LmOR : IL∃0 ` ∀po, qo . at(Or p q) ↔ at(p) ∨ at(q)

Proof: All three lemmas can be proved directly by boolean induction on p,

using the definitions (1.1), (1.2) and (1.3), the rewrite rules for AxIfo and gene-

ral logical deduction in IL
(∃)
0 . They can also be established as immediate conse-

quences in IL
(∃)
0 of the following more general IL0-lemma, denoted LmIF, which

gives the full logical behaviour of the if-then-else boolean constant Ifo :

∀po, qo1, qo2 . at(Ifo p q1 q2) ↔ (at(p)→ at(q1)) ∧ [(at(p)→ F)→ at(q2)]

At its turn, LmIF is immediately proved in IL0 by boolean induction on p. 2

Proposition 1.35 (Equivalence between qfr and atomic formulas)

There exists a unique bijective association of boolean terms to quantifier-free

formulas A0 7→ tA0 such that IL ` A0 ↔ at(tA0) holds for all A0 without ∨
and otherwise IL∃ ` A0 ↔ at(tA0) holds for all quantifier-free A0 .



1.2. Logical axioms and rules and Boolean axioms 33

Proof: By induction on the structure of A0 . Obvious for atomic formulas

at(to). For the prime formula ⊥, we have IL ` ⊥ ↔ at(ff), hence t⊥ :≡ ff.

For composed formulas we use LmAND, LmIMP and, if ∃ is available, also LmOR.

2

Lemma 1.36 (Stability, Case Distinction and Decidability for qfr)

The following hold as immediate consequences of Proposition 1.35 applied to

Lemmas 1.28, 1.29 and 1.31 :

IL ` ¬¬A0 → A0 (1.20)

IL ` (A0 → A) ∧ (¬A0 → A) → A (1.21)

IL∃ ` A0 ∨ ¬A0 (1.22)

for every quantifier-free formula A0 of F and every formula A of F∃,nc . In the

case when A0 does not contain ⊥ then also the following can be established

as immediate consequences of Lemmas 1.27, 1.29 and 1.31:

IL0 ` eeA0 → A0

IL0 ` (A0 → A) ∧ (eA0 → A) → A

IL∃0 ` A0∨eA0

Lemma 1.37 (Multiple Case Distinction and Decidability for qfr)

Let A1
0, . . . , A

n
0 be quantifier-free formulas. Then for every formula B of F∃,nc ,

the following “multiple Case Distinction over quantifier-free formulas” formula

holds as theorem of IL :

( eA1
0 → B ) → [A1

0 ∧ eA2
0 → B ] → . . .

. . . → [∧i−1j=1A
j
0 ∧ eAi0 → B ] → . . .

. . . → [∧n−1j=1A
j
0 ∧ eAn0 → B ] → (∧ni=1A

i
0 → B) → B

(1.23)

Also the following sentence of “multiple Decidability for quantifier-free formu-

las” holds in IL∃ :

` eA1
0 ∨ (A1

0 ∧ eA2
0 ) ∨ . . . ∨ (∧i−1j=1A

j
0 ∧ eAi0 ) ∨ . . . ∨ (∧ni=1A

i
0 ) (1.24)

Proof: One combines Proposition 1.35 with Lemma 1.30 and respectively

Lemma 1.32. 2



34 Arithmetical systems for Gödel functionals

Lemma 1.38 The following hold for arbitrary F∃,nc formulas A and B :

ML0 ` A → ¬¬A (1.25)

ML0 ` A → eeA (1.26)

ML0 ` ¬¬∀x¬¬A(x) ↔ ∀x¬¬A(x) (1.27)

ML0 ` ee∀xeeA(x) ↔ ∀xeeA(x) (1.28)

MLnc0 ` ¬¬∀x¬¬A(x) ↔ ∀x¬¬A(x) (1.29)

MLnc0 ` ee∀xeeA(x) ↔ ∀xeeA(x) (1.30)

Schemas (1.27), (1.28), (1.29) and (1.30) hold also for x a tuple of variables.

Proof: By the definitions of ¬, respectively e, (1.25) and (1.26) are simply

obvious. We here give in detail only the proof of (1.29). This is actually

similar to the usual proof of (1.27) (see, e.g., [110, 122]) because the special

conditions for the ncm universal quantifier introduction are satisfied. The

implication ∀x¬¬A(x) → ¬¬∀x¬¬A(x) is just an instance of (1.25). Below

we display the MLnc0 proof of the converse:

P


¬¬∀x¬¬A(x)

[1 : ∀x¬¬A(x)] y

¬¬A(y)
[2 : ¬A(y)]

⊥
¬∀x¬¬A(x)

→+
1

⊥

¬¬A(y)
→+

2

∀y¬¬A(y)
∀ +

y

Notice that VC(y,P) is immediately satisfied because P contains no ∀− and

both→+
1 and→+

2 are without contraction. Also VC(y) holds because the only

undischarged assumption of P is ¬¬∀x¬¬A(x) (see it framed in P above).

2

Lemma 1.39 The following hold for arbitrary F∃ formulas A and B :

ML0 ` ¬¬(A ∧B) ↔ (¬¬A) ∧ (¬¬B) (1.31)

IL ` ¬¬(A→ B) ↔ (A→ ¬¬B) ↔ (¬¬A→ ¬¬B) (1.32)

However, none of (1.31), (1.32) scales to the language L∃,nc , in the sense that

there exist formulas A and B of F∃,nc such that at least one of A, B contains at

least an ncm quantifier and (1.31), respectively (1.32) do not hold in MLnc0 /IL
nc .



1.2. Logical axioms and rules and Boolean axioms 35

Proof: Both (1.31) and (1.32) have straightforward generic Natural Deduc-

tion proofs which can be found, e.g., in [110, 122]. No meta-induction on the

structure of formulas is needed. At (1.32) only the more difficult implication

(¬¬A → ¬¬B) → ¬¬(A→ B) (1.33)

requires an AxEFQ, all other implications hold in ML0 . The directions

¬¬(A ∧B) → (¬¬A) ∧ (¬¬B) (1.34)

for (1.31) and (1.33) for (1.32) cannot be proved without contractions over

the formulas ¬¬(A ∧ B) and respectively ¬(A → B). It is very easy to

build such formulas which violate the ncm−FC restriction on→+ and therefore

(1.31)/(1.32) do not hold in ML0/IL in such cases. The addition of the rules

∀ +
and ∀ − does not bring any change to this situation. 2

Lemma 1.40 (Existential-free Stability for L) The schema ¬¬C → C

holds in IL for all formulas C of F . However, the result does not scale to

proofs in ILnc of formulas of Fnc , in the sense that there exists a C which

contains at least a ∀, for which ¬¬C → C does not hold in ILnc .

Proof: We first prove the affirmative statement for formulas without ∀. The

proof is by induction on the structure of the formula C. The case C ≡ A∧B
follows immediately using the implication (1.34) of (1.31). Similarly, for C ≡
A→ B one uses the implication ¬¬(A→ B) → (A→ ¬¬B) of (1.32) and the

induction hypothesis for B only, i.e., ¬¬B → B . For the case C ≡ ∀xA(x)

we have the following minimal logic proof:

P ′︷ ︸︸ ︷
∅
...

¬¬A(y) → A(y)

¬¬∀xA(x)

[2 : ¬A(y)]
[1 : ∀xA(x)] y

A(y)

⊥

¬∀xA(x)
→+

1

⊥

¬¬A(y)
→+

2

A(y)



P

∀yA(y)



36 Arithmetical systems for Gödel functionals

The condition VC(y) is satisfied for the final ∀+y because ¬¬∀xA(x) (which is

displayed framed in P above) is the only undischarged assumption of P and

y is a fresh variable w.r.t. A(x).

For the negative statement, let us first remark that one can build formulas

C ≡ A∧B of Fnc for which ncm−FC(¬¬(A∧B)) does not hold and therefore

(1.34) does not hold, see Lemma 1.39. Another (even earlier, in the induction

course) possibility of a counterexample is for the case C ≡ ∀xA(x) which is

isomorphic with C ≡ ∀xA(x) but the extra condition VC(y,P) may not hold.

Notice that VC(y,P) ⇔ VC(y,P ′) and the latter may not hold because y

may be free in some computationally relevant contraction formula of P ′ . Such

contraction is also due to an implication (1.34), which here involves formulas

without ∀ only. 2

Corollary 1.41 (Partial Stability for L∃ and non-Stability for L∃,nc)
The Stability schema ¬¬C → C holds in IL, for all C of F∃ which do not

contain the strong ∃ in a strictly positive position (see Definition 1.13 for this

notion). No straightly similar statement can be made for formulas C ∈ F∃,nc .

Proof: For the positive statement, one simply exploits the fact that only the

stability of B is required at the induction step for C ≡ A→ B and thus there is

no restriction on A, which can freely contain the strong ∃. On the contrary, if C

contains ncm quantifiers then problems can appear in the inductive treatment

of conjunction, due to the necessary use of (1.34), see also the counterexample

in the proof of Lemma 1.40 above. See also the Remark below. 2

Remark 1.42 (Non-Stability in general for all the ncm languages)

The schema ¬¬C → C would hold in the extension of ILnc with the schema

(1.34) for the full language L∃,nc , certainly for all formulas C of Fnc , but also

for those C ∈ F∃,nc which do not contain ∃ or ∃ in a strictly positive position.

Indeed, the addition of (1.34) as axiom would eliminate the contraction from

its proof and thus also all restrictions involved by the use of ncm universal

quantifiers in the formulas C. But this would only be artificial, since no Light

Dialectica realizer can be directly provided for the LD-interpretation of (1.34)

such that the contraction over ¬¬(A ∧ B) to be avoided. Thus the only

reasonable amount of stability which we can allow in view of our extractive

purposes in the constructive systems is for formulas without ncm quantifiers

and is given in Corollary 1.41 above.

Lemma 1.43 The following hold for all formulas A(z) of Fnc and B of F :



1.3. Weakly extensional Intuitionistic Arithmetics
WeZ, WeZ∃, WeZnc and WeZ∃,nc 37

Lm∃cl− : IL ` ∃clz1A(z1) ∧ ∀z2 [A(z2) → B ] → B (∃cl elimination)

Lm∃cl+ : ML0 ` ∀z1 [A(z1) → ∃clz2A(z2) ] (∃cl introduction)

Lm∃cl− : ILnc ` ∃clz1A(z1) ∧ ∀z2 [A(z2) → B ] → B (∃cl elimination)

Lm∃cl+ : MLnc0 ` ∀z1 [A(z1) → ∃clz2A(z2) ] (∃cl introduction)

with the usual restriction that z2 is not free in B.

Proof: Whereas Lm∃cl+ and Lm∃cl+ are simply immediate after unwinding the

definitions (1.5) and (1.9) of ∃cl , respectively ∃cl , at Lm∃cl− and Lm∃cl− we need

to use Lemma 1.40. It is much easier to directly prove in ML0 , respectively

MLnc0 the variants of Lm∃cl− and Lm∃cl− with the rightmost B replaced by ¬¬B.
One thereafter uses that ¬¬B → B holds in IL, provided that B contains

only regular quantifiers (see Lemma 1.40). For this reason, the final complete

proofs of Lm∃cl− and Lm∃cl− are in IL and respectively ILnc . 2

1.3 Weakly extensional intuitionistic

Arithmetics WeZ, WeZ∃, WeZnc and WeZ∃,nc

We now add the basic arithmetical apparatus to our logical systems. We

begin by integrating Induction for natural numbers (type ι).

1.3.1 The “no-undischarged-assumptions”

Induction rule for naturals

There are very simple realizing terms under Kreisel’s Modified Realizabil-

ity (see [9] and [110]) for the usual Induction Axiom

IA : A(O) → ∀z (A(z)→ A(Suc z)) → ∀z A(z) .

In contrast, the Dialectica realizing terms for IA are (far) more complicated

since they include the Dialectica-translation of A(z), see Section 1.3.5 below

for an explanation of this fact11. The usual induction rule

IR :
A(O) ∀z (A(z)→ A(Suc z))

∀z A(z)

11More direct (but very complicated to display) Dialectica realizers of IA in a slightly

different arithmetical system are presented in [102].



38 Arithmetical systems for Gödel functionals

is fully equivalent to IA (see Section 1.3.5) hence it presents the same prob-

lems w.r.t. Dialectica realizability. Moreover, in the context of light Dialectica

extractability, where input systems may include the ncm quantifiers, the in-

duction formula A(z) of IA or IR would actually be forced not to contain such

ncm quantifiers, see Section 1.3.5 for an explanation.

We therefore choose to use the following variant of the simpler induction

rule employed by Jørgensen in [60]:

IR :

∅
...

A(O)

∅
...

∀z (A(z)→ A(Suc z))

∀z A(z)

No restriction concerning the employment of ncm quantifiers in the induction

formula A(z) of IR is needed. On the other hand, a full logical equivalence

between IR/IA and IR can only be established if A(z) is free of ncm quantifiers.

This is because a ncm−FC(∀z(A(z) → A(Sucz))) restriction applies in the

simulation of IR in terms of IR , see Section 1.3.5 for full details.

1.3.2 The rules of Equality for booleans, naturals

and all complex types

We are now at the point of introducing the axioms which give the (usual)

behaviour of (higher-order extensional) equality, stressing from the beginning

that extensionality must12 be restricted in the context of Dialectica interpre-

tation. The extensionality axiom Eσ,τ : ∀zστ , xσ, yσ. x =σ y → zx =τ zy must

not be derivable in our system. We here deviate from the system Z of Berger,

Buchholz and Schwichtenberg which derives Eσ,τ and hence is fully exten-

sional. But let us first present the more basic Reflexivity, Symmetry and

Transitivity which we prefer to give directly at higher types and therefore we

further prefer to introduce as rules:

12See, e.g., the chapter on Dialectica interpretation in [62] for detailed explanations.

Howard’s original counterexample to the Dialectica realizability of the extensionality axiom

Eιι,ι by Gödel primitive recursive functionals is exposed in [57]. See also [113] for a coun-

terexample to the Dialectica realizability of Eιι,ι by Van de Pol - Schwichtenberg monotone

majorizable functionals (a class intersecting but independent of Gödel’s T) .



1.3. Weakly extensional Intuitionistic Arithmetics
WeZ, WeZ∃, WeZnc and WeZ∃,nc 39

REFτ : x =τ x (Reflexivity)

SYMτ : x =τ y ` y =τ x (Symmetry)

TRZτ : x =τ y , y =τ z ` x =τ z (Transitivity)

Although without computational content under Modified Realizability, the

axiom versions of SYMτ and TRZτ would have required realizing terms under

Dialectica interpretation for higher-order τ . We could have used only the ax-

iom versions of REFι, SYMι and TRZι since higher-type Reflexivity, Symmetry

and Transitivity can be deduced in pure Minimal Logic from the Reflexivity,

Symmetry and respectively Transitivity of natural numbers. The latter are

quantifier-free and hence realizer-free under both Realizability and Dialectica

interpretations. We however chose the above presentation for the practical

reason that proofs are shorter and no Dialectica realizers are needed for the

rule versions of higher-order Symmetry and Transitivity.

We do, however, have to deviate from system Z when it comes to the

Compatibility Axiom (which implies Eσ,τ ) x =σ y → B(x)→ B(y) which

we replace by the following (strictly) weaker Compatibility Rule:

A0 with the restriction that
... all undischarged assumptions used

CMPσ : s =σ t in the proof of s =σ t (here denoted A0)

B(s)→ B(t) are quantifier-free

Had the above restriction13 not been present, the Compatibility Axiom would

be directly deducible by→+, hence full extensionality would be derivable and

Dialectica interpretation would fail to interpret all proofs of our system14.

Definition 1.44 (Safe term substitution) Let s and r be terms and x be

a variable of the same type as r. We define the safe substitution of x with r in

s, denoted s[r/x], to be the new term obtained by substituting the lambda-

free occurrences of x in s with r such that the free variables of r are prevented

from getting bound in s by renaming the clashing lambda-bound variables of

s to some completely fresh variables of corresponding type.

The last equality rule of our systems is the substitution rule (for terms s, t)

13This restriction is not only sufficient but also necessary. Already by allowing purely

universal undischarged assumptions in the proof of s =σ t we can deduce the extensionality

axiom Eιι,ι in our system and are therefore subject to Howard’s counterexample [57].
14Details of the fact that Dialectica is valid for CMP are given in Chapter 2.



40 Arithmetical systems for Gödel functionals

SUBσ : s[x] =σ t[x] ` s[r/x] =σ t[r/x]

in which the variable xτ is safely substituted by the term rτ .

1.3.3 Equality axioms induced by the

conversion relation ↪→
In the end we introduce the equality axioms, which are constructed by

means of the (iterated) rewrite relation ↪→? , that is induced by the following:

Definition 1.45 (Conversion relation ↪→) We denote by ↪→ this conver-

sion relation (and in extenso also its associated one-step reduction relation):

1. the usual rules of α, η and β reduction for simply typed lambda-calculus:

(α) λx. t ↪→ λy. t[y/x] , if y does not occur free in t

(η) λx. (tx) ↪→ t , if x does not occur free in t

(β) (λx. t)s ↪→ t[s/x]

2. for Ifτ we have Ifτ tt x
τ yτ ↪→ x and Ifτ ff x

τ yτ ↪→ y

3. for the natural numbers we have, as expected,

Eq(Suc z, O) ↪→ ff Eq(Sucx, Suc y) ↪→ Eq(x, y)

Rτ x y O ↪→ x Rτ x y (Suc z) ↪→ y(z, Rτ x y z)

We denote by ↪→? the (possibly zero) iterate of the reduction relation ↪→ .

Theorem 1.46 (Strong normalization of ↪→?) All terms of T are strongly

normalizing w.r.t. the rewrite relation ↪→? . This is established in [110] by a

proof that uses a variant of Tait’s strong computability predicates method.

All sentences s =τ t for which s ↪→? · ?←↩ t will be added as equality axioms :

AxEQL : s =τ t for which s ↪→? · ?←↩ t (Equality Axioms)

1.3.4 The definition of weakly extensional Intuitionistic

Arithmetics WeZ, WeZ∃, WeZnc and WeZ∃,nc

Definition 1.47 The weakly extensional intuitionistic arithmetical systems

WeZ/WeZnc and the corresponding WeZ∃/WeZ∃,nc are obtained by adjoining to

IL/ILnc and respectively IL∃/IL∃,nc the following elements:



1.3. Weakly extensional Intuitionistic Arithmetics
WeZ, WeZ∃, WeZnc and WeZ∃,nc 41

1. the induction rule IR

2. all the above equality axioms, hence AxEQL

3. all the above equality rules, namely REF, SYM, TRZ, CMP and SUB.

The corresponding minimal arithmetical systems WeZ0/WeZ
nc
0 and respectively

WeZ∃0/WeZ
∃,nc
0 are obtained by eliminating the AxEFQ axiom ⊥ → F.

Remark 1.48 Systems WeZ0 and WeZ are exactly the weakly extensional ver-

sions of Berger, Buchholz and Schwichtenberg’s systems Z0 and respectively

Z, see [9]. There as well, system Z can be obtained by simply adjoining ⊥ → F

to the corresponding system Z0 , see Section 4.1.1 for more on this parallel.

Remark 1.49 In particular, Suc z =ι O→ ⊥ and Sucx =ι Suc y → x =ι y

follow immediately (in IL0 already) from the definition of =o .

Remark 1.50 We stayed as close as possible to the axiomatic [110, 9] of

system Z in order to render easier the task of implementing program-extraction

by (light) Dialectica interpretation in MinLog [115].

Lemmas of WeZ0 which necessarily require the Rewrite Relation ↪→

The WeZ0 lemmas LmOι : Oσιzσ =ι O and LmOo : Oσozσ =o ff describe the

behaviour of the zero terms, see Definition 1.3. Recall that eA ≡ A→ at(ff).

The expected behaviour of the multiple selector Ifnτ (defined by (1.4)) is given

by the following n+ 1 lemmas of WeZ0 grouped under the name LmIfnτ :

eat(p1) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ x1

at(p1) ∧ eat(p2) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ x2
...

∧i−1j=1at(pj) ∧ eat(pi) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ xi
...

∧n−1j=1at(pj) ∧ eat(pn) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ xn

∧ni=1at(pi) → Ifnτ (p1, . . . , pn, xn+1, xn, . . . , x1) =τ xn+1


(1.35)

Definition 1.51 (Schönfinkel-Curry combinators) For all types δ, ρ, τ ,

the combinators Σδ,ρ,τ of type (δρτ)(δρ)δ and Πρ,τ of type ρτ ρ, are terms of

T defined by means of lambda-abstraction as:

Σδ,ρ,τ :≡ λxδρτ , yδρ, zδ. xz(yz) Πρ,τ :≡ λxρ, yτ . x



42 Arithmetical systems for Gödel functionals

Definition 1.52 A combinatorial term is a λ-term which is built by applica-

tion only starting from (free) variables, constants and Σ and Π combinators.

Proposition 1.53 (Lambda-terms to combinatorial terms) Every term

t[x1, . . . , xk] with x1, . . . , xk all its free variables can be written as a combi-

natorial term t̃[x1, . . . , xk], in the sense that WeZ ` t = t̃ . We will denote by

·̃ : t 7→ t̃ this association which is given by a syntactic recursive algorithm.

Proof: The association algorithm proceeds by recursion on the structure

of the input term t, from which it eliminates the lambda-abstractions in a

bottom-up fashion, via the following transformation steps:

λx. x 7→ ΣΠΠ

λx. t 7→ Πt , if x not free in t

λx. ts 7→ Σ(λx. t)(λx. s) , if x is free in ts

 (1.36)

In this translation, the combinators Σ and Π are treated as constants and

not as lambda-terms! Hence the bottom-most original λ-abstractions are first

eliminated via the translation (1.36) which proceeds in a top-down fashion.

One then goes bottom-up in the original lambda-term. One thus ensures that

each time (1.36) is applied, the abstracted term is combinatorial. 2

1.3.5 Equivalence between formulations of Induction

Theorem 1.54 The induction axiom IA and the induction rule IR are fully

equivalent over minimal logic MLnc . Equivalence in MLnc between the full IR

and the more restricted IR can be proved only if the open assumptions of the

second premise ∀z(A(z)→ A(Sucz)) of IR do respect the ncm−FC restriction.

Proof: We can produce the following proof of IA from IR :

[2 : A(O)]

A(O)

[1 : ∀z (A(z)→ A(Suc z) )]

∀z (A(z)→ A(Suc z) )

∀z A(z)
IR

A(O) → ∀z (A(z)→ A(Suc z)) → ∀z A(z)
→+

1,2

We now show how IR can be simulated in terms of IR provided that the re-

striction on the open assumptions of ∀z(A(z)→ A(Sucz)) is fulfilled. During

this process it will become obvious that such restriction cannot be avoided in



1.3. Weakly extensional Intuitionistic Arithmetics
WeZ, WeZ∃, WeZnc and WeZ∃,nc 43

any attempt of such simulation. Let P be a proof (in some system extending

WeZ) whose last rule is IR. Let C be the set of all open assumptions of P .
Let C = Cb ∪ Cs be the split of C such that Cb is the set of assumptions of

the A(O) of IR and Cs is the set of assumptions of the ∀z(A(z)→ A(Suc z))

of IR. We assume that the elements of Cb and Cs are given in some arbitrary

but fixed order from left to right such that C is associated their composed

order with the elements of Cb at left followed by the elements of Cs at right.

We can ensure (by, e.g., renaming it) that the bound variable z of the con-

clusion ∀zA(z) of P is not free in C. We now transform P to P ′ such that

P ′ employs the same open assumptions C of P but uses an IR to simulate

the last IR of P . We also try to make this simulation as efficient as possi-

ble, in the sense of efficiency of the extracted programs, by employing only

the strictly necessary contractions. Such contractions, if they exist, are only

due to a number of →+ with 2-contraction15, namely one for each of the ele-

ments of Cs , as we explain in the sequel. Let Pb be the proof of the A(O) of

IR and Ps be the proof of the ∀z(A(z)→ A(Suc z)) of IR. From Pb we can

immediately produce the proof P : ∅ ` Cb → (Cs → A(O)) by using a num-

ber of →+ with 0-contraction over the elements of Cs , followed by a number

of →+ with 1-contraction over the elements of Cb . We now build from Ps a

proof P : ` ∀z . (Cb → (Cs → A(z))) → (Cb → (Cs → A(Sucz))) which will

require contractions over the elements of Cs only. We first build the proof

Cs

Cb Cb → (Cs → A(z))

Cs → A(z)

A(z)

Cs
...

∀z. A(z)→ A(Sucz)

 Ps
A(z)→ A(Sucz)

A(Sucz)

Since (by hypothesis) the ncm−FC restriction holds for all formulas of Cs , we

can discharge all open assumptions from Cs by a sequence of |Cs| →+ with 2-

contraction. Subsequently, we also cancel all assumptions from Cb , this time

with 1-contraction (hence without contraction, recall Definition 1.17). We

thus obtain a proof Cb → (Cs → A(z)) ` Cb → (Cs → A(Sucz)) to which we

apply a last→+ with 1-contraction over Cb → (Cs → A(z)) and finally obtain,

15These contractions are unavoidable in the simulation of IR in terms of IR . On the other

hand, contractions over the assumptions in Cb would be redundant, reason why splitting C

into Cb . and Cs .



44 Arithmetical systems for Gödel functionals

after a ∀+z – since VC(z) is obviously satisfied – the following proof:

P


∅
...

(Cb → (Cs → A(z)))→ (Cb → (Cs → A(Sucz)))

∀z. (Cb → (Cs → A(z)))→ (Cb → (Cs → A(Sucz)))
∀+z

We now apply IR to P and P and obtain a proof P : ∀z(Cb → Cs → A(z)).

To P we apply a ∀−z and then create new open assumptions C in the reversed

order and apply a number of |C| →− in order to obtain a proof P : C ` A(z).

Since we ensured that z is not free in C we can apply a final ∀+z and obtain

the proof P ′ : C ` ∀z A(z).

For closing the equivalences we mention that IR is immediate from IA by

means of two →− and IR is just a particular case of IR. 2

1.4 Immediate extension of WeZnc and WeZ∃,nc

We present below the extension of our arithmetics WeZnc and WeZ∃,nc with

a number of axioms which have simple realizers directly under the light fun-

ctional “Dialectica” interpretation (defined in Chapter 2). Originally (i.e.,

for the pure Dialectica interpretation, see, e.g., [67, 62, 56]) three such prin-

ciples are considered for inclusion in the systems directly interpreted by the

Gödel D-interpretation. They all contain the strong ∃ and are not provable

in WeZ∃ . The first two principles are logically deducible in the fully classical

version of WeZ∃ (namely WeZ∃,cl , obtained by adding full stability ¬¬A→ A

for formulas A which may contain ∃, see Section 1.6) but not in WeZ∃ . These

“semi-classical” logical axioms are Markov’s Principle16 ∃clz A0(z)→ ∃z A0(z)

(here A0 is quantifier-free as usual) and Independence of premises for purely

universal premises [ ∀xA0(x) → ∃y B(y) ] → ∃y [∀xA0(x) → B(y) ] (here B

is an unrestricted formula). The third principle is the non-logical (i.e., not log-

ically deducible in WeZ∃,cl) Axiom of Choice (below B is unrestricted as well):

AxAC : ∀x ∃y B(x, y) → ∃Y ∀xB(x, Y (x)) .

16 The usual formulation of Markov’s principle as AxMK : ¬¬∃z A0(z)→ ∃z A0(z)

is equivalent to AxMK over WeZ∃ . The same statement holds for the form

AxMK : ¬¬∃z A0(z)→ ∃z ¬¬A0(z) which was preferred by the authors of [56] because

of complexity considerations. Our choice of AxMK is motivated by the particularity of ∃cl in

the development of the BBS refined A-translation from [9, 110].



1.4. Immediate extension of systems WeZnc and WeZ∃,nc 45

Whereas for AxAC the addition of the ncm quantifiers ∀ and ∃ would not

bring a real change, in the sense that the light Dialectica interpretability of

AxAC can be proved in the same lines as its pure D-interpretability (since B

used to be unrestricted anyway in AxAC), for the Markov’s principle and the

Independence of premises concrete extensions are possible, as we show in the

sequel. For Markov’s principle, this holds as far as one accepts that the final

verifying proofs are not necessarily constructive. Since this thesis is far more

concerned with program extraction rather than the translation of classical to

constructive systems, we content ourselves with the obtaining of fully classical

verifying proofs. We therefore use the following variant of Markov’s principle:

AxMK : ∃clz Anc(z)→ ∃z Anc(z)

where Anc is a purely ncm formula, in the sense that all its quantifiers are ncm

(but there is no restriction on their number or position in the formula, hence

an unrestricted formula, but in the ncm realm)17. It is not difficult to guess

that in the verifying proofs the principle ¬¬A → A will be necessary, where

A is the literal translation of Anc to its regular-quantifier form. Since Anc was

ncm-unrestricted, this forces that the verifying system is fully classical! See

the proof of Theorem 2.10 from Section 2.1 for details. Once we accept full

stability in the verifying proofs we can also include “for free” in the input

systems the following pure-ncm variant of Stability:

AxSTABnc : ¬¬Anc → Anc (Pure-ncm Stability)

Its LD-interpretation will simply be the full Stability ¬¬A→ A (in the system

without ncm), no realizing terms: AxSTABnc is a purely logical construct, which

will be necessary in the proof of soundness of Kuroda’s negative translation.

Whereas the full “Independence of premises” axiom scheme, obtained by

replacing ∀xA0(x) with unrestricted formulas A, although provable in WeZ∃,cl ,

fails to get any direct (light) Dialectica interpretation, it can be immediately

seen that the following more general “Independence of premises for quasi-

universal premises” scheme does have such an interpretation:

AxIP−∃+∀ : [A−∃+∀ → ∃y B(y) ] → ∃y [A−∃+∀ → B(y) ] ,

where A−∃+∀ does not contain any positive ∃ or negative ∀, see the proof of

17 We will here-on use notations like Anc , Bnc , etc. for this kind of formulas only. In

the same context, A, B, etc. will denote the literal translations of Anc , Bnc , etc. to their

regular-quantifier form, obtained by transforming each ncm quantifier to its corresponding

regular quantifier.



46 Arithmetical systems for Gödel functionals

Theorem 2.10 in the sequel for its direct light Dialectica interpretation.

Now the question is how these ∃ principles might be simulated in the

systems without ∃, hence WeZ and WeZnc . In the absence of ∃, the only logical

possibility appears to be the replacement of ∃ with ∃cl and similarly of ∃ with

∃cl in the case of WeZnc . This seems not to function for the general AxAC,

but it certainly works for its restriction that B does not contain any regular

quantifier, see also Section 2.3. We can thus extend WeZnc and WeZ∃,nc with

AxACclnc : ∀x∃cly Bnc(x, y) → ∃clY ∀x Bnc(x, Y (x)) ,

where Bnc may contain ncm quantifiers only. AxACclnc is not provable in WeZ∃,nc .

Remark 1.55 Also the somewhat weaker AxACcl is not provable in WeZ, where

AxACcl : ∀x ∃cly B0(x, y) → ∃clY ∀xB0(x, Y (x))

(above B0 is quantifier-free, as usual). Notice that AxACcl is the restriction of

AxACclnc to the language L.

Of course, the transformation of ∃ into ∃cl would make AxMK hold in a

trivial way. Whereas AxACcl and AxACclnc are not provable in WeZ, respectively

WeZnc , the situation is different for

AxIPcl : [A → ∃cly B(y) ] → ∃cly [A → B(y) ] ,

which can be proved to hold in WeZ for unrestricted A,B ∈ F∃ . Indeed, a proof

of AxIPcl amounts to proving ⊥ from the assumptions ∀y.[A→ B(y)]→ ⊥
and [A → (∀y.B(y)→ ⊥) → ⊥ ], which can be established if one proves

[¬¬A ∧ (∀y.B(y) → ⊥) ] from the assumption ∀y.[A→ B(y)]→ ⊥ . The

proof of (∀y.B(y) → ⊥) is simply straightforward, due to the easy theorem

B(y) → (A→ B(y)). Also the formula ¬¬A is immediately provable from

∀y.[A→ B(y)]→ ⊥ by using the ex-falso-quodlibet scheme ⊥ → B(y). We

thus obtain proofs of ¬¬A and of ¬A, hence of ⊥. Notice that the assumption

∀y.[A → B(y)] → ⊥ was used twice in the proof above. The global proof of

AxIPcl cannot avoid contraction over this assumption, which unfortunately is

computationally LD-relevant, since ∀y appears in a positive position. Due to

the ncm−FC restriction (see Definition 1.15), both formulas A and B may not

contain ncm quantifiers. Hence AxIPcl cannot be proved in WeZnc or WeZ∃,nc .

However, direct light Dialectica realizers can be given for the following

variant of AxIPcl in which A and B can freely use the ncm quantifiers, but A

is restricted to be quasi-universal and B is restricted to be quasi-existential:

AxIPclnc : [A−∃+∀ → ∃cly B
+∃
−∀(y) ] → ∃cly [A−∃+∀ → B+∃

−∀(y) ] ,



1.5. The monotonic intuitionistic Arithmetics WeZ∃m and WeZ∃,nc+m 47

where B+∃
−∀ does not contain any positive ∀ or negative ∃, and A−∃+∀ may only

contain positive ∀ and negative ∃, equivalent definition as at AxIP−∃+∀ above.

In the end we consider a straightforward extension of the nc-systems WeZnc

and WeZ∃,nc which will induce an isomorphic extension of their correspondents

without ncm quantifiers WeZ and respectively WeZ∃ . This is with an arbitrary

but fixed set of sentences Π of F∃,nc of shape ∀bBnc(b), where Bnc(b) may

contain ncm quantifiers only (see Footnote 17 above). These sentences Π are

added as axioms to WeZnc and WeZ∃,nc . Let Π̃ denote the set of formulas of shape

∀bB(b) which correspond bijectively to the formulas ∀bBnc(b) of Π, where B

is obtained from Bnc by transforming each ncm quantifier to its corresponding

regular quantifier. Then sentences Π̃ are isomorphically added as axioms to

WeZ and respectively WeZ∃ . Notice that Π̃ is exactly the image of Π under the

Light Dialectica translation of formulas (LD-translation defined in Section 2.1,

see Definition 2.1).

Remark 1.56 Axioms Π do not interfere with the Light Dialectica extraction

process. Their LD-translations are bijectively gathered in the corresponding

set Π̃ and are isomorphically used in the Light Dialectica verifying proofs.

Convention 1.57 From here on we consider that systems WeZ∃,nc and WeZnc

are automatically extended with an arbitrary but fixed set Π like described

above. When used in the same context, also the systems WeZ∃ and respectively

WeZ will include the set Π̃ of axioms which correspond to the Π included in

WeZ∃,nc , respectively WeZnc . This situation will extend to the monotonic and

classical systems based on WeZ∃,nc which are to be introduced is Sections 2.2

and 2.3 in the sequel.

Definition 1.58 (The extended constr. systems WeZnc+ and WeZ∃,nc+)

We denote by WeZnc+ the extension of WeZnc with AxSTABnc , AxIPclnc and AxACclnc
(all principles restricted to Lnc) and by WeZ∃,nc+ the extension of WeZ∃,nc with

AxSTABnc , AxMK, AxIP−∃+∀ , AxIP
cl
nc , AxAC and AxACclnc .

1.5 The monotonic intuitionistic Arithmetics

WeZ∃m, WeZ
nc
m , WeZ∃,ncm , WeZnc+

m and WeZ∃,nc+
m

Definition 1.59 (Monotonic languages, terms and formulas) The mo-

notonic languages Lm , L∃m , Lncm and the most complete L∃,ncm are obtained by

adding to L, L∃ , Lnc and respectively L∃,nc the following two new constants:



48 Arithmetical systems for Gödel functionals

1. Geq – a functional inequality constant for naturals, of type ιιo, and

2. Max – a maximum constant for naturals, of type ιιι.

We will also denote by Tm the new set of terms, built using also Geq and Max

and by Fm , F∃m , Fnc
m and F∃,ncm the respectively corresponding sets of formulas.

Definition 1.60 (Predicate inequality at all types)

We define predicate inequality at type ι, denoted ≥ι , as an abbreviation

sι ≥ι tι :≡ at(Geq s t)

We define boolean inequality ≥o between terms s, t of type o by

s ≥o t :≡ at(t) → at(s)

Similar to equality, predicate inequality at higher types τ ≡ σρ with ρ ∈ {ι, o}
is extensionally defined as

s ≥τ t :≡ ∀xσ11 , . . . , xσnn (s x1 . . . xn ≥ρ t x1 . . . xn) (1.37)

Definition 1.61 (Howard’s majorization relation) We define Howard’s

majorization relation, which is an open formula of Fm , by

xρ �ρ yρ :≡ xρ ≥ρ yρ for ρ ∈ {ι, o} and

xστ �στ yστ :≡ ∀zσ1 , zσ2 (z1 �σ z2 → xz1 �τ yz2) (1.38)

Remark 1.62 Although the majorization results we are interested in concern

mainly the natural numbers, it appears technically useful to have an inequality

relation for booleans as well. The following hold in WeZ∃ for any term so

s ≥o ff and tt ≥o s (1.39)

Definition 1.63 We say that a type is arithmetic if it decomposes as σι and

boolean if it writes as σo. The definition extends to variables, constants and

terms in the obvious way.

Definition 1.64 (Systems WeZm,WeZ
∃
m ,WeZncm ,WeZ∃,ncm ,WeZnc+m and WeZ∃,nc+m )

The monotonic arithmetics WeZm , WeZ
∃
m , WeZ

nc
m and WeZ∃,ncm , the immediate ex-

tensions (in the sense of Section 1.4) WeZnc+m and (the most complete) WeZ∃,nc+m

are obtained by adding to systems WeZ, WeZ∃ , WeZnc , WeZ∃,nc , WeZnc+ and re-

spectively WeZ∃,nc+ the following axioms and rules:



1.5. The monotonic intuitionistic Arithmetics WeZ∃m and WeZ∃,nc+m 49

1. In the ncm systems, the ncm−FC restriction is withdrawn, hence the

(computationally LD-relevant) contraction formulas may (freely, arbi-

trarily) contain ncm quantifiers. In consequence, also the variable con-

dition VC(z,P) set on the ncm-ForAll introduction rule
P: A(z)

∀zA(z)
∀ +

z is

relaxed to just (our formulation of) Berger’s restriction18, see also [8].

2. To the non-ncm systems WeZm and WeZ∃m , the following axiom schema of

full comprehension is added (for pure syntactic verification purposes):

AxCA : ∃Φτ→o ∀xτ [ at(Φx) ↔ B(x) ]

for arbitrary formulas B(xτ ) in the corresponding language Lm , respec-

tively L∃m and arbitrary tuples x of variables of suitable arbitrary types τ .

3. As a consequence of 1. above, a number of principles which were not

provable in WeZnc become provable in WeZncm , hence it would be redundant

to include them in WeZnc+m . These are AxSTABnc and AxIPclnc . In fact the full

stability AxSTAB and the full classical Independence of premises AxIPcl

become provable in WeZncm . Beware that WeZncm does not contain ∃ nor ∃.

4. As a consequence of 1., AxIPcl is provable also in WeZ∃,ncm . Therefore

WeZ∃,nc+m will not include the now redundant AxIPclnc . On the other hand

it still makes sense to retain AxSTABnc into WeZ∃,nc+m . This is because

AxSTABnc is provable in WeZ∃,ncm only for formulas which do not contain

∃ in a strictly positive position, see Corollary 1.41 and Lemma 1.40.

5. WeZnc+m and WeZ∃,nc+m still include AxACclnc , which is not provable in WeZ∃,ncm .

6. One adds the axioms defining the maximum constant Maxιιι :

Maxx y ≥ι x Maxx y ≥ι y Max �ιιι Max .

7. Like in Section 1.3.2 for =τ , we here provide similar rules for the higher-

type reflexivity ` x ≥τ x and transitivity x ≥τ y , y ≥τ z ` x ≥τ z of

“predicate” inequality 19. We also add the rule x =τ y ` x ≥τ y which

establishes the compatibility between equality and “greater-than-or-equal”

18Namely that z does not occur free in any of the instantiating terms t involved by a ∀−•,t
in the proof P , except for the cases when at some point in P subsequent to such a ∀− ,
the variable z gets to no longer be free in any of the uncancelled assumption or conclusion

formulas of such a sub-proof of P .
19An anti-symmetry rule x ≥τ y , y ≥τ x ` x =τ x may also be added, but that’s not

necessary for the proof of Theorem 2.12 below.



50 Arithmetical systems for Gödel functionals

8. Also the following rewrite rules are added to the relation ↪→ defined in

Section 1.3 in order to attain the usual behaviour of inequality and Max:

Geq(z, O) ↪→ tt Geq(O, Sucz) ↪→ ff Geq(Sucx, Sucy) ↪→ Geq(x, y)

Max(z, O) ↪→ z Max(O, z) ↪→ z Max(Sucx, Sucy) ↪→ Max(x, y)

The addition of full comprehension AxCA to the verifying systems WeZm

and WeZ∃m is meant to compensate the elimination of the ncm−FC restriction

(see Definition 1.15) from the input ncm monotone systems. We will see in

the proof of Theorem 2.12 that arbitrary formulas of WeZm/WeZ
∃
m must be uni-

formly equivalent (via at) to corresponding boolean terms in order to prove

the (possibly non-effective !) existence of realizers which are majorized by the

monotone extracted terms. Even though the radical/root of the LD-translation

of a (relevant, see Definition 1.18) contraction formula is no longer included

in the extracted terms (see Remark 1.16, Remark 2.2, Definition 2.6 and the

proof of Theorem 2.10), one still needs its comprehension property in order to

prove the (possibly weak) existence of terms which are majorized. In the ab-

sence of ncm−FC, these radical/root formulas are no longer guaranteed to be

quantifier-free, which was a sufficient condition for having the uniform boolean

term association of Proposition 1.35, see Definition 2.6. Hence a strong-hand

external enforcement via the powerful axiom AxCA of the comprehension prop-

erty for all formulas in the verifying (translated) system appears to be neces-

sary. In consequence, not only WeZm is a fully classical system (due to Lemma

1.40), but also WeZ∃m can prove full stability ¬¬A → A for unrestricted formulas

A ∈ F∃m , using Corollary 1.28 applied to the boolean comprehension term Φ(a)

associated to A(a) by means of AxCA. Thus WeZ∃m subsumes full classical logic.

Proposition 1.65 (Useful nice properties of WeZ∃m , WeZncm and WeZ∃,ncm )

System WeZ∃m features full stability ¬¬A → A for all A ∈ F∃m , and also WeZncm
enjoys full stability for all A ∈ Fnc

m . System WeZ∃,ncm can prove stability for all

those A ∈ F∃,ncm which do not contain ∃ or ∃ in a strictly positive position.

Note that also (1.31) and (1.32) hold freely in WeZncm for all formulas in F∃,ncm .

Proof: As explained in Definition 1.64, all this is natural once the ncm−FC
restriction is eliminated. The situations involving the ncm quantifiers are thus

identical now to the cases of the corresponding regular quantifiers. The here

abbreviated VC(·) restriction does not intervene in these proofs. 2



1.5. The monotonic intuitionistic Arithmetics WeZ∃m and WeZ∃,nc+m 51

Convention 1.66 Notice that the nc-systems WeZncm and WeZ∃,ncm do also in-

clude the set of axiom sentences Π which they inherit from WeZnc and respec-

tively WeZ∃,nc . In the same context, also WeZ∃m comprises the corresponding set

of axiom sentences Π̃, which is inherited through WeZ∃ . See Convention 1.57.

Definition 1.67 (∆ axiom extension of monotonic systems) Moreover,

to the monotonic system WeZ∃,ncm one further adds as axioms all elements of an

arbitrary but fixed set ∆ of sentences of shape

∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z)

where Bnc is a formula whose quantifiers (if any) are all ncm, whose free

variables are all exactly x, y, z and such that rρσ is a closed term. One also

adds as axioms to WeZ∃m the elements of the isomorphic set ∆̃ of sentences

∃Y ≤ρσ r ∀xρ ∀zτ B(x, Y x, z)

which correspond bijectively to the elements of ∆ in the sense that formula

B is the LD-translation of Bnc 20. Hence when used in the same context, WeZ∃m
includes exactly the axiom set ∆̃ which LD-corresponds to the axiom set ∆ of

WeZ∃,ncm , and hence in extenso also of WeZ∃,nc+m .

Remark 1.68 The following are immediate consequences (in IL0 already) of

the newly introduced axioms at Definition 1.64.3 above:

` z ≥ι O ` O ≥ι Sucz → at(ff) ` Sucx ≥ι Sucy → x ≥ι y

Remark 1.69 Max is in fact only a common upper bound which commutes

with �ιιι . This suffices for the proof of the soundness (of light monotone

Dialectica extraction) Theorem 2.12. More axioms can and must be added to

ensure that Max truly denotes the integer maximum of its arguments.

Definition 1.70 (Maximum functionals at higher arithmetic types)

Maximum functionals at higher arithmetic types τ ≡ σι are defined by

Maxτ :≡ λxτ , yτ , zσ . Max (x z) (y z) (1.40)

We will also use Maxι :≡ Max as an extension of the notation (1.40) above.

20Hence B is obtained from Bnc by translating each ncm quantifier to its corresponding

regular quantifier, just like the formulas B from the set Π̃ of Remark 1.56.



52 Arithmetical systems for Gödel functionals

Definition 1.71 (n-maxima) Multiple maxima for every type τ and arbi-

trary n ≥ 2 are defined inductively on n as follows: Max2τ :≡ Maxτ and

Maxn+1
τ :≡ λxn+1, xn, . . . , x1. Maxτ xn+1 (Maxnτ xn . . . x1) for n ≥ 2 .

Lemma 1.72 Let ρ ≡ σ1 . . . σnτ , with n ≥ 0. The following hold in WeZm :

` x? �ρ x ↔ ∀y?1, y1, . . . , y?n, yn [ y?1 �σ1 y1 → . . .

. . . → y?n �σn yn → (x? y?1 . . . y
?
n) �τ (x y1 . . . yn) ] (1.41)

` y? ≥ρ x? ∧ x? �ρ x ∧ x ≥ρ y → y? �ρ y (1.42)

` x? �ρ x ∧ y? �ρ y → (Maxρ x
? y?) �ρ (Maxρ x y) (1.43)

Proof: (1.41) is proved by induction on n ≥ 1 using the definition of � at

both base and step cases; (1.42) is proved by decomposing ρ as σι or σo and

using (1.41) together with (1.37); (1.43) is proved by decomposing ρ as σι and

using (1.41) together with (1.40). 2

Remark 1.73 Notice that (1.43) simply implies that Maxρ �ρρρ Maxρ .

Definition 1.74 To each Gödel recursor Rτ one associates the term R?τ of the

same type, namely of type τ (ιτ τ)ιτ , as follows:

R?τ :≡ λxτ , yιτ τ , zι. Rτx(λz, x. Maxτ x (yzx))z

Lemma 1.75 For every type τ the following holds: WeZm ` R?τ � Rτ .

Proof: Let t[y] :≡ λz, x. Maxτ x (yzx). We can prove by induction on z that

WeZm ` ∀z (x? �τ x → y? �ιτ τ y → z? ≥ι z → Rτx
?t[y?]z? �τ Rτxyz )

For this we use the following: Rτx
?t[y?](Sucz) ↪→ t[y?]z(Rτx

?t[y?]z), hence

WeZm ` ∀z . Rτx?t[y?](Sucz) =τ Maxτ (Rτx
?t[y?]z) [y?z(Rτx

?t[y?]z)] (1.44)

For the base case z = 0 one uses then the following easy consequence of (1.44):

WeZm ` ∀z . Rτx?t[y?](Sucz) ≥τ Rτx
?t[y?]z

which immediately implies

WeZm ` ∀z . Rτx?t[y?]z ≥τ Rτx
?t[y?]0 =τ x

? (1.45)



1.5. The monotonic intuitionistic Arithmetics WeZ∃m and WeZ∃,nc+m 53

Now the induction base follows from (1.45) and x? �τ x using (1.42). For the

induction step, let z? ≥ Sucz, hence one can write z? ≡ Sucz̃ , where z̃ ≥ z.

From the induction hypothesis we then have, assuming x? � x and y? � y,

that Rτx
?t[y?]z̃ � Rτxyz, from which the following follows by Lemma 1.72:

Rτx
?t[y?](Sucz̃) ≥τ y? z̃(Rτx

?t[y?]z̃) �τ yz(Rτxyz) =τ Rτxy(Sucz)

Above we also used (1.44) for ≥τ and the definition for =τ . By (1.42) this

implies Rτx
?t[y?]z? �τ Rτxy(Sucz) and the whole proof is now finished. 2

Remark 1.76 From (1.39) and (1.41) it follows that all boolean terms t of

type τ ≡ σo are simply majorized by terms Trueτ :≡ λxσ11 , . . . , x
σk
k . tt.

Lemma 1.77 It can be immediately established from definitions, in WeZm ,

using (1.41), that Σ � Σ and Π � Π for all combinators Σ and Π.

Proposition 1.78 (Construction of majorants for all lambda-terms)

Let t[x1, . . . , xk]
τ be a WeZm arithmetic term such that xσ11 , . . . , x

σk
k are all its

free arithmetic variables. There exists a generic syntactic procedure ·? : t 7→ t?

which associates to it an arithmetic term t?[x1, . . . , xk]
τ such that x1, . . . , xk

are all the free variables of t? and the following holds in WeZm :

` x?1 �σ1 x1 → . . . x?k �σk xk → t?[x?1, . . . , x
?
k] �τ t[x1, . . . , xk] (1.46)

As a consequence, λx1, . . . , xk. t
?[x1, . . . , xk] � λx1, . . . , xk. t[x1, . . . , xk] and

also simply t? � t whenever t is a closed term.

Proof: The construction of t? from t is by recursion on the arithmetic struc-

ture of t, starting from (free) arithmetic variables and constants of WeZm and

maximal boolean subterms of t. The latter are simply majorized by closed

terms True, see Remark 1.76. On the other hand, all arithmetic constants of

WeZm are majorized by closed arithmetic terms. For example, the selector Ifτ
for arithmetic τ is majorized by If?τ :≡ λpo, yτ , zτ . Maxτ y z. Also Lemma 1.75

gives that R? � R. The proof of (1.46) is now by induction on the associated

combinatorial structure t̃ of t (see Proposition 1.53) using Lemmas 1.72 and

1.77. In fact one proves that t̃?[x?1, . . . , x
?
k] � t̃[x1, . . . , xk], where, relative to

the · 7→ ·̃ translation, one moreover considers that If? , R? and all other ma-

jorants for constants are (like) constants (e.g., they are “seen” as constants).

2



54 Arithmetical systems for Gödel functionals

Remark 1.79 (Possibly simpler majorants by normalization) From

definitions it follows immediately that if t ↪→? s then t = s, hence s? � t

follows by compatibility CMP. If moreover s? ↪→? sm then also by compatibility

we get sm � t. Thus if the normalization by evaluation (NbE) simplifies the

term s? into sm , this is a way to produce a simpler majorant for an initial term

t. Such a situation will appear concretely in the light monotone Dialectica

extraction of terms in (NbE-)normal form, see Remark 2.15.

1.6 The classical (monotonic) Arithmetics

WeZ∃,cl, WeZnc,cl/WeZnc,c+ and WeZ∃,nc,clm /WeZ∃,nc,c+
m

The systems WeZ∃,cl , WeZnc,cl and WeZ∃,nc,clm of weakly extensional (mono-

tonic) Classical Arithmetic (with strong ∃/ ncm quantifiers) are obtained by

adding to WeZ∃ , WeZnc and respectively WeZ∃,ncm , the full Stability:

AxSTAB : ¬¬A → A (Full Stability)

where the formula A ∈ F∃ , A ∈ Fnc and respectively A ∈ F∃,ncm is unrestricted.

It would be in fact sufficient that the axiom AxSTAB replaces AxEFQ/AxFLS,

since the latter are deducible from AxSTAB in Minimal Logic. However we

prefer to keep AxEFQ/AxFLS as axioms of our systems since they have simple

Light Dialectica realizers21.

Recall that AxSTAB is fully provable in WeZm/WeZ
∃
m, hence it would not make

sense to add it to these (non-ncm) systems. Also notice that no system WeZnc,clm

is defined. This is because such a system would not make sense, since AxSTAB

is already fully provable in WeZncm , see Proposition 1.65. We also chose to define

no system WeZ∃,nc,c+ . The reason here is rather different: we just do not find

any suitable double negation translation for Ax∃− (and also Ax∃−) in the

presence of the ncm quantifiers, see Section 2.3 for more on this.

We nevertheless choose to consider the system WeZnc,cl , since on one hand

AxSTAB is not fully provable in WeZnc , see Remark 1.42 and Lemma 1.40. On the

other hand, despite some technical difficulties, a certain negative translation

can nevertheless be designed from WeZnc,cl to WeZnc , due to the lack of strong

existentials. Hence for WeZnc,cl we are also constrained to further strengthen

the restriction set on the rule →+ of Implication introduction, see Definitions

1.18 and 1.15. The reinforced→+ condition restricts not only the introduction

21Input proofs to the (light) Dialectica-extraction algorithm may thus become shorter.



1.6. The classical (monotonic) Arithmetics WeZnc,c+ and WeZ∃,nc,c+m 55

formula A, but also the conclusion formula B, in fact a certain combination of

the two. Hence the new→+ restriction is ncm−FC(¬(A→ B)), or equivalently

ncm−FC(A ∧ ¬B). Notice that this cannot be written in the meta-language

as “ncm−FC(A) and ncm−FC(¬B)”. This addition is triggered by the concern

about the soundness of our adaptation of Kuroda’s double negation transla-

tion (the KN-translation) to the new ncm-classical (non-monotonic) system, see

Definition 2.24 and Theorem 2.27 in Section 2.3. Hence the KN-translation of

→+ can be simulated only by means of an extra contraction over the formula

¬(A→ B), for which we have to consider its ncm−FC restriction, see the proof

of Theorem 2.27 for full details on this issue. In consequence also the variable

condition VC(z,P) which is set on the ncm-ForAll introduction rule ∀ +
must

be strengthened in the sense that z is required to not be free also in the con-

clusions of the computationally LD-relevant →+ from P and not only in the

corresponding contraction formulas of such →+ .

Nonetheless, for the monotonic classical ncm-system WeZ∃,nc,clm , no such

strengthening is needed at all, since on one hand no restriction is set on →+

already in the corresponding constructive system WeZ∃,ncm anyway, recall Defi-

nition 1.64. On the other hand, the design of both Kuroda and Gödel-Gentzen

double-negation translations is no longer problematic in the presence of ∃/∃.

Remark 1.80 (Portability of axioms sets Π and ∆ to clas. systems)

Recall from Convention 1.57 that WeZnc/ WeZ∃,ncm include an arbitrary but fixed

set of axioms Π ≡ {∀zBnc(z)}, which induces the inclusion of the correspon-

ding set Π̃ ≡ {∀zB(z)} into WeZ/ WeZ∃m . This implies that Π is further inherited

into WeZnc,cl/ WeZ∃,nc,clm and also that its corresponding Π̃ gets included into

the verifying systems WeZ/ WeZ∃m . Also recall from Definition 1.67 that WeZ∃,ncm

includes the arbitrary but fixed set of axioms

∆ ≡ { ∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z) }

and that correspondingly, the verifying system WeZ∃m contains the associated

axiom set

∆̃ ≡ { ∃Y ≤ρσ r ∀xρ ∀zτ B(x, Y x, z) } .

In consequence, the axiom set ∆ is further inherited into WeZ∃,nc,clm , and cor-

respondingly ∆̃ gets included into WeZ∃m .

We now consider other possible extensions of the fully classical systems.

Notice that the axioms AxMK and AxSTABnc would become redundant in these



56 Arithmetical systems for Gödel functionals

systems. For AxMK it can be immediately be established, without contraction,

that ∃clzB(z) ↔ ¬¬∃zB(z) for every formula B (and hence in particular for

B ≡ Anc). We are thus brought to consider the following (now) equivalent

formulation of AxACclnc (recall it from Section 1.4, also see it below):

AxACnc : ∀x ∃y Bnc(x, y) → ∃Y ∀xBnc(x, Y (x)) ,

which is (more directly seen to be) the pure-ncm version of AxAC (which still

uses the strong ∃). Nonetheless, because of the ncm−FC restriction, the ncm-

classical arithmetic WeZnc,cl does not necessarily include all theorems of WeZ

extended to the ncm language. Some of these theorems no longer hold if the

formulas involved contain at least one ncm quantifier. It is the case of Indepen-

dence of premises, [A → ∃y B(y) ] → ∃y [A → B(y) ], whose proof makes a

necessary use of contraction over ∀y.[A→ B(y)]→ ⊥, see Section 1.4. We are

thus again brought to consider the addition to WeZnc,cl of

AxIPclnc : [A−∃+∀ → ∃cly B
+∃
−∀(y) ] → ∃cly [A−∃+∀ → B+∃

−∀(y) ] ,

where A and B can freely contain ∀, but A is restricted to contain ∀ in posi-

tive positions only andB is restricted to contain ∀ in negative positions only (A

quasi-universal andB quasi-existential, notions first introduced in Section 1.4).

Definition 1.81 We denote by WeZ∃,nc,c+m the extension of system WeZ∃,nc,clm

with AxACnc , but also with the already presented pure-ncm ∃cl-variant (which

is though logically equivalent to AxACnc):

AxACclnc : ∀x∃cly Bnc(x, y) → ∃clY ∀x Bnc(x, Y (x)) .

Whereas for the system with strong ∃ the addition of AxACclnc is redundant, for

WeZnc,cl this appears to be the only possibility. We thus obtain the system

WeZnc,c+ as the extension of WeZnc,cl with AxACclnc , but also with AxIPclnc .

Discussion

We have presented all the arithmetical systems which are to be used in

this thesis, except for the “feasible” systems of Chapter 3. The latter will

nevertheless be built on the top of the systems developped so far. This pro-

gressive and comparative exposition is meant to prepare the reader to the

truly effective part of the thesis, namely the presentation of the extraction

techniques in the following chapter. In fact the reading of the present chapter

is inseparable from the one of Chapter 2, particularly concerning the specific



1.6. The classical (monotonic) Arithmetics WeZnc,c+ and WeZ∃,nc,c+m 57

ncm restrictions. Also the discharging of most of these restrictions in the mo-

notonic systems can only make sense while reading the corresponding proofs

of the soundness-and-extraction theorems.



Chapter 2

The light (monotone)

functional interpretation

By LD-interpretation (a short for “Light Dialectica Interpretation”) we

call below our adaptation of Gödel’s functional “Dialectica” interpretation

[44] to the extraction of (more) efficient programs from (classical) proofs. The

LD-interpretation is a recursive syntactic translation from proofs in WeZ∃,nc+

(or in WeZnc,c+, modulo the Kuroda double-negation translation) to proofs in

WeZ∃ or even WeZ, such that the positive occurrences of ∃ and the negative

occurrences of ∀ in the proof’s conclusion formula get effectively realized by

terms in Gödel’s T. These realizing terms are also called the programs extrac-

ted by the LD-interpretation and (if only the extracted programs are wanted)

the translation process is also referred to as program-extraction. The trans-

lated proof is also called the verifying proof since it verifies the fact that the

extracted programs truly realize the existential side of the LD-interpretation

(LD-translation) of the conclusion formula of the proof at input.

Gödel’s Dialectica interpretation (abbreviated D-interpretation) is rela-

tively (far) more complicated when it has to face (computationally relevant1)

contraction, which in Natural Deduction amounts to discharging more than

one copy of an assumption formula in an Implication Introduction→+ .Kohlen-

bach introduces in [67] an elegant method for simplifying the treatment of

contraction when the goal is to extract Howard majorizing functionals for

1In the sense of Definition 1.18. The pure Gödel D-interpretation has to deal with a larger

class of so-called “computationally D-relevant contractions”. The key optimizing feature of

the LD-interpretation is that there may be some D-relevant contractions which turn out to

not be LD-relevant (i.e., to be LD-irrelevant, and thus D-redundant, see Remark 1.19).

58



59

the Dialectica realizers. He named “monotone functional interpretation” this

variant of the D-interpretation which we here abbreviate by MD-interpretation.

The MD-interpretation has been used with great success over the last years

for producing proofs to important new theorems in numerical functional anal-

ysis ([80] and [62] contain comprehensive surveys of such to-day applications

of MD-interpretation to concrete mathematical proofs from the literature - for

direct references see, e.g., [67, 61, 63, 65, 66, 74, 75, 77, 78, 79, 81, 40, 76]).

Such theorems are completely new in the sense that they were not established

previously via the usual mathematical means from inside the theory (despite

attempts). However, whenever the extraction of exact realizers is concerned,

the MD-interpretation does not necessarily bring efficient answers. A differ-

ent kind of optimization of Gödel’s D-interpretation appears to be necessary.

We here propose the LD-interpretation as a refinement of Gödel’s technique

which allows for the extraction of more efficient exact realizers. Moreover, the

same refinement equally applies to the extraction of more efficient majorants

and bounds via what might be called the light monotone (or light bounded,

following [32] rather than [67]) functional interpretation (abbreviated LMD-

interpretation).

The D-interpretation was first introduced in [44] for a Hilbert-style formu-

lation of Arithmetic – see also [122, 89, 24, 4, 62] for other (more modern)

formulations within Hilbert-style systems. Natural Deduction formulations

of the Diller-Nahm [24] variant of D-interpretation were provided by Diller’s

students Rath [106] and Stein [120]. Only in the year 2001 Jørgensen [60] pro-

vided a first Natural Deduction formulation of the original Gödel’s functional

interpretation. In the Diller-Nahm setting all choices between the poten-

tial realizers of a contraction are postponed to the very end by collecting all

candidates and making a single final global choice. In contrast, Jørgensen’s

formulation respects Gödel’s original treatment of contraction by immediate

(local) choices. Jørgensen devises a so-called “Contraction Lemma” in or-

der to handle (in the given Natural Deduction context) the discharging of

more than one copy of an assumption in an Implication Introduction →+ . If

n + 1 undischarged occurrences of an assumption are to be cancelled in an

→+ then Jørgensen uses his Contraction Lemma n times, shifting partial re-

sults n times back and forth over the “proof gate” ` . We find this not only

inefficient from the applied program-extraction perspective but also inelegant

since the soundness proof for the D-interpretation complicates unnecessarily

w.r.t. contraction. We will instead use the n-selector Ifnτ for equalizing in one



60 The light (monotone) functional Dialectica interpretation

single (composed) step all the LD-interpretations of the n+ 1 undischarged

occurrences (see the proof of Theorem 2.10 below). While it is technically im-

possible to have a direct n-selector available for all n ∈ N, in actual optimizing

implementations Ifnτ could be given a (more) direct definition for n ≤ N for

a certain convenient upper margin N instead of being simulated in terms of

n times Ifτ (only a certain limited number of n-selectors is needed for most

practical applications). The practical gain w.r.t. Jørgensen’s solution is that

the handling of contraction is directly moved from the proof level to the term

level: back-and-forth shifting over ` is no longer required when building the

verifying proof.

We also modify Jørgensen’s variant of D-interpretation by allowing free

variables in the extracted terms. This corresponds to the formulation of

Gödel’s T with λ-abstraction as primitive and is more natural in a Natu-

ral Deduction setting. In addition we include the treatment of our adapta-

tion of Berger’s uniform existential and universal quantifiers from [8] to the

Dialectica-extraction context. In fact, it is exactly these ncm quantifiers that

bring the so-called “light” optimization of Dialectica, since they can be used

to isolate some computationally redundant contractions from the extracted

exact realizers. In the monotonic context, the ncm quantifiers are exactly like

Berger’s, without generating any further restrictions on Implication Introduc-

tion or ncm-ForAll Introduction, see Definition 1.64. Even though the treat-

ment of Contraction is simpler by the Monotone Dialectica, still the “light”

optimization can bring a serious further improvement, see the comment in

the last paragraph of Section 2.2. Therefore the Light Monotone Dialectica

interpretation is a very successful combination of the two optimizations of

Dialectica, which join together in a very smooth way. In consequence, the

LMD-interpretation also extends very easily to the extraction from fully classi-

cal proofs, in contrast to the LD-interpretation, which has very big difficulties

in this sense, due to the heavier ncm restrictions, see Section 2.3 for details.

2.1 The light Gödel Dialectica interpretation

The light functional (or “Light Dialectica”) interpretation/translation (on

short “LD-interpretation” or “LD-translation”) subsumes the following unique

assignment of formulas. To each instance2 of the formula A(a) (with a all

2 Here by instance of a formula A we understand on one hand an individual occurrence

of A as label for a node in a proof-tree P , but on the other hand also a formula Aα



2.1. The light Gödel functional “Dialectica” interpretation 61

the free variables of A) one associates a unique (α-isomorphism comprised)

formula AD(a) ≡ ∃x ∀y AD(x; y; a) with AD not necessarily quantifier-free3 and

x, y unique tuples of fresh variables of finite type (such that {x, y, a} are all free

variables of AD). The types of x, y depend only on the types of the regularly

bound variables of A and on the logical structure of A.

Notational Convention. Whenever we will use below the formula nota-

tion “A”, its free variables will be denoted “a” and its LD-translation will

be denoted “AD(a) ≡ ∃x ∀y AD(x; y; a)”. Similarly, when the formula nota-

tion “B” will be used, the free variables of B will be denoted “b” and its

LD-interpretation will be denoted “BD(b) :≡ ∃u∀v BD(u; v; b)”.

Notational Convention. If non-ambiguous, we sometimes omit to display

some of the free variables of the LD-translated formulas.

The LD-interpretation/translation of formulas is then given by the following:

Definition 2.1 (The light Dialectica interpretation of formulas)

Recall the definition 1.4 of quantifier-free formulas (which may contain ∨) and

the mapping of qfr formulas A0 to boolean terms tA0 from Proposition 1.35.

AD :≡ AD :≡ at(tA) for maximal quantifier-free formulas A

(A ∧B)D :≡ ∃x, u∀y, v [ (A ∧B)D :≡AD(x; y; a) ∧BD(u; v; b) ]

(∃zA(z, a))D :≡ ∃z†, x∀y [ (∃zA(z, a))D(z
†, x; y; a) :≡AD(x; y; z†, a) ]

(∀zA(z, a))D :≡ ∃X ∀z†, y [ (∀zA(z, a))D(X; z†, y; a) :≡AD(X(z†); y; z†, a) ]

(∃zA(z, a))D :≡ ∃x ∀y [ (∃zA(z, a))D(x; y; a) :≡∃z AD(x; y; z, a) ]

(∀zA(z, a))D :≡ ∃x ∀y [ (∀zA(z, a))D(x; y; a) :≡∀z AD(x; y; z, a) ]

(A→ B)D :≡ ∃Y , U ∀x, v [ (A→ B)D :≡AD(x;Y (x, v))→ BD(U(x); v) ]

Here · 7→ ·† is a mapping which assigns to every given variable z a completely

new variable z† which has the same type of z. Different variables z† are returned

for different applications on the same argument variable z when processing

a given formula A. This ensures that two nested quantifications of the same

which is α-isomorphic to A. Here α-isomorphism of formulas is meant in the sense that the

corresponding terms of A and Aα are α-equivalent (the usual notion from typed λ-calculus).
3Here is one difference w.r.t. the pure Gödel Dialectica, for which AD is always quantifier-

free. On the other hand, this situation is quite similar to the approach from Ferreira and

Oliva’s bounded functional interpretation, see [32, 33].



62 The light (monotone) functional Dialectica interpretation

variable in A are correctly distinguished in AD . The variables X, Y , U produced

in the treatment of → and ∀ are also completely new but in contrast to the

variables yielded by ·† , their type is strictly more complex than the type of

the original variable. The free variables of AD are exactly the free variables of

A. If A is quantifier-free then IL/IL∃ ` A ↔ AD ≡ AD .

Remark 2.2 (Non-quantifier-free radical/root associated formula AD)

For the light Dialectica interpretation, the radical (or “root”) formula AD

(which is LD-interpretation associated to A) is not necessarily quantifier-free,

like it is for the pure Gödel’s functional interpretation. It actually contains

the translation of all ncm quantifiers to the corresponding regular quantifiers.

Convention 2.3 The LD-associated formula AD is unique (alpha-isomorphism

comprised) for all instances of the formula A. See also Footnote 2.

Remark 2.4 The use of ·† is mandatory: just consider the interpretation of

∀z. (z = O → ∀z. z = O) (2.1)

The sentence (2.1) is obviously false in our systems. An uncarefully formalized

(L)D-interpretation would translate it to the universally true sentence

∀z. ∀z. z = O → z = O .

Remark 2.5 By abuse of notation from now on we use non-underlined letters

also for tuples of objects (variables, terms, . . . ) and identify an individual

object with the tuple containing only that object.

Definition 2.6 (Dialectica terms) For every ncm-quantifier free formula

A(a) we denote by tDA[x; y; a] the boolean term associated to (the quantifier-

free formula) AD(x; y; a) by the mapping from Proposition 1.35. We call it

“the Dialectica term associated to” A(a). The following holds:

IL ` AD(x; y; a) ↔ at(tDA[x; y; a]) (2.2)

Remark 2.7 Terms tDA can also be defined directly, in parallel with the defi-

nition of AD as follows (association by induction on the structure of the formula



2.1. The light Gödel functional “Dialectica” interpretation 63

A, starting from quantifier-free components):

tDat(tA0
[a])[; ; a] :≡ tA0 [a]

tDA∧B[x, u; y, v; a, b] :≡ And tDA[x; y; a] tDB[u; v; b]

tD∃zA(z,a)[z
†, x; y; a] :≡ tDA(z,a)[x; y; z†, a]

tD∀zA(z,a)[X; z†, y; a] :≡ tDA(z,a)[X(z†); y; z†, a]

tDA→B[Y, U ;x, v; a, b] :≡ Imp tDA[x;Y (x, v); a] tDB[U(x); v; b]

The proof of (2.2) would then be immediate by structural induction. Anyway,

even with such a definition, tDA would be literally, syntactically equal with the

term tAD
associated to the quantifier-free formula AD by Proposition 1.35.

Below we present the LD-interpretation of some (generic) formulas of interest:

(¬A)D(a) ≡ ∃Y ∀x¬AD(x;Y (x); a)

(¬¬A)D(a) ≡ ∃X ∀Y ¬¬AD(X(Y );Y (X(Y )); a)

(∃clz A(z))
D
(a) ≡ ∃Z,X ∀Y ¬¬AD(X(Y );Y (Z(Y ), X(Y ));Z(Y ), a)

(¬¬∃zA(z))D(a) ≡ ∃Z,X ∀Y ¬¬AD(X(Y );Y (Z(Y ), X(Y ));Z(Y ), a)

 (2.3)

Remark 2.8 Formula ∃clz A(z) has the same LD-interpretation as ¬¬∃zA(z).

Definition 2.9 (ncm-stable pure-ncm formulas) A pure-ncm formula Anc

is defined to be “ncm-stable” if it does not contain the strong ncm-existential

quantifier ∃ in a strictly positive position (in the sense of Definition 1.13).

Hence for the LD-interpretation A of such formula Anc one can prove stability

¬¬A → A already in WeZ∃ , see Corollary 1.41.

Theorem 2.10 (Extraction and its soundness for Light Dialectica [50])

There exists an algorithm which, given at input a proof P : {Ci}ni=1 ` A
in WeZ∃,nc+ or WeZnc+ , will produce at output the following:

1. the tuples of terms {Ti}ni=1 and T ,

2. the tuples of variables {xi}ni=1 and y, all together with

3. the verifying proof PD : {Ci
D(xi;Ti(x, y))}ni=1 ` AD(T (x); y) in WeZ∃,cl ,

or respectively WeZ – where x :≡x1, . . . , xn above.

Moreover,



64 The light (monotone) functional Dialectica interpretation

the variables x and y do not occur in P (they are all completely new)

the free variables of T and {Ti}ni=1 are among the free variables of A and

{Ci}ni=1 – we call this “the free variable condition (FVC) for programs

extracted by the LD-interpretation”.

hence x and y also do not occur free in the extracted terms {Ti}ni=1 and T . If

the input proof in WeZ∃,nc+ does not employ any AxSTABnc or AxMK in which

the pure-ncm main formula is not ncm-stable then the verifying proof is in WeZ∃

rather than WeZ∃,cl (since Stability can be proved in WeZ∃ for cases of interest).

Proof: The algorithm proceeds by recursion on the structure of the input

proof P . Realizing terms must be presented for all the axioms and then realiz-

ing terms for the conclusion of a rule must be deduced from terms which realize

the premise of that rule. Since x, y are produced by the LD-interpretation of

formulas (see Definition 2.1) it is immediate that they do not occur in P . We

present below all cases. Notice that the (sub)case of Implication Introduction

→+ in which at least two copies of the implicative assumption get cancelled

is far more difficult than all the other axioms and rules4 because it involves

contraction, which may be computationally LD-relevant. In such a case, the

whole LD-translation of the discharged assumption enters into the realizing

terms, heavily increasing their complexity. The ncm−FC restriction is here

essential in allowing such necessary translation from formulas to terms.

The rules of Intuitionistic Logic

A ` A Just take T :≡λx, y. y and T :≡λx. x. The FVC is obviously satisfied.

A ∧B

A
∧−l We are given that (with x ≡ x1, . . . , xn)

{Ci
D(xi;Si(x, y

′, y′′))}ni=1 ` AD(S
′(x); y′) ∧BD(S

′′(x); y′′)

in which we substitute the variables from Vf(B) \ [∪ni=1Vf(Ci) ∪ Vf(A)] and

those from y′′ with terms O of corresponding type. We denote by T ′ and

{Si?}ni=1 the (newly obtained after substitution) terms corresponding to S ′

and {Si}ni=1 respectively. For all i ∈ 1, n let Ti :≡λx, y′. Si?(x, y′, O). We finally

obtain after a ∧−l , with the FVC obviously satisfied, that

{Ci
D(xi;Ti(x, y

′))}ni=1 ` AD(T
′(x); y′) .

4See also the comments from the preamble of Chapter 2.



2.1. The light Gödel functional “Dialectica” interpretation 65

A ∧B

B
∧−r Similar to the previous case.

A , B

A ∧B
∧+ We are given, with x′ ≡ x′1, . . . , x

′
n and

x′′ ≡ x′′n+1, . . . , x
′′
m , that :

{Ci
D(x
′
i;Ti(x

′, y′))}ni=1 ` AD(T
′(x′); y′)

{Ci
D(x
′′
i ;Ti(x

′′, y′′))}mi=1 ` BD(T
′′(x′′); y′′)

It has been assumed that n ≤ m. By one application of ∧+ we get

{Ci
D(x
′
i;Ti(x

′, y′))}ni=1 , {Ci
D(x
′′
i ;Ti(x

′′, y′′))}mi=n+1

AD(T
′(x′); y′) ∧BD(T

′′(x′′); y′′)
.

Let x :≡x′, x′′ , S ′ :≡λx. T ′(x′), S ′′ :≡λx. T ′′(x′′) and for i ∈ 1,m,

Si :≡

{
λx, y′, y′′. Ti(x

′, y′) , if 1 ≤ i ≤ n

λx, y′, y′′. Ti(x
′′, y′′) , if n < i ≤ m

Then we obviously have (with the FVC immediately satisfied)

{Ci
D(xi;Si(x, y

′, y′′))}mi=1 ` (A ∧B)D(S
′(x), S ′′(x) ; y′, y′′ ) .

A , A→ B

B
→− We are given, with x′ ≡ x′1, . . . , x

′
n and

x′′ ≡ x′′n+1, . . . , x
′′
m , that :

{Ci
D(x
′
i;Ti(x

′, y′))}ni=1 ` AD(T
′(x′); y′) (2.4)

{Ci
D(x
′′
i ;Ti(x

′′, y′′, y))}mi=n+1 ` (A→ B)D(T
′′(x′′), T (x′′) ; y′′, y ) (2.5)

It has been assumed that n ≤ m. It is more convenient to redisplay (2.5) as

{Ci
D(x
′′
i ;Ti(x

′′, y′′, y))}mi=n+1 ` AD(y
′′;T ′′(x′′, y′′, y)) → BD(T (x′′, y′′); y) (2.6)

We substitute {y′←T ′′(x′′, T ′(x′), y)} in (2.4) and {y′′←T ′(x′)} in (2.6). Then

{Ci
D(x
′
i;Ti(x

′, T ′′(x′′, T ′(x′), y)))}ni=1 , {Ci
D(x
′′
i ;Ti(x

′′, T ′(x′), y))}mi=n+1

BD(T (x′′, T ′(x′)); y)
(2.7)



66 The light (monotone) functional Dialectica interpretation

is obtained by an →− applied to (2.6) and substituted (2.4). In (2.7) we sub-

stitute the variables from Vf(A) \ [∪mi=1Vf(Ci) ∪ Vf(B)] with terms O of corres-

ponding type. We denote by T?, T ′?, T
′′
? and {Ti?}ni=1 the (newly obtained after

substitution) terms corresponding to T, T ′, T ′′ and {Ti}ni=1 respectively. Let

x :≡ x′, x′′ and then let S :≡ λx. T?(x′′, T ′?(x
′)) and

Si :≡

{
λx, y. Ti

?(x′, T ′′?(x
′′, T ′?(x

′), y)) , if 1 ≤ i ≤ n

λx, y. Ti
?(x′′, T ′?(x

′), y) , if n < i ≤ m

We then immediately obtain (with the FVC obviously satisfied)

{Ci
D(xi;Si(x, y))}mi=1 ` BD(S(x); y) .

[u : A] . . . /B

A→ B
→+

We are given, with n ≥ 1 (for n < 1 skip to the end),

z ≡
n+1︷ ︸︸ ︷

z, . . . , z and x ≡ xn+2, . . . , xm , that :

{AD(z;Ti(z, x, y))}n+1
i=1 , {Ci

D(xi;Ti(z, x, y))}mi=n+2 ` BD(T (z, x); y) (2.8)

It has been assumed that n+ 1 ≤ m, where n+ 1 is the number of copies of

the assumption formula A which get discharged in this →+. Each of these

n+ 1 instances of A produces the same unique tuple z of existential variables

under the LD-interpretation, see the Convention 2.3 following the Definition

2.1. The ncm−FC(A) constraint ensures that the tuples {Ti}n+1
i=1 are all of

length zero (denoted t), i.e., A is computationally LD-irrelevant (see Definition

1.18), or otherwise AD is quantifier-free (pre-condition for the association to

A of so-called “Dialectica terms”, see Definition 2.6). Only in the former case

can we directly discharge in a single →+ all n+ 1 ≥ 2 copies of AD(z;t) from

the LD-interpretation of the premise of this rule, see (2.8). In contrast, for the

latter case we must first equalize the assumptions involving the n+ 1 terms

{Ti}n+1
i=1 . This is because the terms {Ti}n+1

i=1 can be mutually different since they

are extracted from the various different sub-proofs which involve the different

copies of A in the same parcel u. We hereafter treat this case. We achieve the

equalizing of {Ti}n+1
i=1 in one single (composed) step5, using the n-selector Ifnτ .

For all i ∈ 1, n let T i abbreviate Ti(z, x, y) (recall that z ≡ z, . . . , z) and let

S̃ :≡ λx, z, y. Ifnτ (tDA[z;T 1], . . . , tDA[z;T n], Tn+(z, x, y), T n, . . . , T 1) (2.9)

5Jørgensen’s solution uses here n steps which correspond to the simulation of Ifnτ in

terms of n instances of Ifτ , see also the comments in the preamble of Chapter 2.



2.1. The light Gödel functional “Dialectica” interpretation 67

By letting {pi←tDA[z;T i]}ni=1 in LmIfnτ (see (1.35)) and also using (2.2) we get

` ∧i−1j=1AD(z;T j) ∧ eAD(z;T i) → S̃(x, z, y) = Ti(z, x, y)

for all i ∈ 1, n and (for the above and below we used β-equality, hence CMP)

` ∧ni=1AD(z;T i) → S̃(x, z, y) = Tn+(z, x, y)

from which we further obtain

` [∧i−1j=1AD(z;T j)∧ eAD(z;T i) ] → [AD(z; S̃(x, z, y)) → ∧n+1
k=1 AD(z;T k) ]

` [∧nj=1AD(z;T j) ] → [AD(z; S̃(x, z, y)) → ∧n+1
k=1 AD(z;T k) ]

for all i ∈ 1, n. We used one CMP6 in each of the n+ 1 above deductions and an

AxEFQ in each of the the first n of these. Since AD is qfr7 (due to the ncm−FC
restriction on A), it follows by multiple Case Distinction (1.23) that

` AD(z; S̃(x, z, y)) → ∧n+1
i=1 AD(z;T i) (2.10)

hence for all i ∈ 1, n+ 1 we obtain

AD(z; S̃(x, z, y)) ` AD(z;Ti(z, x, y)) (2.11)

We now sequentially discharge all n+ 1 assumptions AD of (2.8) in n+ 1

sequential applications of →+ (with 1-contraction) and thus obtain

{Ci
D(xi;Ti(z, x, y))}mi=n+2 ` {AD(z;Ti(z, x, y))}n+1

i=1 → BD(T (z, x); y)(2.12)

We combine the proof (2.12) with the n + 1 proofs of {AD(z;Ti(z, x, y))}n+1
i=1

which are obtained above at (2.11) in n+ 1 applications of →− to conclude,

with {Si :≡λx, z. Ti(z, x)}mi=n+2 and S :≡λx, z. T (z, x), that

{AD(z; S̃(x, z, y))}n+1
i=1 , {Ci

D(xi;Si(x, z, y))}mi=n+2 ` BD(S(x, z); y) .

6Since AD is quantifier-free, the restriction on undischarged assumptions is respected.
7Because of the multiple Decidability for quantifier-free formulas (see (1.24)) we have

` ∨ni=1[∧i−1j=1AD(z;T
j)∧ eAD(z;T

i) ] ∨ [∧nj=1AD(z;T
j) ] ,

from which (2.10) would follow immediately using (1.19). However, this method requires

(because of our definition of ∨) the inclusion of ∃ in the verifying system, which we want

to avoid (since we can) whenever the proof P at input does not make use of ∃.



68 The light (monotone) functional Dialectica interpretation

Since they are all equal, we are now able to cancel all n+ 1 ≥ 2 assumptions

{AD(z; S̃(x, z, y))}n+1
i=1 in a single →+ with (n+ 1)-contraction and thus get

{Ci
D(xi;Si(x, z, y))}mi=n+2 ` AD(z; S̃(x, z, y))→ BD(S(x, z); y) .

Notice that tDA introduces in S̃ new occurrences of the free variables of A. We

finally obtain, with the FVC obviously satisfied, that

{Ci
D(xi;Si(x, z, y))}mi=n+2 ` (A→ B)D( S̃(x), S(x) ; z, y) .

In the case when exactly one copy of A gets cancelled we can use the

same extracted terms except that the equation which defines S̃ is replaced by

S̃ :≡ λx, z, y. T(z, x, y)[in fact z ≡ z]. We now consider the case when no copy

of A gets cancelled. We are given that {Ci
D(xi;Ti(x, y))}mi=1 ` BD(T (x); y) to

which we can apply an→+ in which no copy of the assumption gets cancelled

to obtain

{Ci
D(xi;Ti(x, y))}mi=1 ` AD(z; O)→ BD(T (x); y) .

We then simply define {Si :≡λx, z, y. Ti(x, y)}mi=1 , S̃ :≡ λx, z, y. O ≡ O and

S :≡λx, z. T (x) to finally obtain, with the FVC obviously satisfied, that

{Ci
D(xi;Si(x, z, y))}mi=1 ` AD(z; S̃(x, z, y))→ BD(S(x, z); y) .

∀z A(z)

A(t)
∀−z,t We are given that

{Ci
D(xi;Si(x, z

†, y))}ni=1 ` AD(S(x, z†); y; z†) ,

where x ≡ x1, . . . , xn and (by its construction) z† is not free in {Ci
D}ni=1 and

(also due to the FVC) z† is not free in S and/or {Si}ni=1 . By substituting {z†← t}
we therefore obtain that {Ci

D(xi;Si(x, t, y))}ni=1 ` AD(S(x, t); y; t). Then by

defining {Ti :≡λx. Si(x, t)}ni=1 and T :≡λx. S(x, t) we conclude, also using VC ,

modulo some applications of CMP, with FVC obviously satisfied, that:

{Ci
D(xi;Ti(x, y))}ni=1 ` AD(T (x); y; t) .

A(z)

∀zA(z)
∀+z We are given that

{Ci
D(xi;Ti(x, y))}ni=1 ` AD(T (x); y; z) ,



2.1. The light Gödel functional “Dialectica” interpretation 69

where x ≡ x1, . . . , xn and (by VC) z is not free in the assumptions {Ci}ni=1 .

Due to the rules for variable naming in the LD-interpretation of a formula, z

is also not among x, y (see Definition 2.1). On the other hand, z may be free

in T and/or {Ti}ni=1 . Let S :≡λx, z. T (x) and {Si :≡λx, z. Ti(x)}ni=1 . We then

obtain, after some applications of the CMP rule and the substitution {z←z†},
that (with the FVC obviously satisfied):

{Ci
D(xi;Si(x, z

†, y))}ni=1 ` (∀zA(z))D(S(x); z†, y) .

∀zA(z)

A(t)
∀ −z,t We are given that

{Ci
D(xi;Ti(x, y))}ni=1 ` ∀zAD(T (x); y; z) ,

to which we can immediately apply ∀−z,t since VC(z, t) is obviously respected

(due to the policy of variable naming in the LD-interpretation of a formula,

see Definition 2.1). We then obtain, with the FVC obviously satisfied, that

{Ci
D(xi;Ti(x, y))}ni=1 ` AD(T (x); y; t) .

We here also used that, due to the FVC, z is not free in any of T or {Ti}ni=1 .

P : A(z)

∀zA(z)
∀ +

z We are given that

{Ci
D(xi;Ti(x, y))}ni=1 ` AD(T (x); y; z) ,

where z is neither in ∪ni=1Vf(Ci) (because of VC(z)) nor among x, y (due to the

rules for variable naming in the LD-interpretation of a formula, see Definition

2.1). The fact that z is not free in any of T, {Ti}ni=1 is ensured mainly by

VC(z,P) : the exception in VC(z,P) is taken care of by the FVC applied to

all sub-proofs of P . Thus, even in the exceptional cases, z still is not free

in any of T, {Ti}ni=1 , because of the FVC. Since the pre-condition VC(z) is

established, we can apply a ∀+z in the verifying proof to obtain, with the FVC

clearly satisfied also due to VC(z,P), that

{Ci
D(xi;Ti(x, y))}ni=1 ` ∀zAD(T (x); y; z) .

The axioms of Intuitionistic Logic



70 The light (monotone) functional Dialectica interpretation

Ax∃− : ∃z1A(z1) ∧ ∀z2 [A(z2) → B ] → B The LD-interpretation

of Ax∃− is (for legibility we abbreviate below by · :≡ z, x, y, u, v)

∃Y, Z,X, V, U ∀ z, x, y, u, v
AD(x;Y (x, y, u, v); z)

∧
[AD(X(·); y(Z(·), X(·), V (·));Z(·))→ BD(u(Z(·), X(·));V (·))]

→
BD(U(z, x, y, u); v)


for which a realizing tuple is TY , TZ , TX , TV , TU where

TY :≡ λz, x, y, u, v. y(z, x, v)

TZ :≡ λz, x, y, u, v. z

TX :≡ λz, x, y, u, v. x

TV :≡ λz, x, y, u, v. v

TU :≡ λz, x, y, u. u(z, x)

Ax∃+ : ∀z1 [A(z1) → ∃z2A(z2) ] The LD-interpretation of Ax∃+ is

∃Y, Z,X∀z, x, y [AD(x;Y (z, x, y); z)→ AD(X(z, x); y;Z(z, x))]

for which a realizing tuple is TY , TZ , TX where

TY :≡ λz, x, y. y

TZ :≡ λz, x. z

TX :≡ λz, x. x

Ax∃− : ∃z1A(z1) ∧ ∀z2 [A(z2) → B ] → B The LD-interpretation

of Ax∃−is (for legibility we abbreviate below by · :≡x, y, u, v)

∃Y,X, V, U ∀x, y, u, v
∃z1AD(x;Y (x, y, u, v); z1, a)

∧
∀z2 [AD(X(·); y(X(·), V (·)); z2, a)→ BD(u(X(·));V (·); b)]

→
BD(U(x, y, u); v; b)





2.1. The light Gödel functional “Dialectica” interpretation 71

for which a realizing tuple is TY , TX , TV , TU where

TY :≡ λx, y, u, v. y(x, v)

TX :≡ λx, y, u, v. x

TV :≡ λx, y, u, v. v

TU :≡ λx, y, u. u(x)

The verification is ensured by an instance of Ax∃−.

Ax∃+
: ∀z1 [A(z1) → ∃z2A(z2) ] The LD-interpretation of Ax∃+

is

∃Y,X∀x, y ∀z1 [AD(x;Y (x, y); z1, a)→ ∃z2AD(X(x); y; z2, a)]

for which a realizing tuple is TY , TX where

TY :≡ λx, y. y

TX :≡ λx. x

The verification is ensured by an instance of Ax∃+.

The boolean axioms

The axiom AxTRH, is simply quantifier-free. For the others we have:

AxFLS : at(ff) → A The LD-interpretation of AxFLS is

∃x ∀y (at(ff) → AD(x; y))

for which a realizing tuple is Tx :≡ O .

AxBIA : A(tt) ∧ A(ff) → ∀poA(p) The LD-interpretation of AxBIA is

∃Y1, Y2, X ∀p†, x1, x2, y
AD(x1;Y1(p

†, x1, x2, y); tt) ∧ AD(x2;Y2(p
†, x1, x2, y); ff)

−→

AD(X(p†, x1, x2); y; p†)


for which a realizing tuple is TY , TY , TX where

TY :≡ λp†, x1, x2, y. y

TY :≡ λp†, x1, x2, y. y

TZ :≡ Ifτ

and the verifying proof uses an instance of AxBIA for a qfr formula and AxIfτ .



72 The light (monotone) functional Dialectica interpretation

Arithmetical axioms and rules

The axiom AxEFQ is quantifier-free and the axioms REF and AxEQL are either

quantifier-free (at ground type) or purely universal (at higher-order type).

Therefore none of them produces any realizing term. The quantifier-free ax-

ioms verify themselves. For the purely universal axioms the verifying proof

is given by simple applications of ∀− to themselves. The soundness of LD-

interpretation for the rules SYM, TRZ and SUB at higher-order type is imme-

diate since the realizing terms involved are just simple projections of shape

λx1, . . . , xn. xi (with i ∈ 1, n) and the verifying proofs only involve AxEQL and

some ∀+ followed by ∀− . We now present the treatment of the remaining cases:

A0 . . . /s =τ t

B(s)→ B(t)
CMP We have that B(zτ , a)D ≡ ∃u∀vBD(u; v; zτ , a), hence

(B(x)→ B(y))D ≡ ∃U, V ∀u, v BD(u;V (u, v);x, a)→ BD(U(u); v; y, a) .

Since AD
0 = (A0)D = A0 we are given that A0 ` s(z1, . . . , zn) =ι t(z1, . . . , zn)

to which we can (since none of z1, . . . , zn appears in A0) apply n times ∀+ to

(re)obtain A0 ` s =τ t. To this we apply a CMP for B′(z) ≡ BD(u; v; z, a) and

thus obtain

A0 ` BD(u; v; s, a)→ BD(u; v; t, a) .

Let TV :≡λu, v. v and TU :≡λu. u. It immediately follows (also using some

other CMP) that

A0 ` BD(u;TV (u, v); s, a) → BD(TU(u); v; t, a)

which rewrites as

(A0)D ` (B(s)→ B(t))D(TU , TV ;u, v) .

∅
...

A(O)

∅
...

∀z (A(z)→ A(Sucz))

∀z A(z)
IR

We are given that

(by abuse of notation we use the

same z in the verifying proof)

∅ ` AD(T
′; y′; O) (2.13)

∅ ` AD(y
′′;T ′′ (z, y′′, y); z)→ AD(T

′′
 (z, y′′); y; Sucz) (2.14)



2.1. The light Gödel functional “Dialectica” interpretation 73

We define by simultaneous primitive recursion in higher types the terms T

such that T (O) = T ′ and T (Sucz) = T ′′ (z, T (z)). By ∀+, (2.13) becomes

∅ ` ∀y AD(T (O); y; O) (2.15)

We substitute {y′′←T (z)} in (2.14) and obtain

∅ ` AD(T (z);T ′′ (z, T (z), y); z)→ AD(T (Sucz); y; Sucz) (2.16)

from which we can produce the following proof

[∀y AD(T (z); y; z) ]

∀y AD(T (z); y; z)

AD(T (z);T ′′ (z, T (z), y); z)
∀− (2.16)

AD(T (Sucz); y; Sucz)
→−

∀y AD(T (Sucz); y; Sucz)
∀+

∀y AD(T (z); y; z)→ ∀y AD(T (Sucz); y; Sucz)
→+

where-from by a final ∀+z we obtain

∅ ` ∀z (∀y AD(T (z); y; z) → ∀y AD(T (Sucz); y; Sucz) ) (2.17)

From (2.15) and (2.17) we obtain by IR followed by ∀− w.r.t. z and y that

∅ ` AD(T (z†); y; z†) , hence, with the FVC obviously satisfied,

∅ ` (∀zA(z))D(T ; z†, y)

Other axioms and rules

AxAC : ∀x∃y B(x, y) → ∃Y ∀xB(x, Y (x)) SinceBD ≡ ∃u∀v BD(u; v) we have

[∀x∃y B(x, y) ]D ≡ ∃Y †, U ∀x†, v†BD(U(x†); v†;x†, Y †(x†)) ≡ [∃Y ∀xB(x, Y (x)) ]D

hence the LD-interpretation of AxAC is

∃X, V, Y †, U ∀y†, u†, x†, v†
BD(u

†(X(y†, u†, x†, v†));V (y†, u†, x†, v†);X(y†, u†, x†, v†), y†(X(y†, u†, x†, v†)))

−→

BD(U(y†, u†, x†); v†;x, Y †(y†, u†, x†))





74 The light (monotone) functional Dialectica interpretation

for which a realizing tuple is

TX :≡ λy†, u†, x†, v†. x†

TV :≡ λy†, u†, x†, v†. v†

TY† :≡ λy†, u†. y†

TU :≡ λy†, u†. u†

AxMK : ∃clzAnc(z)→ ∃zAnc(z) and AxMK : ¬¬∃zAnc(z)→ ∃zAnc(z)

Since [ ∃clzAnc(z) ]D ≡ [¬¬∃zAnc(z) ]D ≡ ∃z† ¬¬A(z†), where A is the regular-

quantifier translation of Anc in the sense of Footnote 17 (see also Remark

2.8), the LD-interpretation of both variants AxMK and AxMK of Markov’s prin-

ciple gets to be ∃Z ∀z† [¬¬A(z†) → A(Z(z†)) ], which is simply realized as

usual by TZ :≡λz†. z†. Nonetheless, the verifying proof uses stability for all

formulas, hence this is the unique place where AxSTAB is needed in the veri-

fying proof. Notice that the variant AxMK : ¬¬∃z Anc(z)→ ∃z ¬¬Anc(z) of

Markov’s principle, which was preferred by the authors of [56] because of com-

plexity considerations (see also Footnote 16) is here much simpler because no

stability is needed for the verification. Hence the use of AxMK instead of AxMK

or AxMK would allow to avoid full classical logic in the verifying systems.

AxIP−∃+∀ : [A−∃+∀ → ∃y B(y) ] → ∃y [A−∃+∀ → B(y) ]

Recall the usual notation BD ≡ ∃u∀v BD(u; v). On the other hand the more

special kind of formula A−∃+∀ (see Section 1.4 for its definition) has the struc-

tural property that its LD-interpretation does not have an existential side (i.e.,

its existential side is empty, by Definition 2.1), hence we here denote rather un-

usually8 (A−∃+∀)
D :≡ ∀xAD(t;x), and even shorter, (A−∃+∀)

D :≡ ∀xAD(x). Thus:

[A−∃+∀ → ∃y B(y) ]D ≡ ∃X, y†, u† ∀v† [AD(X(v†)) → BD(u
†; v†; y†) ]

(∃y [A−∃+∀ → B(y) ] )D ≡ ∃y†, X, u† ∀v† [AD(X(v†)) → BD(u
†; v†; y†) ]

hence the LD-interpretation of AxIP−∃+∀ is

∃V, Y,X, U ∀x†, y†, u†, v†
AD(x

†(V (x†, y†, u†, v†))) → BD(u
†;V (x†, y†, u†, v†); y†)

−→

AD(X(x†, y†, u†, v†)) → BD(U(x†, y†, u†); v†;Y (x†, y†, u†))


8Since x is normally used for the existential side of AD .



2.1. The light Gödel functional “Dialectica” interpretation 75

for which a realizing tuple is

TV :≡ λx†, y†, u†, v†. v†

TY :≡ λx†, y†, u†. y†

TX :≡ λx†, y†, u†. x†

TU :≡ λx†, y†, u†. u†

AxIPclnc : [A−∃+∀ → ∃cly B
+∃
−∀(y) ] → ∃cly [A−∃+∀ → B+∃

−∀(y) ]

Just like above, let (A−∃+∀)
D :≡ ∀xAD(t;x), and even shorter, (A−∃+∀)

D :≡ ∀xAD(x).

Similarly, let (B+∃
−∀(y))D :≡ ∃uBD(u;t; y), which we choose to short, despite

the ambiguity, as (B+∃
−∀(y))D :≡ ∃uBD(u; y). Then by means of (2.3) we imme-

diately obtain that (∃clyB+∃
−∀(y))D :≡ ∃y, u¬¬BD(u; y) and further combined:

[A−∃+∀ → ∃
cly B+∃

−∀(y) ]D ≡ ∃x, y, u [AD(x) → ¬¬BD(u; y)] (2.18)

[A−∃+∀ → B+∃
−∀(y) ]D ≡ ∃x, u [AD(x) → BD(u; y)] (2.19)

Now from (2.19) we immediately obtain, again by using (2.3), that

(∃cly [A−∃+∀ → B+∃
−∀(y) ])D ≡ ∃x, y, u¬¬[AD(x) → BD(u; y)] (2.20)

Since AD, BD ∈ F∃ , due to (1.32) we can write (in IL already)

[AD(x) → ¬¬BD(u; y)] ↔ ¬¬[AD(x) → BD(u; y)] (2.21)

Finally, from (2.18), (2.20) and (2.21) we immediately figure out that the LD-

interpretation of AxIPclnc is realized by simple projection functionals.

AxACclnc : ∀x∃cly Bnc(x, y) → ∃clY ∀x Bnc(x, Y (x))

By (2.3) we have (∃clyBnc(x, y))D ≡ ∃y¬¬B(x, y), and further

[∀x∃clyBnc(x, y)]D ≡ ∃y∀x¬¬B(x, y(x)) (2.22)

Also by (2.3) we have (above and below B isomorphically corresponds to Bnc)

[∃clY ∀xBnc(x, Y (x))]D ≡ ∃Y ∀x¬¬B(x(Y x), Y (x, x(Y x))) (2.23)

Let y realize (2.22) and define Y :≡ λz, x. y(x). From (2.22) we thus have

∀x′, z¬¬B(x′, Y (z, x′)), from which we immediately obtain (2.23) by setting



76 The light (monotone) functional Dialectica interpretation

z :≡ x and x′ :≡ x(Y x). We have thus constructed a purely intuitionistic proof

of (2.23) from (2.22) and it should now be clear that the LD-interpretation of

AxACclnc does have realizers. In fact, [AxACclnc ]D is now by pure Definition 2.1 (we

here also used some convenient renaming of variables in (2.22) and (2.23)):

∃Y, U ∀x, v [¬¬B(Y (x, v), x(Y (x, v))) → ¬¬B(v(Uxv), U(x, v, v(Uxv)))]

for which we can directly construct Y :≡ λx, v. v(x) and U :≡ λx, v. x. 2

Corollary 2.11 (Exact realizer synthesis by the Light Dialectica [50])

There exists an algorithm which from a proof ∅ ` A(a) in WeZ∃,nc+ or re-

spectively WeZnc+ produces exact realizing terms T [a] with a verifying proof

∅ ` ∀a, y AD(T ; y; a) in the corresponding system WeZ∃,cl or respectively WeZ.

If the input proof in WeZ∃,nc+ does not employ any AxSTABnc or AxMK in which

the pure-ncm main formula is not ncm-stable then the verifying proof is in WeZ∃

rather than WeZ∃,cl . Stability can be proved in WeZ∃ already for cases of need.

2.2 The light monotone functional (light

monotone Dialectica) interpretation

We describe below the combination of our refinement of Gödel’s Dialectica

interpretation [60, 4, 44] with its optimization for the extraction of bounds9

due to Kohlenbach [67].

Theorem 2.12 (Extraction and its soundness for LMD-interpretation)

There exists an algorithm which, given at input a proof P : {Ci(ai)}ni=1 ` A(a′)

in WeZ∃,nc+m will produce at output the tuples of terms {Ti[a]}ni=1 and T [a]

(where a :≡ a1, . . . , an, a′) together with the following verifying proof in WeZ∃m :

` ∃X1 . . . Xn, X [ ∧ni=1 (λa. Ti[a]) � Xi ∧ (λa. T [a]) � X ∧

∀a, x, y ( {Ci
D(xi;Xi(a, x, y); ai)}ni=1 → AD(X(a, x); y; a′) ) ]

– where x :≡x1, . . . , xn . We denote this verifying proof which corresponds to

P by PMD . If the input proof P is in WeZnc+m only, then PMD is in WeZm plus Ax∃+
and Ax∃− for the newly introduced existential variables X1 . . . Xn, X and for

the existential variables Φ of those AxCA necessarily involved by PMD only.

9See also [32] for a more recent adaptation of Dialectica to the extraction of bounds.



2.2. The light monotone functional “Dialectica” interpretation 77

Proof: The wanted algorithm proceeds by recursion on P and it can be

seen as the interleaving of two algorithms. On one side we have the extraction

algorithm which is derived from that of Theorem 2.10 by carrying it out with

a number of small (but important) modifications concerning:

1. The computationally LD-relevant contractions which are simpler treated

by replacing (2.9) with

S̃ :≡ λx, z, y. Maxnτ (Tn+(z, x, y))T n . . . T 1 (2.24)

2. The new Gödel recursor R introduced in the extracted terms by the

treatment of the induction rule IR is replaced with its associate R?

given by Definition 1.74 / Proposition 1.78.

3. The term t of ForAll Elim ∀−z,t , which had gotten comprised into the ex-

tracted terms during the treatment of this rule, is here replaced with its

correspondent t? obtained from t via the algorithm of Proposition 1.78.

Notice that the issue of program synthesis is separate from that of program

verification, hence this (much simpler, hence more efficient) algorithm can be

carried out independently in itself. On the other hand we have the algorithm

charged with the construction of the verifying proof. The monotone verifying

proof not only mimics the verifying proof produced by Theorem 2.10, but acts

more like a Hilbert-style counterpart of this Natural Deduction proof. Indeed,

the abstractions for the concrete LD-realizing terms, denoted by the (strong)

existentially quantified variables X1 . . . Xn and X, actually force the verifying

proof to keep the assumptions on the right-hand side of the proof-gate `,
as implicative assumptions rather than open assumptions. Thus the second

algorithm ensures that during a recursion loop, the verifying proof is built from

such Hilbert-style-like (i.e., assumption-less) proofs and at the end of the loop a

true Hilbert-style-like proof is produced, even though the intermediate proofs

of this construction may freely use undischarged assumptions. The second

algorithm is thus concerned only with the construction of the verifying proof.

In the monotone context, the virtual existence of the exact realizer is still

granted due to the addition of AxCA to the verifying systems. Since AD is no

longer necessarily quantifier-free, its comprehension term ΦAD
can and must be

used instead of tDA in (2.9). Then AxCA ensures that the construction from The-

orem 2.10 still works for the Imp Intro rule →+ , in the sense that a verifying

Hilbert-style-like proof for the new exact realizer can be constructed in the new



78 The light (monotone) functional Dialectica interpretation

monotone setting. If t denotes that exact realizer, then the construction of its

“canonical” majorant t? by means of Proposition 1.78 would actually replace

the S̃ of the modified (2.9) with the S̃ defined above via (2.24). But with the

new definition of the (monotone) extracted terms we actually get to avoid the

application of the ·? algorithm at the end of the whole extraction. The modi-

fied construction ensures that the lambda-closure of the monotone extracted

terms already is a majorant of the lambda-closure of the exact realizers. This

fact has a straightforward proof similar to that of Proposition 1.78, using

Lemmas 1.72, 1.75 and 1.77 (hence also using Proposition 1.53)

We left at the end the treatment of axioms ∆, included into WeZ∃,ncm via

Definition 1.67. These axioms appear in the monotonic systems only, hence

they were not given realizers in the proof of Theorem 2.10. Let

∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z)

be an axiom formula from ∆, and let

∃Y ≤ρσ r ∀xρ ∀zτ B(x, Y x, z)

be its corresponding formula from the associated isomorphic set ∆̃, included

as axiom in the verifying system WeZ∃m . Notice that this associated formula is

nothing but the LD-translation of the original ∆-axiom. Since an exact realizer

for such translation is only guaranteed by the strong existence of Y , but it

cannot be concretely given as T-term, we can understand why the axioms ∆

are characteristic to the monotonic systems. In these arithmetics the merely

qualitative information that Y ≤ r is sufficient to construct a majorant for

Y , which is r? , via the algorithm of Proposition 1.78, also due to (1.42) and

to the fact that r is a closed term. Thus the monotone realizer for such a

∆-axiom is taken to be its associated r? . 2

Remark 2.13 In the formulation of Theorem 2.12 it appears to be technically

unavoidable that verifying proofs are without open assumptions. Therefore

the Hilbert-style formulation of logic seems to be more suitable for proving

soundness of the (light) MD-interpretation. On the other hand Natural Deduc-

tion rules are fewer and therefore less inductive-step cases are to be treated.

Hence moving back-and-forth over the proof gate in the treatment of Natural

Deduction rules appears to be an acceptable compromise.

Corollary 2.14 ( Majorant synthesis by the Light MD-interpretation)

There exists an algorithm which from a proof WeZ∃,nc+m ` A(a) produces terms



2.2. The light monotone functional “Dialectica” interpretation 79

T [a] and a verifying proof WeZ∃m ` ∃x [(λa. T ) � x ∧ ∀a, yAD(x(a); y; a)] . If

the input proof is in WeZnc+m , then the verifying proof is in WeZm plus Ax∃+ and

Ax∃− for the newly introduced existential variables x and for the existential

variables Φ of those AxCA necessarily involved by the verifying proof only.

Remark 2.15 The difference between the above extraction by the light MD-

interpretation and the sequence of first doing a Light Dialectica extraction

followed by the majorizability construction of Proposition 1.78 only pops up

when we further require that extracted terms should be in (NbE-)normal form

and is mostly about run-time performance. It should be obvious that the

normalization of S̃ from (2.24) is much simpler than the one of S̃ from (2.9)

because the boolean terms are eliminated (hence also the n comparisons be-

tween them!). The complexity gain can get quite huge in concrete practical

applications like the one described in Chapter 5 below (based on [54]). This big

optimization is due to the partially repeated (during extraction) normalization

of the extracted term, i.e., the so-called “Normalization during Extraction”

(NdE), see [52] (also in combination with [54]). In the end one gets a correct

(NbE-)normalized (pre-)majorant by either of the two methods10, see Remark

1.79 for an explanation of this fact.

Convention 2.16 Only the arithmetic (pre-)majorants t[a] ∈ {T [a]} are of

interest, since boolean majorants can always be ensured by terms True (see

Remark 1.76). In view of this we consider that all explicitly displayed types,

variables and terms in the sequel are arithmetic, unless otherwise specified.

Corollary 2.17 There exists an algorithm which from a given proof

WeZ∃,nc+m ` ∀u∃vB(u, v, a)

produces (pre-)majorants T [a] with a verifying proof

WeZ∃m ` ∃V [ (λa. T ) � V ∧ ∀a, uBD(u, V au, a) ] (2.25)

If the input proof is in WeZnc+m , then the verifying proof is in WeZm plus Ax∃+ and

Ax∃− for the newly introduced existential variables V and for the existential

variables Φ of those AxCA necessarily involved by the verifying proof only.

10The two methods are the direct extraction of the normalized pre-majorant vs. the

extraction of a normalized exact realizer followed by the majorizability construction of

Proposition 1.78, followed by a NbE-normalization. Both extractions use the Normalization

during Extraction. Even though the final result may be different, both methods produce

correct pre-majorants in NbE-normal form.



80 The light (monotone) functional Dialectica interpretation

Proof: Let [B(u, v, a)]D ≡ ∃x∀y BD(x; y;u, v, a) . Then

[∀u∃vB(u, v, a)]D ≡ ∃V,X ∀u, y BD(Xu; y;u, V u, a)

and the application of Corollary 2.14 yields

WeZ∃m ` ∃V,X [ (λa. T ) � V ∧ ∀a, u, y BD(Xau; y;u, V au, a) ]

hence a fortiori, by setting x :≡Xau for given a, u, one obtains

WeZ∃m ` ∃V [ (λa. T ) � V ∧ ∀a, u∃x ∀y BD(x; y;u, V au, a) ]

which is exactly a rewrite of (2.25). 2

Proposition 2.18 (Equivalence of non-ncm fmlas with their D-interp.)

For all F∃m formulas B there is a proof WeZ∃,+m ` B ↔ BD , where WeZ∃,+m is

the extension of WeZ∃m with the full (in the language L∃) axiom of choice AxAC,

and the comprehension axiom AxCA inherited from WeZ∃m is not actually used.

Proof: Straightforward by induction on the structure of B, also using that B

contains no ncm quantifier. In consequence, the “radical” of its LD-translation,

namely BD , is quantifier-free, hence decidable (stable). Thus one does not

need to use the decidability of all WeZ∃m formulas as consequence of AxCA. The

importance of the restriction on B actually lies in the fact that one cannot

possibly prove the logical equivalence of a formula containing at least an ncm

quantifier to its LD-translation which has no ncm quantifiers. E.g., a pure-

ncm formula cannot be proved equivalent to its regular-quantifier translation.

The logical equivalence can also not be proved in general between BD and B̃,

where the latter formula is the regular-quantifier translation of B. This can

be immediately (dis)proved by simple counterexamples involving formulas of

shape B ≡ ∃zA(z) or B ≡ ∀zA(z), where A ∈ F∃m is such that AD contains

both universal and existential quantifiers.

The proof is obvious for quantifier-free B and immediate for conjunctions

A ∧B and for existentially quantified B ≡ ∃zA(z). For universally quantified

B ≡ ∀zA(z) one has to apply AxAC, but the proof is immediate as well.

For implications A → B we proceed step by step in showing the logical

equivalence between ∃x∀yAD(x; y) → ∃u∀vBD(u; v) and (A→ B)D . The first

step to ∀x [∀yAD(x; y) → ∃u∀vBD(u; v)] is purely intuitionistic. Then, by

AxIP−∃+∀ one obtains ∀x∃u [∀yAD(x; y) → ∀vBD(u; v)], from which the step to



2.2. The light monotone functional “Dialectica” interpretation 81

∀x∃u∀v [∀yAD(x; y) → BD(u; v)] is again purely intuitionistic. Now the step

to ∀x∃u∀v∃y [AD(x; y) → BD(u; v)] requires an AxMK. In fact the implication

∃y [AD(x; y) → BD(u; v)] → [∀yAD(x; y) → BD(u; v)]

is purely intuitionistic and only its converse requires a passing through

∃cly [AD(x; y) → BD(u; v)] .

Hence the first half of the converse, namely

[∀yAD(x; y) → BD(u; v)] → ∃cly [AD(x; y) → BD(u; v)]

is purely intuitionistic, its proof is similar to that of Lm∃cl− . Hence we want a

proof of ⊥ from [∀yAD(x; y) → BD(u; v)] and ∀y¬(AD(x; y)→ BD(u; v)). We

use contraction over ¬(AD(x; y)→ BD(u; v)), from which both ¬BD(u; v) and

¬¬AD(x; y) can be intuitionistically obtained. Since AD(x; y) is quantifier-free,

we can use its stability (see Lemma 1.36) to actually get AD(x; y) and further

∀yAD(x; y). Hence, using the first assumption we finally obtain BD(u; v), which

is in contradiction with ¬BD(u; v). The second half of this converse, namely

∃cly [AD(x; y) → BD(u; v)] → ∃y [AD(x; y) → BD(u; v)]

is just an instance of AxMK, since both AD(x; y) and BD(u; v) are quantifier-free.

We now arrive at the last step of our equivalence simulation, namely

the passing from ∀x∃u∀v∃y [AD(x; y) → BD(u; v)], which is the “least non-

intuitionistic”11 prenex normal form of ∃x∀yAD(x; y) → ∃u∀vBD(u; v), to

(A→ B)D ≡ ∃Y, U∀x, v [AD(x;Y (x, v)) → BD(U(x); v)]

As is now easy to guess, one here applies twice the Axiom of Choice AxAC. 2

Proposition 2.19 There exists a WeZm functional term ·M of type (ιι)ιι such

that WeZm ` ∀xιι (xM � x) .

Proof: The term xM :≡ λn.max(xO, . . . , xn) is definable in WeZm . 2

Theorem 2.20 (Uniform bound synthesis by the LMD-interpretation)

Let A(xιι, kι, yδ, zγ) be a formula of F∃m , hence without ncm quantifiers and

11See the “Motivation of the functional interpretation” section in the preamble of the

“Dialectica” chapter in [62] for an explanation of this characterization.



82 The light (monotone) functional Dialectica interpretation

moreover such that x, k, y, z are all its free variables, with dg(γ) ≤ 2. Let s(ιι)ιδ

be a closed term of Tm . There exists an algorithm which from a given proof

WeZ∃,nc+m ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A(x, k, y, z) (2.26)

which does not use any AxSTABnc or AxMK in which the pure-ncm main formula

is not ncm-stable, produces the closed term t of Tm such that

WeZ∃,+m ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk A(x, k, y, z) (2.27)

Hence t is a bound for z which is uniform w.r.t. y. If the formula A is such that

WeZ∃m ` AD → A then the verifying proof (2.27) is in WeZ∃m instead of WeZ∃,+m . If

A ∈ F∃,ncm is s.t. WeZ∃,+m ` AD → Ã (or WeZ∃m ` AD → Ã), where Ã is the regular-

quantifier translation of A, then (2.27) holds (in WeZ∃m) with Ã instead of A.

Proof: Let δ ≡ σι. Then (2.26) rewrites as

WeZ∃,nc+m ` ∀xιι ∀kι ∀y [∀wσ (yw ≤ι sxkw) → ∃zγ A(x, k, y, z) ]

and using AxIP−∃+∀ this becomes

WeZ∃,nc+m ` ∀xιι ∀kι ∀y ∃zγ [∀wσ (yw ≤ι sxkw) → A(x, k, y, z) ]

to which we apply Corollary 2.17 and obtain effectively closed terms T s.t.

WeZ∃m ` ∃Z [T � Z ∧ ∀x, k, y (y ≤δ sxk → A(x, k, y, Zxky))D ] (2.28)

To (2.28) we can apply Proposition 2.18 and thus obtain

WeZ∃,+m ` ∃Z [T � Z ∧ ∀xιι∀kι∀y ≤δ sxk A(x, k, y, Zxky) ] (2.29)

Let s? be the closed term of WeZm associated to s by means of Proposition 1.78

and let xιι, kι . Since WeZm ` s? � s and, by Proposition 2.19, WeZm ` xM � x

it follows by the definition of� that WeZm ` s?xMk � sxk. Thus, for y ≤δ sxk
it follows from (1.42) that s?xMk �δ y. Since T � Z, by the definition of �
we obtain that TxMk(s?xMk) �τ Zxky. If τ ≡ ι then Zxky ≤τ TxMk(s?xMk)

and we take t :≡ λx, k. TxMk(s?xMk). If dg(τ) = 1, , hence τ ≡ ι . . . ι for vι we

have v �ι v and thus we obtain Zxkyv ≤ι T xM k(s?xMk)v which rewrites as

Zxky ≤τ TxMk(s?xMk). Again, we can take t :≡ λx, k. TxMk(s?xMk). The

situation is slightly different when dg(τ) = 2, hence τ ≡ . . . (ιι) . . . ι. By Propo-

sition 2.19 we have Zxkyv ≤ι TxMk(s?xMk)vM and in this case we can take

t :≡ λx, k, v. T xM k(s?xM k)vM .



2.3. Extensions of the light (monotone) Dialectica interpretation to
extractions from fully classical proofs 83

In all three cases determined by dg(τ), from (2.29) we obtain

WeZ∃,+m ` ∃Z ∀xιι∀kι∀y ≤δ sxk [Zxky ≤τ txk ∧ A(x, k, y, Zxky)]

from which the conclusion (2.27) follows immediately. 2

Definition 2.21 We denote by smaj Bezem’s [15] strong majorization variant

of Howard’s [57] �, defined by replacing (1.38) with

x smajστ y :≡ ∀zσ1 , zσ2 (z1 smajσ z2 → xz1 smajτ xz2 , yz2) (2.30)

Remark 2.22 In fact Kohlenbach’s original proofs from [67] of the results

from which our theorems and corollaries above are inspired were given with

smaj instead of �, but in [62] the same proofs are re-taken using � . See

Remark 2.4 of [67] for a comment on the trade-offs in terms of style of proofs

(on the meta level) when using one or the other of the two variants of the

majorizability relation. Nonetheless, for the results exposed in our thesis both

variants can be used equally, as stated by the following theorem.

Theorem 2.23 All theorems and corollaries above hold as well if smaj is

used instead of � .

Notice that the optimization brought by the light MD-interpretation w.r.t.

the pure D-interpretation concerns as much the diminishing of the maximal

type degree of the extracted bounds as the elimination of a number of redun-

dant contractions. The computation of maxima can turn out to be a rather

costly operation in practice, even though the pure MD-interpretation already

brings an important optimization w.r.t. the pure Dialectica Interpretation.

2.3 Extensions of the L(M)D-interpretation to

extractions from fully classical proofs

The problem of full AxSTAB is that it has no (direct) realizer under (light)

Dialectica interpretation. Preprocessing double negation translations will be

necessary to interpret fully classical systems. There is a large choice in the

literature of so-called negative or double-negation translations, initially intro-

duced by Gödel [43], Gentzen, Kolmogorov, Glivenko. However, they all have

the common feature that the image of a formula is intuitionistically equivalent

to a negative formula. This immediately implies the elimination of Stability in



84 The light (monotone) functional Dialectica interpretation

the translated proof. Thus, the translation of formulas A induces a translation

from classical proofs of A to intuitionistic proofs of the image of A.

Kuroda’s N-translation (abbreviated “the KN-translation”) appears as a

natural choice in the context of Dialectica interpretations because of its ability

to uniformly handle blocks of universal quantifiers (see, e.g., [56, 62, 80]).

We will also use the Gödel-Gentzen negative translation (abbreviated “the

GN-translation”, for important historical references see [122] and [89]) which

simply replaces ∃ by ∃cl (and also ∃ by ∃cl in our ncm-setting). The usual

double negation of every atomic formula would here be redundant because

our systems enjoy quantifier-free stability, see Lemma 1.36. Hence the GN-

translation appears to be structurally much simpler than the KN-translation

and therefore appears to be most suitable in a Natural Deduction context

(see [110] as an example, also for an important optimization relative to the

program extraction by the BBS refined A-translation). Also the strong ∃ (and

similarly ∃ in our ncm-setting) disappears from the translated system which

therefore seems to be simpler than the KN-translated system (which conserves

the strong existentials).

But surprisingly, we quickly find out that none of these negative transla-

tions extends well to the non-monotonic ncm systems with strong existentials.

For the KN-translation this is mainly because the interpretations of the elimina-

tion axioms Ax∃− and Ax∃− cannot be proved just in WeZnc+ for all instances

of such axioms with formulas of Fnc . The reason is that, e.g., the proof of

[Ax∃− ]KN makes a necessary use of contraction over

¬[∃z1A(z1) ∧ ∀z2¬¬(A(z2)→ B) → B ]

which would clearly violate the ncm−FC restriction if A or B would contain

just an ncm quantifier. In the case of the GN-translation, the interpretation of

Ax∃− appears to not be provable without full stability for B in WeZnc+ , see

Lemma 1.43. But this full stability is generally not provable in our ncm-system

WeZnc+ , (even though it is provable in its monotonic counterpart WeZnc+m ), see

Remark 1.42 and Lemma 1.40.

Hence we choose not to design any (non-monotonic) classical variant of

WeZ∃,nc+ . In the lack of existential quantifiers, we can nevertheless still design

a Kuroda translation for the system WeZnc,c+ , defined in Section 1.6. Some fur-

ther restrictions on the fully classical proof rules of→+ and ∀ +
were necessary

in order to ensure that the KN-translated proofs fit into WeZnc+ , see the proof

of Theorem 2.27 below. This appears as a quite hard price to pay in order

to use stability for formulas containing ∀ in the input systems. Moreover, the



2.3. Extensions of the light (monotone) Dialectica interpretation to
extractions from fully classical proofs 85

addition of such stability does not ensure that the extension of all principles

provable in WeZ to the language with ∀ would become provable in such WeZnc,c+

system. The classical Independence of premises AxIPcl is a counter-example

to this, see Sections 1.4 and 1.6. Despite all the above, we chose to design

WeZnc,c+ as a pedagogical example of the difficulties incurred by such an at-

tempt which thus (we think) do justify the worthlessness of going further and

adding more restrictions in order to also have the strong existentials.

On the other hand no technical problem appears in the application of our

ncm negative translations to the monotonic systems, which have no restriction

on →+ and only have a simpler, harmless restriction on ∀ +
.

Definition 2.24 (Kuroda’s negative translation adapted to ncm qfs.)

To a formula A one associates AKN ≡ ¬¬A∗ , where A∗ is defined by structural

induction on A as follows :

A∗ :≡ A , if A is a pure-ncm formula (prime formulas included)

[A2B ]∗ :≡ A∗2B∗ , where 2 ∈ {∧,∨,→}

[∃xA(x)]∗ :≡ ∃x[A(x)]∗ and [∃xA(x)]∗ :≡ ∃x[A(x)]∗

[∀xA(x)]∗ :≡ ∀x¬¬[A(x)]∗ and [∀xA(x)]∗ :≡ ∀x¬¬[A(x)]∗

Remark 2.25 (Preservation of the ncm−FC cnd. under KN-translation)

Since the insertion of double negations ¬¬ into a formula A does not change

the polarity of the (original) positive/negative positions for quantifiers, it fol-

lows that the restriction ncm−FC(A) holds if and only if ncm−FC(AKN) holds.

Lemma 2.26 If A is a formula of shape ∀xBnc(x, a) or ∀x∃clyBnc(x, y, a)

then WeZnc+ ` AKN ↔ A. If A ≡ ∀x∃yBnc(x, y, a) then WeZ∃,nc+ ` AKN ↔ A.

Proof: Let A :≡ ∀xBnc(x) be such a quasi - purely universal formula (for

simplicity we can ignore its free variables). By the definition of KN-translation,

then multiple (possibly none) use of (1.27) and finally AxSTABnc :

WeZnc+ ` [∀xBnc(x)]KN ↔ ¬¬∀x¬¬Bnc(x)
(1.27)↔ ∀x¬¬Bnc(x) ↔ ∀xBnc(x)

Now let A :≡ ∀x∃clyBnc(x, y, a). The wanted conclusion follows in this case

by (1.27) and the easy WeZnc theorem ¬¬¬A ↔ ¬A. Similarly, but in this

case using AxMK instead of pure-ncm Stability, formulas ∀x∃yBnc(x, y) are also

preserved by the KN-translation:



86 The light (monotone) functional Dialectica interpretation

WeZ∃,nc+ ` [∀x∃yBnc(x, y)]KN ↔ ¬¬∀x¬¬∃yBnc(x, y)

(1.27)↔ ∀x¬¬∃yBnc(x, y) ↔ ∀x∃yBnc(x, y)

2

Recall from Section 1.6 that in the classical non-monotonic ncm-system

WeZnc,c+ , the ncm-restriction on Implication introduction →+ is extended to

(the negation of) the conclusion formula as well. Related to this, also the

variable condition VC(·) set on ncm-ForAll introduction ∀ +
is adapted to this

reenforcement of the restriction on →+ .

Theorem 2.27 (Soundness of KN-translation - non-monotonic case)

Let Π be the arbitrary but fixed set of quasi-purely-universal axioms included

in WeZnc . There exists an algorithm which transforms a given input proof

P : {Ci}ni=1 ` A in WeZnc,c+ into a proof PKN : {CKN
i }ni=1 ` AKN in WeZnc+ such

that Π is preserved by the KN-translation .

Proof: The algorithm proceeds by recursion on the input proof P . The

translated proof PKN mimics the structure of P , whose leaves (assumptions

and axiom instances) and root (proof conclusion) are replaced by their ·KN
translations. We first establish that the KN-translations of the input axioms

are provable theorems of the verifying systems. We then demonstrate that

the KN-translations of the rules can be simulated in the verifying systems as

the deductions of the KN-translation of the conclusion from the KN-translations

of the premises. Whereas for the non-ncm subsystems such translations had

already been established and actively used in concrete proof mining (see, e.g.,

[56, 62, 80]), we need to put some special attention to the situations in which

the ncm quantifiers are involved either directly or indirectly.

Whereas Remark 2.25 ensures that the translation proceeds smoothly re-

lative to the original computationally LD-relevant contractions, hence the KN-

translations of →+ and ∀ +
are sound in this respect, we need to trace the

occurrence of new such computationally relevant contractions, which may

be introduced by the verifying simulations. We will see that only the KN-

translation of →+ introduces a new contraction which involves the (negation

of the) conclusion formula of →+ . This will also impact on the verification of

the variable condition VC(·) set on ∀ +
. Nonetheless, our restrictions set on

the underlying→+ and ∀ +
of the ncm-classical arithmetic WeZnc,c+ will ensure

the correctness of our simulations of [→+ ]KN and [∀ +
]KN . We now proceed with

the enumeration of the KN-translations of axioms and rules.



2.3. Extensions of the light (monotone) Dialectica interpretation to
extractions from fully classical proofs 87

The Stability axiom ¬¬A→ A simply KN-translates to ¬¬¬¬A∗ → ¬¬A∗
which has an immediate proof. Hence AxSTAB is immediately eliminated in the

verifying proof. From Lemma 2.26 follows that all quantifier-free and purely

universal axioms and rules (axioms: AxTRH, AxEFQ, REF , AxEQL and rules: SYM,

TRZ, SUB) together with the Π axioms of the input systems are simply preserved

by the KN-translation. In roughly the same category enters the weak Compati-

bility rule CMP, whose premise involves a quantifier-free and a purely universal

formula and therefore its KN-translation is equivalent to an(other) instance of

the very same CMP. The KN-translation of AxACclnc can more directly be proved

to be equivalent in WeZnc+ to ¬¬[∀x∃clyBnc(x, y) → ∃clY ∀x¬¬Bnc(x, Y x)],

which can be established in WeZnc+ by AxACclnc , AxSTAB
nc and (1.25). For such

equivalence proof one uses that, due to (1.27), it can be established that

[∃clxA(x)]∗ ↔ ∃clx[A(x)]∗ and also that ¬¬∃clxA(x) ↔ ∃clxA(x). The KN-

translation of AxBIA is ¬¬([A(tt)]∗ ∧ [A(ff)]∗ → ∀po¬¬[A(p)]∗ ), which can

be proved with (1.25) and an(other) instance of AxBIA. The KN-translation of

AxFLS is the double negation of an(other) instance of AxFLS.

We now treat the induction and logical rules. The KN-translation of A ` A
is AKN ` AKN , hence an(other) instance of the same rule. The KN-translations of

∧+ , ∧−l and ∧−r follow by simple Natural Deduction proofs from the instances

of the same rules for A∗ and B∗ . No contraction is needed in the simulation

of [∧−l ]KN or [∧−r ]KN , since the necessary contraction from the proof of (1.34)

intervenes only at the very end, when the two double negated conjuncts are

joined together, step which is not present in these KN-verifying proofs. The KN-

translation of→− can also immediately be simulated without any use of extra

contractions, see also the proof of (1.32), where this would be one of the “easy”

implications. Similar to the treatment of→− , but here also using (1.27) (both

implications!) is the simulation of the KN-translation of the Induction rule

IR , which thus uses the instance of IR for ¬¬A∗(z) ≡ [A(z)]KN . Here as well,

no “alien” contraction is introduced in the verifying proof. Similarly, again

using (1.27), the verification for [∀− ]KN and [∀+ ]KN is immediate. We would be

tempted to state the same for the verification of [∀ − ]KN and [∀ +
]KN , this time

by means of (1.29). Nonetheless we here must distinguish some more cases. At

both ∀ − and ∀ +
it may happen that A is a pure-ncm formula, situation when

AxSTABnc must be used in the verifying proofs (also (1.25)). For the soundness

of ∀ +
we also must comment that the VC(·) is still satisfied because, on one

hand, no new terms t get introduced via ∀−•,t in our KN-verifying proofs. On

the other hand, the case of the new computationally LD-relevant contractions,



88 The light (monotone) functional Dialectica interpretation

which involve the conclusion formulas of →+ was already considered in the

extra restriction set on ∀ +
in the ncm-classical systems.

In the very end, we outline the KN-translation of →+ . We are given a de-

duction of the translated conclusion BKN ≡ ¬¬B∗ from the translated undis-

charged assumptions, among which AKN ≡ ¬¬A∗ . From this we have to pro-

duce a proof of (A → B)KN ≡ ¬¬(A∗ → B∗) in which the assumptions AKN

were cancelled. It is very easy to obtain a proof of (¬¬A∗ → ¬¬B∗) by an

Implication introduction of ¬¬A∗ . But the obtaining of (A → B)KN appears

to be impossible without an extra contraction over ¬(A∗ → B∗). From such

an assumption one can immediately get on one hand ¬¬A∗ , and thus also

¬¬B∗ , by a Modus Ponens and on the other hand ¬B∗ . Now ⊥ is obtained

by Modus Ponens and, via a →+ with contraction over ¬(A∗ → B∗), one fi-

nally obtains (A→ B)KN . This final extra contraction can take place because

ncm−FC(¬(A∗ → B∗)) holds due to the restrictions set on the ncm-classical

system at input. 2

Corollary 2.28 In the case whenA ≡ ∀xBnc(x, a) orA ≡ ∀x∃clyBnc(x, y, a),

in Theorem 2.27 we can replace AKN by A in the conclusion proof.

Proof: Follows immediately from Theorem 2.27 by using Lemma 2.26. 2

Theorem 2.29 (Exact realizer synthesis by the KNLD-interpretation)

There exists an algorithm which from a given input proof ` A(a) in WeZnc,c+

produces exact realizing terms T [a] together with a verifying proof in system

WeZ : ` ∀a, y(AN)D(T ; y; a) .

Proof: Immediate from Theorem 2.27 followed by Corollary 2.11. 2

Corollary 2.30 There exists an algorithm which from a given input proof

` ∀x∃clyBnc(x, y, a) in WeZnc,c+ produces closed realizing terms T with a veri-

fying proof ` ∀a, xB(x, Tax, a) in WeZ. The same holds also with Bnc replaced

by a formula ∃cly′Bnc(x, y, y′, a).

Proof: Immediate from Corollary 2.28 followed by Corollary 2.11 and then

expanding [∀x∃clyBnc(x, y, a)]D according to Definition 2.1. One also uses the

fact that full stability is available in the verifying system WeZ, see Lemma

1.40. The variant with ∃cly′Bnc(x, y, y′, a) follows from the original version by

ignoring the actual realizers for the weak existentially quantified variables y′ .

2

We now proceed to the treatment of the monotonic classical ncm-system

WeZ∃,nc,c+m . Recall that all monotonic systems are without any restriction on



2.3. Extensions of the light (monotone) Dialectica interpretation to
extractions from fully classical proofs 89

→+ and with only a half-restriction on ∀ +
, which shows to be harmless to

our adaptation of negative translations to the ncm systems.

Theorem 2.31 (Soundness of KN-translation - the monotonic case)

Let Π be the usual arbitrary but fixed set of quasi-purely-universal axioms.

Also let ∆ be the axiom set of Definition 1.67 and Remark 1.80. Both Π and

∆ are included in WeZ∃,nc,c+m . There exists an algorithm which transforms a

given proof P : {Ci}ni=1 ` A in WeZ∃,nc,c+m into a proof PKN : {CKN
i }ni=1 ` AKN in

WeZ∃,nc+m such that Π is preserved by the KN-translation and ∆KN is proved in

terms of ∆ (i.e., WeZ∃,nc+m ` A → AKN for every formula A ∈ ∆).

Proof: Similar to the proof of Theorem 2.27 above, with a simplified treat-

ment of [→+ ]KN and [∀ +
]KN . We will here only give the treatment of strong

existential axioms and AxACnc , which are the only principles not present in

WeZnc,c+ , because of the strong ∃. We begin with [AxACnc ]KN . By Lemma 2.26,

the premise of AxACnc is preserved. The KN-translation of AxACnc is thus equiv-

alent in WeZ∃,nc+ to ¬¬[∀x∃yBnc(x, y) → ∃Y ∀x¬¬Bnc(x, Y x)], which can be

proved by AxACnc , pure-ncm Stability AxSTABnc and (1.25).

We now treat the strong existential axioms. The KN-translation of Ax∃+
is ¬¬∀z1¬¬ [A∗(z1) → ∃z2A∗(z2)] which has a simple logical proof from the

instance with A∗ of Ax∃+ . The situation is identical for [Ax∃+
]KN if A is not

purely-ncm, case which is even simpler, more direct. The KN-translation of

Ax∃− is ¬¬ [∃z1A∗(z1) ∧ ∀z2¬¬(A∗(z2)→ B∗) → B∗ ], which can be reduced

to ∃z1A∗(z1) ∧ ∀z2¬¬(A∗(z2)→ B∗) → ¬¬B∗ via (1.32), since no ncm−FC
restrictions apply to the monotone systems. Again, via the simpler implication

of (1.32), this reduces further to ∃z1A∗(z1) ∧ ∀z2(A∗(z2) → ¬¬B∗) → ¬¬B∗ ,
which is another instance of Ax∃− , with A∗ for A and ¬¬B∗ for B. The

situation is similar for [Ax∃− ]KN , and even simpler in its pure-ncm sub-case.

In the end, we prove the statement concerning the translation of axioms

∆. Let A ≡ ∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z) be such an axiom formula.Then

AKN ≡ ¬¬∀xρ ¬¬ ∃y ≤σ rx ∀zτ ¬¬Bnc(x, y, z)

which is equivalent via AxSTABnc and (1.27) to the simpler-looking formula

∀xρ ¬¬ ∃y ≤σ rx ∀zτ Bnc(x, y, z), which is immediately seen to be provable

from A via (1.25) and simple logical manipulations involving ∀− and ∀+ . 2

Corollary 2.32 In the case when A ≡ ∀x∃yBnc(x, y, a), in Theorem 2.31 we

can replace AKN by A in the conclusion proof.



90 The light (monotone) functional Dialectica interpretation

Proof: Follows immediately from Theorem 2.31 by using Lemma 2.26. 2

Theorem 2.33 (Main theorem on bound extraction by KNLMD-intrp.)

There exists an algorithm which from a given input proof ` A(a) in WeZ∃,nc,c+m

produces at output (pre-)majorizing terms T [a] together with the verifying

proof ` ∃x[(λa. T ) � x ∧ ∀a, y(AN)D(x(a); y; a)] in system WeZ∃m . The same

hold if Bezem’s smaj is used instead of Howard’s �, see (2.30).

Proof: Immediate from Theorem 2.31 followed by Corollary 2.14. Theorem

2.23 is used for the smaj variant. 2

Corollary 2.34 There exists an algorithm which from a given input proof

` ∀x∃y∃zBnc(x, y, z) in WeZ∃,nc,c+m produces closed realizing terms T together

with the following verifying proof in WeZ∃m :

` ∃Y [T � Y ∧ ∀x∃zB(x, Y x, z)] (2.31)

Proof: By applying Corollary 2.32 followed by Corollary 2.14 and expanding

[∀x∃y, zBnc(x, y, z)]D by Definition 2.1 we obtain closed terms T and T ′ s.t.

` ∃Y ∃Z [T � Y ∧ T ′ � Z ∧ ∀xB(x, Y x, Zx)]

from which (2.31) follows by ignoring T ′ and simple logical manipulations. 2

Theorem 2.35 (Uniform bound synthesis by KNLMD-interpretation)

Let A1(x
ιι, kι, yδ, zγ) be a quasi-purely-existential formula with x, k, y, z all its

free variables (i.e., A1 ≡ ∃uAnc(x, k, y, z, u)) and dg(γ) ≤ 2. Let s(ιι)ιδ be a

closed term of Tm . There exists an algorithm which from a given proof

` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z) (2.32)

in WeZ∃,nc,c+m produces the closed term t(ιι)ιγ of Tm together with the following

verifying proof in WeZ∃m :

` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z) (2.33)

where Ã1(x, k, y, z) ≡ ∃uA(x, k, y, z, u), i.e., the regular-quantifier translation

of A1 . Hence t is a bound for z which is uniform relative to y.



2.3. Extensions of the light (monotone) Dialectica interpretation to
extractions from fully classical proofs 91

Proof: Let δ ≡ σι. Then (2.32) immediately yields in WeZ∃,nc,c+m a proof

` ∀x, k, y∃wσ, z, uτ [yw ≤ι sxkw → Anc(x, k, y, z, uτ )] (2.34)

The application of Corollary 2.34 to (2.34) gives closed terms T such that

` ∃Z [T � Z ∧ ∀x, k, y∃w, u(yw ≤ι sxkw → A(x, k, y, Zxky, u))]

is a proof in WeZ∃m , which immediately yields in WeZ∃m

` ∃Z [T � Z ∧ ∀x, k∀y ≤δ sxk Ã1(x, k, y, Zxky)] (2.35)

By logical manipulations inside WeZ∃m , expanding the definition of majorizabil-

ity �, we obtain the following proof in WeZ∃m :

` ∃Z∀x, k∀y ≤δ sxk [TxMk(s?xMk) �γ Zxky ∧ Ã1(x, k, y, Zxky)] ,

where s? is the majorant of s built by Proposition 1.78 and xM is the majorant

of xιι given by Proposition 2.19. This gives

WeZ∃m ` ∀x, k∀y ≤δ sxk∃zγ [TxMk(s?xMk) �γ z ∧ Ã1(x, k, y, z)] (2.36)

by very simple logical manipulations inside WeZ∃m . If dg(γ) ≤ 1 then

TxMk(s?xMk) ≥γ z

and therefore by defining the term t to be λx, k. TxMk(s?xMk), (2.36) imme-

diately implies the conclusion (2.33). If dg(γ) = 2 then just like in the proof

of Theorem 2.20 we can set t to be λx, k, v. TxMk(s?xMk)vM for which again,

using vM �ιι v, (2.36) immediately implies the conclusion (2.33). 2

In the end we give the treatment of the GN-translation, which is worth

to be designed for the monotonic system WeZ∃,nc,c+m only, due to its simpler

definition of →+ and ∀ +
, see the comments in the preamble of this section.

Definition 2.36 (The ncm-Gödel-Gentzen negative translation) To a

formula A one associates AGN , the so-called GN-translation of A, which is de-

fined by structural induction on A as follows :

AGN :≡ A , if A is a quantifier-free formula (prime formulas included)

[A2B ]GN :≡ AGN2BGN , where 2 ∈ {∧,→}



92 The light (monotone) functional Dialectica interpretation

[∃xA(x)]GN :≡ ∃clx[A(x)]GN and [∃xA(x)]GN :≡ ∃clx[A(x)]GN

[∀xA(x)]GN :≡ ∀x[A(x)]GN and [∀xA(x)]GN :≡ ∀x[A(x)]GN

Theorem 2.37 (Soundness of GN-translation - the monotonic case)

Let Π be the usual arbitrary but fixed set of quasi-purely-universal axioms.

There exists an algorithm which transforms a given proof P : {Ci}ni=1 ` A in

WeZ∃,nc,c+m into a proof PGN : {CGN
i }ni=1 ` AGN in WeZnc+m such that Π is preserved

by the GN-translation.

Proof: The algorithm proceeds by recursion on the input proof P . The

translated proof PGN mimics the structure of P , in a fairly more direct way

than the corresponding Kuroda proof PKN from Theorem 2.31. This is because

the Gödel-Gentzen translation of a rule of WeZ∃,nc,c+m is nothing but an(other)

instance of the very same rule. Also the interpretation of AxSTAB becomes

an(other) instance of AxSTAB, but restricted to the language Lnc . We already

know from Proposition 1.65 that such a restriction is provable in WeZncm already.

We will therefore only have to give the treatment of the strong existential

axioms and of AxACnc , which are the only principles of WeZ∃,nc,c+m which make

a visible use of the strong ∃. We begin with

[AxACnc ]GN ≡ ∀x∃clyBnc(x, y) → ∃clY ∀xBnc(x, Y x) ≡ AxACclnc ,

which is an axiom of the image system WeZnc+m .

We now treat the strong existential axioms. The GN-translation of Ax∃+
is ∀z1 [AGN(z1) → ∃clz2AGN(z2)] which is an instance of Lm∃cl+ , that has a

simple logical proof in WeZnc+m , a system which enjoys full stability (which

is provable in it due to the lack of restrictions on →+). See also Lemma

1.43. The situation is identical for [Ax∃+
]GN . The GN-translation of Ax∃− is

∃clz1AGN(z1) ∧ ∀z2(AGN(z2)→ BGN) → BGN , which can be easily proved in WeZnc+m

by means of Stability for BGN , ¬¬BGN → BGN . The situation is fairly similar

for [Ax∃− ]GN . The rule ∀ +
can always be applied in the verifying proofs in

WeZnc+m , since in such proofs the restrictive situation of VC(·) never occurs. 2

Theorem 2.38 (Main theorem on bound extraction by GNLMD-intrp.)

There exists an algorithm which from a given input proof ` A(a) in WeZ∃,nc,c+m

produces at output (pre-)majorizing terms T [a] together with the verifying

proof ` ∃x[(λa. T ) � x ∧ ∀a, y(AN)D(x(a); y; a)] in system WeZm plus Ax∃−



2.4. Light Monotone Dialectica extractions from classical analytical proofs
by elimination-of-extensionality and ε-arithmetization 93

and Ax∃+ for the newly introduced existential variables x and for the existen-

tial variables Φ of those AxCA necessarily involved by the verifying proof only.

The same hold if Bezem’s smaj is used instead of Howard’s �, see (2.30).

Proof: Immediate from Theorem 2.37 followed by Corollary 2.14, taking

into account that the GN-translated input proof is in WeZnc+m only (no strong

existentials!). For the smaj variant one uses Theorem 2.23. 2

2.4 Light Monotone Dialectica extractions from

classical analytical proofs by elimination

of extensionality and ε-arithmetization

We here shortly describe how the techniques developped in the previous

section can be successfully employed for the treatment of non-trivial classical

analytical proofs. We follow closely a small part of the exhaustive exposition

due to Kohlenbach on the subject of mining proofs which use the highly inef-

fective principle of Weak (aka “binary”) König’s Lemma (abbreviated WKL, see

Section A.4.2 for a formal definition and a short discussion of this badly uncon-

structive principle), see [62] for a survey of such practical applications of the

Monotone Dialectica, particularly to Numerical Functional Analysis. Our goal

here is to outline the treatment of proofs which may involve the ncm quantifiers.

We thus explore the adaptability of the various proof-theoretic techniques em-

ployed by Kohlenbach (ε-arithmetization, elimination-of-extensionality) to the

new “light” setting. As one would expect, all these techniques adapt straight-

forwardly to the non-computational-content context. Yet some care has to be

put into the formulation of some peculiar restrictions.

Epsilon-arithmetization in the context with ncm quantifiers

The so-called “ε-arithmetization” technique was developed by Kohlenbach

initially in [63] and later in [68, 69] (see also [62] for a survey). Let

∆ :≡ ∀uρ ∃v ≤σ ru ∀wτ Bnc(u, v, w)

be an arbitrary-but-fixed (single) sentence just like in Definition 1.67, but here

also restricted by dg(τ) ≤ 2. We associate to it the following sentences [below

B ≡ B̃nc is the direct regular-quantifier translation of the pure-ncm formula



94 The light (monotone) functional Dialectica interpretation

Bnc , as usual; also recall that ∆̃ ≡ ∃V ≤ρσ r ∀uρ ∀wτ B(u, V u, w) ]:

∆ :≡ ∃V ≤ρσ r ∀uρ ∀wτ Bnc(u, V u, w) (2.37)

∆ε :≡ ∀wτ , uρ ∃v ≤σ ru ∀w̃ ≤τ w B(u, v, w̃) (2.38)

∆̃ε :≡ ∀wτ ∃V ≤ρσ r ∀uρ ∀w̃ ≤τ w B(u, V u, w̃) (2.39)

Thus (2.38) is the so-called “ε-weakening” of the direct regular-quantifier

translation ∆reg ≡ ∀uρ ∃v ≤σ ru ∀wτ B(u, v, w) of ∆ . ∆ε will be useful in the

proof of Corollary 2.41 below. Similarly, (2.39) is the epsilon-weakening of ∆’s

·̃-corresponding set ∆̃ . ∆̃ε is a central actor of Theorem 2.39. On the other

hand, we will use (2.37) only as an intermediate step in the proof below.

Theorem 2.39 (ε-arithmetization of ∆ premises in KNLMD-extraction)

Let the formulaA1 and the term s be as in Theorem 2.35 (recall that dg(γ) ≤ 2).

Let ∆ be the explicit sentence described above, which is different from the set

of sentences ∆ that is implicitely contained in WeZ∃,nc,c+m , see Remark 1.80.

There exists an algorithm which from a given proof

WeZ∃,nc,c+m ` ∆ → ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z) (2.40)

produces the closed term t(ιι)ιγ ∈ Tm together with a verifying proof

WeZ∃m ` ∆̃ε → ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z) (2.41)

Proof: We here write A1 ≡ ∃u′Anc(x, k, y, z, u′) with no restriction on the

degree of u′ . Since immediately ML
∃,nc
0 ` ∆→ ∆, we obtain effectively a proof

WeZ∃,nc,c+m ` ∆ → ∀xιι ∀kι ∀y ≤δ sxk ∃zγ, u′ Anc(x, k, y, z, u′)

from which (using just classical logic) we get effectively a proof in WeZ∃,nc,c+m of

∀xιι, kι ∀y ≤δ sxk ∀V ≤ρσ r ∃uρ, wτ , zγ, u′ [Bnc(u, V u, w) → Anc(x, k, y, z, u′)]

By a minor adaptation of Theorem 2.35 we then obtain effectively closed terms

t, t′ ∈ Tm and a proof in WeZ∃m of

∀xιι, kι ∀y ≤δ sxk ∀V ≤ρσ r ∃uρ, u′ ∃w ≤τ t′xk ∃z ≤γ txk
[B(u, V u, w) → A(x, k, y, z, u′) ]



2.4. Light Monotone Dialectica extractions from classical analytical proofs
by elimination-of-extensionality and ε-arithmetization 95

and hence, using just an intuitionistic reasoning12, we have a proof in WeZ∃m of

∀x, k[∃V ≤ r∀u∀w ≤ t′xkB(u, V u, w) → ∀y ≤ sxk∃z ≤ txk∃u′A(x, k, y, z, u′)]

which can be intuitionistically weakened to a proof in WeZ∃m of

∀x, k[∀w∃V ≤ r∀u∀w̃ ≤ wB(u, V u, w̃) → ∀y ≤ sxk∃z ≤ txkÃ1(x, k, y, z)]

and thus we have obtained effectively a proof in WeZ∃m of (2.41). 2

We now begin to use (2.38) in the following adaptation of a proposition

established by Kohlenbach (see, e.g., [62]).

Proposition 2.40 WeZ∃m ` ∆̃ε effectively-iff WeZ∃m ` ∆ε .

Proof: System WeZ∃m is closed under the (full) rule of choice. This can be

proved, e.g., by means of the (pure) Dialectica interpretation, see [62]. 2

Corollary 2.41 (Full elimination of ∆ premises by ε-arithmetization)

Let the formula A1 and the term s be as in Theorem 2.35. Let ∆ be a set (or

conjunction) of explicit sentences as in Theorem 2.39 for which one moreover

has that WeZ∃m ` ∆ε . There exists an algorithm which from a given proof

WeZ∃,nc,c+m ` ∆ → ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

produces the closed term t(ιι)ιγ ∈ Tm together with a verifying proof

WeZ∃m ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z) .

As Kohlenbach points out in [69], for many ineffective theorems ∆ of Math-

ematics (and particularly of the Analysis), the corresponding ε-weakenings ∆ε

are (constructively) provable in (subsystems of) WeZ∃m .

Remark 2.42 (Binary König Lemma) Principle WKL can be formalized in

more ways as a sentence ∆ for which WeZ∃m ` ∆ε . See, e.g., [62] for a survey.

Corollary 2.43 (Elimination of WKL assumptions by ε-arithmetization)

Let the formula A1 and the term s be as in Theorem 2.35. There exists an

algorithm which from a given proof

WeZ∃,nc,c+m ⊕ WKL ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

12Although in our case the verifying system WeZ∃m subsumes the full classical logic, see

Proposition 1.65.



96 The light (monotone) functional Dialectica interpretation

produces the closed term t(ιι)ιγ ∈ Tm together with a verifying proof

WeZ∃m ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z)

Here the addition of WKL to WeZ∃,nc,c+m by ⊕ instead of + marks the restriction

that WKL shall not be used in any of the proofs of premises of instances of the

quantifier-free rule of (extensionality) compatibility CMP from the input proof.

Proof: The deduction theorem applies to such a weaker adjoining of WKL via

⊕ to the weakly extensional system WeZ∃,nc,c+m (for which the usual deduction

theorem fails in general). Then Corollary 2.41 applies, modulo Remark 2.42.

2

Elimination-of-extensionality in the context with ncm quantifiers

Recall from Section 1.6 the definition of our pure-ncm Axioms of Choice:

AxACnc ≡ ∀x∃y Bnc(x, y) → ∃Y ∀xBnc(x, Y (x))

AxACclnc ≡ ∀x∃cly Bnc(x, y) → ∃clY ∀x Bnc(x, Y (x))

Recall from Definition 1.81 that our ncm weakly-extensional classical arith-

metic WeZ∃,nc,c+m subsumes both AxACnc and AxACclnc . For the simplification of the

exposition, we will assume in this whole subsection that the systems WeZ∃,nc,c+m

(and its corresponding Z∃,nc,c+m defined below) contain no implicit ∆ set of ax-

ioms. In fact, ∆ axioms will be explicitely added whenever this will be useful.

Let Z∃,nc,c+m be the fully extensional variant of system WeZ∃,nc,c+m , obtained

by adding to it the full compatibility axiom x =σ y → B(x) → B(y) and

by restricting the axioms of choice AxACnc/AxAC
cl
nc to those instances with

dg(x) + dg(y) ≤ 1, and moreover such that:

a) If dg(x) = 1 then the pure-ncm radical Bnc(x, y) shall actually be an

(ncm-)quantifier-free formula.

b) If dg(x) = 0 then all the (ncm-)quantified variables of Bnc shall have

type degree at most 1 (hence all variables of AxACnc/AxAC
cl
nc shall have

type degree at most 1, since in this case also dg(Y ) = 0 is enforced).

Then we can state the following ncm-adaptation of the elimination-of-

extensionality procedure (originally due to Luckhardt [89]) described in [62]:



2.4. Light Monotone Dialectica extractions from classical analytical proofs
by elimination-of-extensionality and ε-arithmetization 97

Proposition 2.44 (ncm-elimination-of-extensionality) Assume that the

definition from [62] of the extensional translation A 7→ Ae of a formula A is

extended to formulas with ncm quantifiers by (as expected):

(∃xρA)e :≡ ∃xρ (x =e
ρ x ∧ Ae)

(∀xρA)e :≡ ∀xρ (x =e
ρ x → Ae) ,

where y =e
σ z denotes the strong hereditarily extensional equality between

(higher-type) functionals (y and z). Then from a proof Z∃,nc,c+m ` A(a) one can

effectively construct a proof WeZ∃,nc,c+m ` a =e a → Ae(a) [here a are all the

free variables of A and the + items of WeZ∃,nc,c+m are exactly those of Z∃,nc,c+m ].

Proof: By induction on the structure of the input proof, following [62].

The ∃-axioms and ∀-rules can be treated exactly like their isomorphic regu-

lar correspondents (i.e., the ∃-axioms and ∀-rules). No violation of the ncm

restrictions may appear. The treatment of AxACnc/AxAC
cl
nc with dg(x) = 1 is

the same as Kohlenbach’s, due to the enforced quantifier-free radical. This

restriction appears to be necessary because of the argument using a primi-

tive recursive bounded search over such a radical, which therefore must be

decidable13. For the treatment of the here more general AxACnc/AxAC
cl
nc with

dg(x) = 0 (which can employ an unrestricted pure-ncm radical) we need to

use the following very important lemma:

Lemma 2.45 (Stability of sentences relative to the e-translation)

The following hold for arbitrary formulas A ∈ F∃,ncm [hence of (We)Z∃,nc,c+m ] :

a) If all positively (ncm-)universal and negatively (ncm-)existential quanti-

fied variables of A have type degree at most 1, then IL∃,ncm ` Ae → A .

b) If all positively (ncm-)existential and negatively (ncm-)universal quanti-

fied variables of A have type degree at most 1, then IL∃,ncm ` A→ Ae .

Proof: We employ a simultaneous induction on the structure of A to

prove that both a) and b) hold at each induction step. The base case,

when A has no quantifiers at all, follows immediately by the definition of

Ae , which in this case is just identical to A. The induction step for ∧ and

→ follows by simple propositional logic, since (A ∧B)e ≡ Ae ∧Be and also

13Notice that, unlike the regular system WeZ∃m , which subsumes the full comprehension

axiom AxCA and therefore enjoys the decidability property also for formulas with quantifiers,

the ncm system WeZ∃,nc,c+m does not necessarily feature such a property .



98 The light (monotone) functional Dialectica interpretation

(A→ B)e ≡ Ae → Be . For the quantifier steps A ≡ ∀xA′(x), A ≡ ∀xA′(x),

A ≡ ∃xA′(x) and A ≡ ∃xA′(x) we use that ` x =e
ρ x for x with dg(ρ) ≤ 1,

see [62] for this working lemma. 2

Returning to the proof of Proposition 2.44, our choice axioms restricted for the

situation when dg(x) = 0 fall into both categories a) and b) of Lemma 2.45,

hence their e-translations are actually logically equivalent to the original.2

Using both Proposition 2.44 and Lemma 2.45 we obtain the following corol-

lary of Theorem 2.39 (recall that here Z∃,nc,c+m subsumes no implicit ∆ axioms):

Theorem 2.46 (Uniform bound extraction by EKNLMD-interpretation)

Let A1 ≡ ∃uAnc(xιι, kι, yδ, zγ, u) be a formula of F∃,ncm with x, k, y, z all its free

variables, dg(γ) ≤ 2, dg(δ) ≤ 1 and such that all positively (ncm-)universal

and negatively (ncm-)existential quantified variables of Anc have type degree

at most 1. Let s(ιι)ιδ be a closed term of Tm . Let ∆ be a set of sentences like in

Definition 1.67, but here restricted by dg(τ) ≤ 2, dg(σ) ≤ 1 and further such

that all positively (ncm-)existential and negatively (ncm-)universal quantified

variables of Bnc have type degree at most 1. Then there exists an algorithm

which from a given proof

Z∃,nc,c+m + ∆ ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z) (2.42)

produces the closed term t(ιι)ιγ of Tm together with a verifying proof

WeZ∃m ` ∆̃ε → ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z) (2.43)

where WeZ∃m includes no implicit ∆̃ axioms and Ã1(x, k, y, z) ≡ ∃uA(x, k, y, z, u)

is the direct regular-quantifier translation of A1 . Hence t is a bound for z which

is uniform relative to y. If moreover WeZ∃m ` ∆ε then (2.43) can be replaced by

WeZ∃m ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z)

Proof: We use the important fact that the fully extensional system Z∃,nc,c+m

features the deduction theorem, therefore we can rewrite (2.42) as

Z∃,nc,c+m ` ∆ → ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z) (2.44)

Due to the various type-degree restrictions (not on γ, τ) from our hypothesis,

the conclusion sentence of (2.44) can be placed into the situation a) of Lemma



2.4. Light Monotone Dialectica extractions from classical analytical proofs
by elimination-of-extensionality and ε-arithmetization 99

2.45. By combining this with the outcome Proposition 2.44 applied to (2.44),

it follows that we can construct effectively (by e-interpretation) a proof

WeZ∃,nc,c+m ` ∆ → ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

which, also due to the restrictions on dg(γ) and dg(τ), fits as an acceptable

input (2.40) to the algorithm of Theorem 2.39. 2

Corollary 2.47 (Elimination of WKL axioms by EKNLMD-interpretation)

Let the formula A1 and the term s be as in Theorem 2.46 above. Then there

exists an algorithm which from a given proof

Z∃,nc,c+m + WKL ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

produces the closed term t(ιι)ιγ ∈ Tm together with a verifying proof

WeZ∃m ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z)

Discussion

This chapter has truly represented the core of our thesis. It has described the

extraction-and-soundness theorems which were established for all the tech-

niques that we propose in this thesis, namely Light Dialectica, Light Monotone

Dialectica, and their extensions to fully classical (and even partly analytical)

systems. The reading of the present chapter is somewhat inseparable from

the one of the previous chapter, which exposes the arithmetical systems that

we use. See also the discussion at the end of Chapter 1. In the next chapter

we outline an adaptation of our ncm techniques to the extraction of poly-time

computable programs. Both this and the previous chapters are necessary for

the reading of the following Chapter 3.

We would here like to add one more last comment. Let Sω denote as usual

the full ZFC set-theoretic type structure. Let also Mω denote Bezem’s type

structure of all strongly majorizable functionals, as usual. Let AxBAC denote

the following principle (Axiom) of Bounded Choice:

∀Rρ→σ [∀xρ ∃y ≤σ Rx C(x, y, R) → ∃Y ≤ρ→σ R ∀xC(x, Y x,R) ] (2.45)

where ρ and σ are arbitrary types and C is an arbitrary regular formula of

WeZ∃m . In this discussion we assume that WeZ∃m contains no implicit ∆̃ set of



100 The light (monotone) functional Dialectica interpretation

axioms. Since both Sω and Mω are models of the full comprehension axiom

AxCA, it can be easily established (using the related litterature) that

Sω |= WeZ∃m + AxBAC and also

Mω |= WeZ∃m + AxBAC .

Let ∆ ≡ { ∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z)} be a set of sentences as in Definition

1.67. For R := r and C(x, y, R) :≡ ∀zB(x, y, z) in (2.45) one obtains that

∀xρ ∃y ≤σ rx ∀zτ B(x, y, z) + AxBAC ` ∃Y ≤ρσ r ∀xρ ∀zτ B(x, Y x, z)

Hence the whole ·̃-correspondent of a sentence in ∆ is a fully regular formula,

which can be obtained from the direct regular correspondent of the original

sentence and AxBAC. In consequence,

∆reg + AxBAC ` ∆̃

hence one can also write

WeZ∃m + ∆reg + AxBAC ` WeZ∃m + ∆̃

where ∆reg ≡ { ∀xρ ∃y ≤σ rx ∀zτ B(x, y, z)} is the direct regular-quantifier

translation of ∆. We thus have that

a) If Sω |= ∆reg then Sω |= WeZ∃m + ∆̃ .

b) If Mω |= ∆reg then Mω |= WeZ∃m + ∆̃ .

If instead of a syntactic verifying proof, a simple guarantee that the verification

holds in Sω or inMω suffices, then w.r.t. Theorems 2.20, 2.35 and 2.46 we can

consider that the input system WeZ∃,nc+m /WeZ∃,nc,c+m only includes ∆ axioms for

which Sω |= ∆reg or only includes ∆ axioms for which Mω |= ∆reg and then

the verification goes through in the model of choice, Sω orMω . Since, e.g., the

Weak König’s Lemma principle (WKL) is valid in Sω , and also can be expressed

as a ∆-shape axiom, one thus achieves the admissibility of the addition of WKL

as axiom to the weakly extensional systems WeZ∃,nc+m /WeZ∃,nc,c+m in the (Light)

Monotone Dialectica proof mining. One can thus avoid for WKL (and the like,

see also Corollary 3.28 in Section 3.2.2) the use of the ε-arithmetization and

elimination-of-extensionality techniques presented in Section 2.4 above (see

Corollaries 2.43 and 2.47), if we accept a verification in Sω . The gain would

be that, on one hand we do not need to type-degree restrict the pure-ncm



2.4. Light Monotone Dialectica extractions from classical analytical proofs
by elimination-of-extensionality and ε-arithmetization 101

Axioms of Choice in the system at input and yet we can freely add WKL as a

full-standing axiom, via a “+” and not just a “⊕”.

A slightly more complicated situation arrives when we are given that

Mω |= ∆reg , but we are asked for a verification in Sω , instead ofMω . This can

nevertheless be solved by imposing some low-type-degree restrictions both on

the ∆ axioms and on the conclusion formula of the proof at input. See Section

3.2.2 for more on this, in the context of a “feasible” variant of WeZ∃,nc,c+m . The

results of Section 3.2.2, i.e., Theorem 3.27 and its Corollary 3.28 can nonethe-

less be rewritten back with WeZ∃,nc,c+m instead of PbZc+ and with “∃z ≤γ txk”

instead of “∃z ≤γ λuιι, lι. p[xM , k, uM , l]”. Notice the partial similarity of the

restrictions on the degrees of the types from both ∆ and the conclusion sen-

tence A1 in Theorems 2.46 and 3.27. In fact the two theorems complement each

other. On one hand one allows full extensionality and less type-degree restric-

tions on ∆ and A1 , but on the other hand the pure-ncm Axioms of Choice are

no longer type-degree restricted. This comparison implicitely assumed that we

are concerned with sentences ∆ which are valid in Sω or in Mω , which is ac-

tually the case in the proof-mining practice, see the work of Kohlenbach [62].



Chapter 3

Feasible systems of

Arithmetic and Analysis

Ever since its beginnings, the research in the area of program extraction

from proofs has been concerned with the issue of the efficiency of extracted pro-

grams. In the case of Gödel’s Dialectica interpretation [44] it rapidly became

clear that any concrete mathematical application of such a powerful proof-

theoretical technique would have to face the difficult Contraction problem.

Many simplifications of the treatment of Contraction were proposed. This

is how the Diller-Nahm variant [24] of Dialectica and Kreisel’s non-counter-

example interpretation and Modified Realizability [84] came into being. The

drawback of all these proposed simplifications was the loss of logical power

in the proofs at input. In the case of Modified Realizability, a partial repair

of this problem was provided by the Friedman-Dragalin A-translation, which

allows some limited amount of non-constructive reasoning in the proofs to be

constructively interpreted. Also the monotone functional interpretation [67]

was designed in order to give a simpler treatment of contraction by taking a

maximum of the previously extracted terms instead of deciding which one to

chose according to the actual validity of the contraction formula.

In parallel with this research on the simplification of the logical framework

of the term-extraction techniques, a related work had started more from the

computer-science side on the computational-complexity simplification of the

term system, basically Gödel’s T. Full logical-arithmetical systems were then

to be designed in order to formalize reasoning about such low-complexity

functionals. In [21] a system PVω of terms denoting poly-time computable

functions was designed and corresponding intuitionistic IPVω and classical

102



103

CPVω arithmetics were given in order to reason about properties of such terms.

Moreover, program-extraction procedures by both modified realizability and

Dialectica interpretation were described for IPVω. It follows that the programs

extracted in this way from proofs in (extensions of) IPVω denote poly-time

computable functions and hence are feasible in this sense1.

Ferreira gives in [31] a system BTFA of Feasible Analysis for which the

Skolem functions for the provable Π02 sentences denote poly-time computable

functions. BTFA is a second-order theory and the method of reading the Skolem

functions is model-theoretic. More recently, the connection with Cook and

Urquhart’s systems was made by Oliva in [94]. It is shown in Section 3.2

of [94] how BTFA can be almost entirely simulated into CPVω + AxAC , where

AxAC denotes the quantifier-free restriction of the Axiom of Choice AxAC (here

introduced in Section 1.4). Basically only the more general version of bounded

collection Σb
∞−BC of BTFA appears to be unprovable in CPVω + AxAC , although

a weaker version of it is mentioned to be provable. Let Π01−WKL be the axiom

scheme of weak König’s Lemma for trees defined by Π0
1 formulas of CPVω . The

main result of [94] is that from proofs CPVω + AxAC + Π01−WKL ` ∀x∃yA0(x, y)

one extracts by purely syntactical means terms of PVω+B (where B is a special

constant, see below) which denote poly-time computable functions h such that

A0(x, hx) holds true in the standard model (stated as Corollary 5.2 in [94]).

The syntactic extraction is performed by double-negation translation followed

by an extension of Cook and Urquhart’s Dialectica interpretation for system

IPVω . The function h is denoted by a term in PVω extended by a simpler,

binary form of Howard’s simplification [58] of Spector’s bar recursion [118],

introduced in [94] as a new constant denoted B. Since it represents a form

of unbounded search, the functional denoted by B is not expressible as a PVω

term. However, B is interpretable into Scarpellini’s [107] type structure C of all

continuous set-theoretical functionals where it can be eliminated in terms of

limited recursion on notation. The execution of the poly-time Skolem function

h is therefore not fully syntactical by the method of [94].

A complete syntactical extraction technique was later developed by Fer-

reira and Oliva in [32, 33] so that not only the reading, but also the execution

of Skolem functions becomes strictly algorithmic. Initially one extracts just

bounds for the realizers [32], but with a verifying proof in pure IPVω . Exact

1The full syntactic execution of these programs is nonetheless not necessarily poly-time,

but only after an initial partial evaluation phase which has a super-exponential (in basic

term data) worst-case complexity, see Remarks 3.7 and 3.9 below.



104 Feasible systems of Arithmetic and Analysis

realizers (for the original specification) can then be obtained from this IPVω

proof by just the original technique of Cook and Urquhart [33].

In parallel an arithmetical system G2A
ω was designed by Kohlenbach [68]

as part of a full hierarchy of so-called Grzegorczyk Arithmetics (GnA
ω)n∈N

such that the bounds extracted by the monotone Dialectica interpretation

are syntactically reducible to integer polynomials and hence denote poly-time

computable functions as well. Moreover, a hereditarily polynomial bounded

analysis PBA is built upon G2A
ω and a comparison with Ferreira’s BTFA is

given in [71]. It turns out that a good deal of Analysis can be formalized in

PBA (see [71]), whereas much less could be formalized in BTFA (see, e.g., [30]).

However, the two frameworks are found to be incomparable in general [71].

3.1 The poly-time Arithmetic/Analysis PtZ+

We here use a Natural Deduction adaptation of Oliva’s variant [94] of the

poly-time intuitionistic arithmetic IPVω originally introduced by Cook and

Urquhart in [21] as a higher-order and logical extension of Cook’s equational

term system PV from [20]. Aside for the more readable names for the Chop,

Pad and Smash function symbols, we also retain Oliva’s choice that the set

of constants is restricted to a finite number of base symbols, unlike [21] where

each PV-term introduces a new function symbol.

We regard the underlying term system of PtZ (which is a slight adaptation

of PVω) not as an equational theory but as a term rewriting system. This

is more suitable when working with purely syntactical methods in view of a

computer implementation of the syntactic reductions. We also use a boolean

base type o, just like in the development of system WeZ in Chapter 2. We

will denote by [
-

the base type for binary strictly positive integers. This is

different from the base type ι for unary positive integers which was introduced

in Chapter 2. We will establish later in the sequel the natural embedding of ι

into [
-
, which is a bijective function. Since ι and [

-
are syntactically different it

will be possible to use both of them in a single coherent theory. For this goal

the development of o here is fully compatible with o of Chapter 2 so that they

can be confused without any harm. Unlike in [94, 21] the natural number 0 is

not part of the [
-

type. We find it more convenient to use a constant 1[
-

which

denotes the positive integer 1 but corresponds to Oι in the embedding ι 7→ [
-
.

On the other hand 1[
-

corresponds to Cook and Urquhart’s term s1(0). Hence

the standard model for [
-

is the set of strictly positive integers (whose least



3.1. A poly-time Arithmetic/Analysis due to Oliva, Cook-Urquhart and
Ferrreira 105

element is 1), denoted N? as usual.

Remark 3.1 We may introduce the special constant O in an extension of type

[
-

denoted [, whose model is N. We can then build an alternative variant of PtZ

based on type [ in which O can only be obtained as the (unary) predecessor of

1 and equally 1 is the unary successor of O (see Definition 3.4 below). Special

computation rules must be given for O in relationship with the other constants,

particularly in connection with the recursor (see Definition 3.2 below). Also

the induction axiom has to be adapted as well (see Definition 3.3 below).

Accordingly, the binary length |n| of the strictly positive integer n, is the

number of bits {0, 1} following the initial bit 1. Hence |1| ≡ 0, |11| ≡ |10| ≡ 1,

etc. We generally denote by m, n natural numbers from the model N? and

we write m, n for their binary syntactic correspondents in [
-
. For PtZ terms

t of type [
-

we denote by tN? their correspondent in the model (hence, e.g.,

(n)N? ≡ n).

Definition 3.2 The term constants of PtZ are as follows:

tto and ffo which denote boolean truth and falsity;

for each type τ the selector Ifτ of type o τ τ τ which denotes choice

according to a boolean condition with the usual if-then-else semantics;

equality Eq [
-
[
-
o and inequality Leq [

-
[
-
o, both functional constants here;

Rτ of type τ ([
-
[
-
τ) ([

-
τ) [

-
τ which denotes limited recursion on nota-

tion; here type τ is restricted to be arithmetic, i.e., τ ≡ σ[
-

1[
-

which denotes the natural number 1;

S
0
u
[
-
[
-

and S
1
u
[
-
[
-

which denote the functions which append a 0, respec-

tively a 1 to the right of their binary argument, i.e., S
0
uN?(n) ≡ n0 ≡ 2n

and S
1
uN?(n) ≡ n1 ≡ 2n+ 1;

Even[
-
o which denotes the function returning tt iff the rightmost bit of

its binary argument is 0, i.e., EvenN?(n0) ≡ tt and EvenN?(n1) ≡ ff ;

Hal[
-
[
-

s.t. HalN?(n) eliminates the rightmost bit of n, if n > 1;

Cho[
-
[
-
[
-

s.t. ChoN?(m,n) chops off |n| bits from the right of m;



106 Feasible systems of Arithmetic and Analysis

Pad[
-
[
-
[
-

s.t. PadN?(m,n) appends |n| zero bits to the right of m;

Sma[
-
[
-
[
-

s.t. SmaN?(m,n) appends |m| · |n| zero bits to 1;

Definition 3.3 System PtZ is built exactly like system WeZ∃,nc from Section

1.3 (see Definition 1.47) - regarding definitions of terms, predicates, formulas

and logic - but with the following differences:

type [
-

replaces the type ι;

the full induction rule IR is replaced by the following polynomial induc-

tion axiom scheme (below s ≤
[- t is a short for at(Leq s t), as expected)

PINDω : A(1)→ ∀x [A(Halx)→ A(x)]→ ∀xA(x)

whereA has the special form (∃y ≤
[- t)A0(x, y) ≡ ∃y. y ≤

[- t ∧ A0(x, y) ,

with x, y and t all of type [
-

and also all free variables of t have type [
-
;

the following rewrite rules are used for natural numbers:

Eq(S
0
u z, 1) ↪→ ff Eq(S

1
u z, 1) ↪→ ff

Eq(S
0
ux, S

1
u y) ↪→ ff Eq(S

1
ux, S

0
u y) ↪→ ff

Eq(S
0
ux, S

0
u y) ↪→ Eq(x, y) Eq(S

1
ux, S

1
u y) ↪→ Eq(x, y)

Leq(S
0
ux, S

0
u y) ↪→ Leq(x, y) Leq(S

0
u z, 1) ↪→ ff

Leq(S
1
ux, S

1
u y) ↪→ Leq(x, y) Leq(S

1
u z, 1) ↪→ ff

Leq(S
0
ux, S

1
u y) ↪→ Leq(x, y) Leq(1, z) ↪→ tt

Leq(S
1
ux, S

0
u y) ↪→ Ifo (Eq x y) ff (Leq x y)

Even(S
0
u z) ↪→ tt Even(S

1
u z) ↪→ ff

Hal(S
0
u z) ↪→ z Hal(S

1
u z) ↪→ z

Pad(x, S
0
u(y)) ↪→ Pad(S

0
u(x), y) Hal(1) ↪→ 1

Pad(x, S
1
u(y)) ↪→ Pad(S

0
u(x), y) Pad(x, 1) ↪→ x

Cho(1, y) ↪→ 1 Cho(x, 1) ↪→ x

Cho(S
0
ux, S

0
u y) ↪→ Cho(x, y) Cho(S

1
ux, S

1
u y) ↪→ Cho(x, y)

Cho(S
0
ux, S

1
u y) ↪→ Cho(x, y) Cho(S

1
ux, S

0
u y) ↪→ Cho(x, y)



3.1. A poly-time Arithmetic/Analysis due to Oliva, Cook-Urquhart and
Ferrreira 107

Sma(1, y) ↪→ 1 Sma(S
i
ux, y) ↪→ S

0
u (Pad (Smax y) y)

Sma(x, 1) ↪→ 1 Sma(x, S
i
u y) ↪→ S

0
u (Pad (Smax y)x)

Rτ x y
[
-
[
-
τ v 1w ↪→ xw

Rτ x
τ y v [

-
τ (S

0
u z[

-
)w ↪→ If

[- (Eq 1 (Cho (t0[z]) (v (S
0
u z)w)) , t0[z] , v (S

0
u z)w)

Rτ x
τ y v [

-
τ (S

1
u z[

-
)w ↪→ If

[- (Eq 1 (Cho (t1[z]) (v (S
1
u z)w)) , t1[z] , v (S

1
u z)w)

– where we abbreviated by ti[z] :≡ y (S
i
u z) (Rτ x y v z w)w for i ∈ 0, 1 .

Just like in Chapter 1, predicate equality at base types is defined by

s =o t :≡ at(s)↔ at(t) and s =
[- t :≡ at(Eq s t). Equality at higher types is

extensionally defined as well, i.e., s =στ t ≡ ∀xσ (s x =τ t x) and non-equality

is defined as s 6=τ t :≡¬(s =τ t). The behaviour of equality is governed by the

rules of (higher order) reflexivity REF, symmetry SYM, transitivity TRZ, com-

patibility CMP and substitution SUB together with the special axiom scheme

AxEQL. Recall that the latter adds an axiom s =τ t for all terms sτ and tτ

for which s ↪→? · ?←↩ t can be established (recall from Definition 1.45 that the

rewrite relation ↪→ includes the rules of α, β and η reduction).

Definition 3.4 We distinguish the following particular PtZ terms:

Suc :≡ λz. R
[- ( S

0
u 1 , λx, y. If

[- (Evenx , S
1
u (Halx) , S

0
u y) , S

1
u , z )

which denotes the unary successor, i.e., SucN?(n) ≡ n+ 1;

Pred :≡ λz. R
[- ( 1 , λx, y. If

[- (Evenx , S
1
u y , S

0
u (Halx)) , S

0
u , z ) which

denotes the unary predecessor, i.e., PredN?(n) ≡ n− 1 , PredN?(1) ≡ 1;

boolean conjunction Andooo and implication Impooo and the n-selector

Ifnτ of type
n︷ ︸︸ ︷

o . . . o

n︷ ︸︸ ︷
τ . . . τ τ τ which are identical to those in Chapter 1;

the zero terms Oτ are defined for every type τ like in Chapter 1, here

with O
[- :≡ 1.

System PtZ is immediately seen to be equivalent with IPVω without 0,

in the sense that IPVω ` ∀zA(Suc z) iff PtZ ` ∀zA(z). Hence PtZ terms of

shape t[
-
[x[

-
1 , . . . , x

[
-
k ] denote poly-time computable functions tN? [n1, . . . , nk].

However, for both PtZ and IPVω, the poly-time computability only holds in

the model and is not doubled by a purely syntactic reduction of length at most



108 Feasible systems of Arithmetic and Analysis

a polynomial in the lengths of the arguments. Only the terms t[
-
[x[

-
1 , . . . , x

[
-
k ]

of the first-order system PV have the property that t[n1, . . . , nk] syntactically

reduces to its normal form tN? [n1, . . . , nk] in less than pt(|n1|, . . . , |nk|) steps,

where pt[m1, . . . ,mk] is an integer polynomial. This property can only be

achieved because of the heavy restriction that the maximal type degree of PV

(sub)terms is 1. Therefore lambda-abstracted variables can only be of base

type (o or [
-
) and new constant function symbols of type degree 1 must be

introduced for each recursive definition, in order to avoid the use of type 2

recursor constants.

The syntactic reduction from terms t[
-
[x[

-
1 , . . . , x

[
-
k ] of PVω to their corres-

ponding PV term tPV[x[
-
1 , . . . , x

[
-
k ] is fully described in [21], but no bounds are

given there on its length in terms of t data (like size, depth, maximal type

degree). Notice that the length of the reduction t
PV
; tPV obviously does not

depend on the lengths of the actual inputs to the program t.

Definition 3.5 The super-exponential function 2(·)(·) : N× N 7→ N is recur-

sively defined by 20(n) :≡n and 2m+1(n) :≡ 22m(n).

Remark 3.6 Recall from Definition 1.6 that mdg(t), d(t), S(t) denote the

maximal type degree of a subterm, the depth and respectively the size of t.

Remark 3.7 From [7] (see also [112, 111]) it follows that the βη-reduction

of t to its βη normal form alone (hence without reducing the higher-type

recursors), which is part of the more complex
PV
; reduction, is upper bounded

by 2mdg(t)(S(t)) and 2mdg(t)+1(d(t)). On the other hand, almost matching

super-exponential lower bound examples2 can be given, i.e., there exist terms

(tmn )m,n∈N such that S(tmn ) = O(n) for all m ∈ N, mdg(tmn ) = m+ 1 for all

m,n ∈ N and every βη reduction sequence of tmn has length greater than

2m−1(n)− n, for sufficiently large n.

The situation gets even worse when the reduction of higher type recursors

Rτ is taken into account as well. But, after this at least (worst case) super-

exponential partial reduction
PV
;, the reduced tPV will further syntactically

reduce in a polynomial number of steps to its normal form tN? [n1, . . . , nk],

when presented with the actual inputs n1, . . . , nk (this follows immediately

from [20, 21]).

2In [7] these are directly adapted from [111], but the origin of all such lower bound

examples can be traced back to works of Statman [119], Orevkov [98] and Pudlak [104].



3.1. A poly-time Arithmetic/Analysis due to Oliva, Cook-Urquhart and
Ferrreira 109

Remark 3.8 Let PV(PtZ) be the subset of PtZ-terms of maximal type degree

1, except that type-2 recursor constants are allowed as subterms of elements

of PV(PtZ). These type-2 recursors are in an obvious bijective correspondence

with Cook’s [20, 21] “flat” recursors R[g, h, k] of system PV. Then PV(PtZ) is

immediately seen to be equivalent to Cook’s PV without 0 and hence terms

t[
-
[x[

-
1 , . . . , x

[
-
k ] ∈ PV(PtZ) are syntactically poly-time computable in the sense

mentioned above. Also the reduction from a regular term t[
-
[x[

-
1 , . . . , x

[
-
k ] of

PtZ to its corresponding tPV[x[
-
1 , . . . , x

[
-
k ] ∈ PV(PtZ) can be defined equivalently

to the reduction
PV
; of Cook and Urquhart.

It follows that the syntactic reduction of PtZ terms t[n1, . . . , nk] to their

normal form tN? [n1, . . . , nk] can be split in two stages:

1. first the generic reduction t[
-
[x[

-
1 , . . . , x

[
-
k ]

PV
; tPV[x[

-
1 , . . . , x

[
-
k ] is performed

once and for all as a partial evaluation of the given term; this potentially

costs enormously in terms of t data like mdg(t), d(t) and S(t), since

super-exponential lower bounds exist for (part of) this reduction, see

Remark 3.7 above;

2. the PV(PtZ) term tPV[n1, . . . , nk] reduces in at most pt(|n1|, . . . , |nk|) steps

to the normal form tN? [n1, . . . , nk], where pt[m1, . . . ,mk] is an integer

polynomial; hence this part is computationally feasible, in contrast to 1.

Remark 3.9 This division of labour strategy outlines the importance of par-

tial evaluation, since the most costly part of the reduction steps is carried out

just once, regardless of the actual numerical inputs. The generic reduction

is more suitably processed on a super-computer, especially when t features

large size or maximal type degree. But after tPV is obtained, the reductions for

its actual values can be executed efficiently (i.e., poly-time) just by a normal

computer.

System PtZ+ is obtained from PtZ in the same way that WeZ∃,nc+ is obtained

from WeZ∃,nc in Section 1.4 (see Definition 1.58). I.e., by adding to PtZ the

axioms AxSTABnc , AxMK, AxIP−∃+∀ , AxIP
cl
nc , AxAC and AxACclnc , all adapted to the

new language and term system of PtZ. Similarly, also system PtZ− is obtained

from PtZ just like WeZ∃ from WeZ∃,nc , i.e., by eliminating the ncm quantifiers

(and their contingent restrictions). Let also PtZ−cl be the extension of PtZ−

with full stability ¬¬A → A. Then the following analogue of Corollary 2.11

holds for our variant of the Cook-Urquhart Dialectica interpretation.



110 Feasible systems of Arithmetic and Analysis

Theorem 3.10 (Poly-time realizer synthesis by the LD-interpretation)

There exists an algorithm which from a given proof PtZ+ ` A(a) produces ex-

act realizing terms T [a] ∈ PV(PtZ) with a verifying proof PtZ−cl ` ∀yAD(T ; y; a).

Proof: A soundness theorem for the Cook-Urquhart Dialectica interpreta-

tion of IPVω+AxMK+AxAC is given by Oliva in [94] as an immediate extension

of Cook and Urquhart’s original proof from [21]. Since the light Dialectica

interpretation of AxIP−∃+∀ and AxIPclnc is realized by simply projection func-

tionals (see the proof of Theorem 2.10), which are known to be part of the

term system of PtZ, it is then immediate that LD-interpretation is sound for

PtZ+ (the Light Dialectica treatment of AxACclnc in the Cook-Urquhart setting

is similar to the treatment of AxAC). The extracted PtZ terms can thereafter

be reduced to terms in PV(PtZ) via the technique mentioned in Remark 3.8,

which is originally due to Cook and Urquhart [21] as well. 2

3.2 Polynomial bounded Arithm/Analysis PbZc+

In the survey paper [71] Kohlenbach gives and arguments for his proposal

of a framework for the development of “Feasible Analysis”. He introduces sys-

tems of “hereditarily Polynomial Bounded Analysis” (abbreviated PBA) as sub-

sets of analysis whose provably recursive functions can be bounded with integer

polynomials. PBA are defined as G2A
ω + AxAC + ∆, where G2A

ω is the second

system in a discrete hierarchy of so-called Grzegorczyk Arithmetics and ∆ are

sets of analytical axioms having the logical form ∀xδ∃y ≤ρ sx∀zτB0(x, y, z)

(as in Definition 1.67, but with the pure-ncm root reduced to quantifier-free

only) which cover important subsets of classical analysis (see [68, 69, 71]).

We give below an adaptation of Kohlenbach’s systems G2A
ω and G3A

ω

from [68] (the latter being necessary for the verifying proof). Since none of

the systems GnA
ω with n ≥ 4 is involved in the description or analysis of PBA

systems we choose a more direct exposition of (our variant of)G2A
ω andG3A

ω,

without mentioning the Ackerman functions or the Grzegorczyk hierarchy.

Definition 3.11 (Polynomial-bound system PbZ) We thus introduce the

system PbZ as an adaptation of Kohlenbach’s G2A
ω by describing its differ-

ences to system WeZ∃,ncm (without any Π or ∆ included, i.e., with Π,∆ ≡ ∅)
from Section 1.5. The only elements of WeZ∃,ncm which are not included in PbZ

are the induction rule IR and Gödel’s recursor R. The type ι for naturals of

PbZ is identical to that of WeZ∃,ncm , hence PbZ uses a unary representation of



3.2. A polynomial bounded Arithmetic/Analysis due to Kohlenbach 111

positive integers as well. We also add a minimum constant min of type ιιι

together with its defining axioms:

minx y ≤ι x minx y ≤ι y .

Here s ≤τ t :≡ t ≥τ s, with ≥τ extensionally defined like in Section 1.5. Pre-

decessor, addition and multiplication are denoted by the functional constants

Predιι, Plsιιι and Tmsιιι , which are provided with the defining rewrite rules:

Pred O ↪→ O Pred (Sucx) ↪→ x

Pls(x, O) ↪→ x Pls(Sucx, y) ↪→ Suc (Plsx y)

Pls(O, x) ↪→ x Pls(x, Suc y) ↪→ Suc (Plsx y)

Tms(x, O) ↪→ O Tms(Sucx, y) ↪→ Pls y (Tmsx y)

Tms(O, x) ↪→ x Tms(x, Suc y) ↪→ Plsx (Tmsx y)

Also the functional constants Max and Sum of type (ιι)ιι are included, where

their meaning is given by

MaxN fN nN ≡ maxN(f 0, f 1, . . . , f n)

SumN fN nN ≡ f(0) +N f(1) +N . . .+N f(n)

which is achieved syntactically by the following rewrite rules:

Max f O ↪→ f O Max f (Sucx) ↪→ Max(f (Sucx), Max f x)

Sum f O ↪→ f O Sum f (Sucx) ↪→ Pls(f (Sucx), Sum f x)

Recursion is limited to the bounded and predicative recursor R̃ of type

(σ1 . . . σk ι) (ι ι σ1 . . . σk ι) ι (ι σ1 . . . σk ι) σ1 . . . σk ι

syntactically defined by the following rewrite rules:

R̃x y O v w ↪→ xw

R̃x y (Suc z) v w ↪→ min(y z (R̃x y z v w)w , v z w)

The bounded search operator µb of type (ιιo)ιι is syntactically given by:

µb f
ιιo x ↪→ µ′b (f ιιo x) x

µ′b g
ιo O ↪→ O

µ′b g
ιo (Suc z) ↪→ Ifo (g O) O [ Ifo (g (Suc z))

[Ifo (Eq (µ′b g z) O) (Suc z) (µ′b g z)] (µ′b g z) ]



112 Feasible systems of Arithmetic and Analysis

where the additional operator µ′b of type (ιo)ιι is used and their semantics is

µ′b gN nN ≡ min {m ≤N n | g(m) is true}
µb fN nN ≡ min {m ≤N n | f(n,m) is true} .

Definition 3.12 (Verifying systems PbZv and PbZ+v ) System PbZv is the

extension with the full comprehension axiom ∃Φτ→o ∀xτ [ at(Φx) ↔ B(x) ]

(AxCA) of the restriction of PbZ to the language without ncm quantifiers. It thus

corresponds to WeZ∃m (without any Π̃ or ∆̃, i.e., with Π̃, ∆̃ ≡ ∅), see Definition

1.64. Moreover, system PbZ+v is obtained by adding to PbZv the functional

constants Expιιι and Prod(ιι)ιι together with their defining rewrite rules:

Exp(x, O) ↪→ 1 Exp(x, Sucy) ↪→ Tms(x, Expx y)

Prod(f, O) ↪→ f O Prod(f, Sucx) ↪→ Tms(f(Sucx), Prod f x)

Thus, whereas PbZv is still a polynomial system, its extension PbZ+v becomes

an even over-poly-time system since it contains true exponentials.

Remark 3.13 Of course, Pred, Max, Sum, µb and Prod could be defined as

lambda-terms from the remaining constants, but we here follow [68] in choos-

ing to introduce them directly as constants (with their own defining rewrite

rules) in order to attain a larger flexibility of the language. Also recall from

Section 1.5 that in the given context with at and ⊥ being the only predi-

cate symbols, AxCA implies full stability ¬¬A → A in systems PbZv and PbZ+v ,

which thus subclude full classical logic.

Definition 3.14 Let Tm
-
(PbZ) denote the set of all terms of PbZ which do not

contain Max, Sum, µb and R̃ (and eventually also not Pred, min and Max, see

Remark 3.16 below).

Proposition 3.15 To every term t[x1, . . . , xk] of PbZ (with x1, . . . , xk all free

variables of t) one can syntactically associate a term t?[x1, . . . , xk] ∈ Tm
-
(PbZ)

(with x1, . . . , xk all free variables of t?) such that:

` x?1 � x1 → . . .→ x?k � xk → t?[x?1, . . . , x
?
k] � t[x1, . . . , xk] (3.1)

Proof: This follows immediately from Proposition 1.78 once majorants from

Tm
-
(PbZ) are provided for the constants specific to PbZ. This is fulfilled since

Max? :≡ λf ιι, xι. f(x) �(ιι)ιι Max

Sum? :≡ λf ιι, xι. Tms(f(x), Sucx) �(ιι)ιι Sum

µ?b :≡ λf ιιo, xι. x �(ιιo)ιι µb

R̃? :≡ λxσι, yιισι, zι, vισι, wσ. Max(xw , v(Pred z, w)) �(σι)(ιισι)ι(ισι)σ R̃



3.2. A polynomial bounded Arithmetic/Analysis due to Kohlenbach 113

and also O � O, Suc � Suc, Pred � Pred, min � min and Max � Max.

Constants inherited from WeZ have their majorants provided by Proposition

1.78 already in Tm
-
(PbZ). Only the majorant of Ifτ for arithmetic τ needs to be

majorized by λpo, yτ , zτ , w. Pls(yw)(zw) if one uses the more stripped version

of Tm
-
(PbZ), see Remark 3.16 below. 2

Remark 3.16 The proposition above corresponds to Proposition 2.2.21 of

[68]. Since (λxι. x) � Pred, Pls � min and Pls � Max, also Pred, min and

Max can be eliminated from t? and hence generally from terms of Tm
-
(PbZ).

Proposition 3.17 Let t ∈ Tm
-
(PbZ) be a term of type ι such that all its free

variables are xσ11 , . . . , x
σk
k with dg(σi) ≤ 1 for i ∈ 1, k. Then the βη normal

form t̂[x1, . . . , xk] of t is an element of Tm
-
(PbZ) built without λ-abstraction.

Proof: It is obvious that t̂ ∈ Tm
-
(PbZ). Assume that t̂ contains a λ-abstraction

and let λx. r be a maximal lambda subterm of t̂ in the sense that no y and

s exist such that λy. s is a subterm of t̂ and λx. r is a subterm of s. Since

dg(t̂) = 0 it is impossible that t̂ ≡ λx. r. Hence there exists a subterm s of t̂

such that (λx. r)s or s(λx. r) is a subterm of t̂. The former case is excluded

because t̂ is in βη normal form and for the same reason also the case that s is

in lambda form. It follows that s decomposes as s0 . . . sn with n ∈ N and s0
not in lambda form. Since s0 can also not be in application form, it follows

that s0 is a constant or variable. Since dg(λx. r) ≥ 1, the type degree of s0 is

then at least 2, hence the former case is excluded. For the same reason s0 can

also not be one of t̂ ’s free variables x1, . . . , xk. But if s0 is a bound variable

y, then the whole s(λx. r) is a subterm of t̂ ’s subterm bound by λy, which

contradicts the maximality of λx. r in this respect. This concludes the proof.

2

Remark 3.18 The proposition above corresponds to Proposition 2.2.22 of

[68], there formulated only for closed terms of a ΣΠ combinator calculus. It

also corresponds to the reduction
PV
; of Cook and Urquhart [21] and to its ana-

logue reduction from t[
-
[x[

-
1 , . . . , x

[
-
k ] of PtZ to its corresponding tPV[x[

-
1 , . . . , x

[
-
k ]

(an element of PV(PtZ)), which we describe in Section 3.1. The same almost

matching super-exponential upper and lower bounds (adapted from [7, 112,

111]) apply to the length of the βη reduction from t to t̂.

Definition 3.19 Let p ∈ N[x1, . . . , xk] be a polynomial in variables x1, . . . , xk
with coefficients in N. To it we associate the syntactic polynomial p ∈ Tm

-
(PbZ)



114 Feasible systems of Arithmetic and Analysis

obtained from p by using

c times︷ ︸︸ ︷
Suc . . . Suc O for the natural constant cN, Pls for the

integer addition +N and Tms for the integer multiplication ×N.

Proposition 3.20 Let t[x1, . . . , xk]
ι be a term of PbZ such that xσ11 , . . . , x

σk
k

are all its free variables and dg(σi) ≤ 1 for i ∈ 1, k. Then there exists an

integer polynomial pt ∈ N[x1, . . . , xk] such that

` x?1 � x1 → . . .→ x?k � xk → pt[x
?
1, . . . , x

?
k] � t[x1, . . . , xk] (3.2)

where pt denotes the syntactic version of pt in the sense of Definition 3.19.

Proof: We here use the more stripped version of Tm
-
(PbZ) from Remark 3.16.

By combining Proposition 3.15 with Proposition 3.17, one obtains a term t̂?

of PbZ built only by application from just O, Suc, Pls, Tms and x1, . . . , xk ,

such that

` x?1 � x1 → . . .→ x?k � xk → t̂?[x?1, . . . , x
?
k] � t[x1, . . . , xk] (3.3)

It is immediate that t̂? can be put in a (syntactic) polynomial form, in the

sense that there exists a pt ∈ N[x1, . . . , xk] such that

` t̂?[x1, . . . , xk] =ι pt[x1, . . . , xk] (3.4)

and then (3.2) follows from (3.3) and (3.4) by Lemma 1.72. 2

Remark 3.21 Even though the (syntactic) obtaining of t̂? from t[xι1, . . . , x
ι
k]
ι

is of (worst-case) iterated exponential complexity in the maximal type degree

of t and the size of t (see Remark 3.18, Section 3.1 and [7, 112, 111]), the

syntactic execution of t̂? on actual inputs n1, . . . , nk is of poly-time complexity

pt[n1, . . . , nk], where ` t̂?[x1, . . . , xk] =ι pt[x1, . . . , xk] is given by (3.4). Notice

that a true poly-time complexity pt[|n1|, . . . , |nk|] in the binary lengths of

the integer inputs can be attained only if natural numbers are syntactically

(re)presented in binary form like in type [
-

of system PtZ from Section 3.1.

Definition 3.22 (Input system PbZc+) We define the input system PbZc+

as the extension of PbZ with AxSTAB and AxACnc/AxAC
cl
nc (recall Definition 1.81

from Section 1.6) adapted to the language and terms of PbZ. Similar to system

WeZ∃,nc,c+m from Section 1.6, also the polynomial-bounded system PbZc+ includes

the arbitrary but fixed sets of sentences (below Bnc denotes pure-ncm formulas)

Π ≡ { ∀b Bnc(b) } and

∆ ≡ { ∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z) } .



3.2. A polynomial bounded Arithmetic/Analysis due to Kohlenbach 115

(see Convention 1.57 and Definition 1.67), here all restricted to the language

and terms of PbZ. Parallel to that, we also include into the polynomial-bounded

verifying system PbZv the corresponding sets of sentences

Π̃ ≡ { ∀b B(b) }
∆̃ ≡ { ∃Y ≤ρσ r ∀xρ ∀zτ B(x, Y x, z) }

which are bijectively associated to Π and respectively ∆ above. Thus PbZv cor-

responds to the “regular” monotonic (classical) system WeZ∃m from Section 1.5.

We then obtain the following adaptation of Theorem 3.2.2 of [68], here

based on Theorem 2.35.

Theorem 3.23 (Polynomial bound synthesis by KNLMD-interpretation)

Let A1(x
ιι, kι, yδ, zγ) be a quasi-purely-existential formula with x, k, y, z all its

free variables (i.e., A1 ≡ ∃vAnc(x, k, y, z, v)) and dg(γ) ≤ 2. Let s(ιι)ιδ be a

closed term of PbZ. There exists an algorithm which from a given proof

PbZc+ ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z) (3.5)

produces the syntactic polynomial p[xιι, kι, uιι, lι]ι ∈ Tm
-
(PbZ) such that

PbZv ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ λuιι, lι. p[xM , k, uM , l] Ã1(x, k, y, z) (3.6)

where u, l are (possibly empty) tuples determined by γ and Ã1(x, k, y, z) ≡
∃vA(x, k, y, z, v), i.e., it is the regular-quantifier translation of A1 . Hence if

γ ≡ ι then p is a polynomial bound for z in xM and k which is uniform w.r.t. y.

Proof: We first apply Theorem 2.35 to (3.5) and obtain a closed t ∈ Tm(PbZ)

such that

PbZv ` ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ txk Ã1(x, k, y, z) (3.7)

Let uιι and lι be (possibly empty) tuples such that txkul has type ι. More-

over, x, k, u and l are all the free variables of txkul. Therefore we can ap-

ply Proposition 3.20 and we thus obtain effectively the syntactic polynomial

p[x, k, u, l]ι ∈ Tm
-
(PbZ) such that

` x? � x ∧ k? � k ∧ u? � u ∧ l? � l → p[x?, k?, u?, l?] � txkul

and since xM � x, k � k, uM � u and l � l we obtain that

PbZv ` ∀x, k, u, l ( p[xM , k, uM , l] ≥ι txkul )

hence

PbZv ` ∀x, k ( λu, l. p[xM , k, uM , l] ≥γ λu, l. txkul =γ txk ) (3.8)

Then the conclusion (3.6) immediately follows from (3.7) and (3.8) 2



116 Feasible systems of Arithmetic and Analysis

3.2.1 Elimination of the non-standard analytical axiom F−

Among the sentences ∆ of Definition 3.22 which are restricted to the lan-

guage without ncm quantifiers one distinguishes the very important axiom

F− :≡ ∀Φι(ιι)ι ∀xιιι ∃y ≤ιιι x∀kι ∀zιι ∀nι

[∧i<ιn (z i ≤ι xki) → Φk (λkι. Ifι (k <ι n)(zk)O) ≤ι Φk (yk) ]

The sentence F− is non-standard in the sense that it does not hold in the

full set-theoretic type structure Sω but is valid, e.g., in the type structureMω

of strongly majorizable functionals. It is possible to eliminate the use of (the

·̃-corresponding) F̃− in the verifying proof whenever F− is not used in any of

the proofs of premises of instances of the quantifier-free rule of (extensionality)

compatibility CMP in the proof at input. One marks this restriction on the use

of F− by adding it via a ⊕F− to the main system, instead of the usual +F− .

We then obtain, in the spirit of Theorem 2.39 here (and of its Corollaries

2.41 and 2.43), the following adaptation of Theorem 4.21 of [68].

Corollary 3.24 In Theorem 3.23 the premise (3.5) can be replaced by

PbZc+ ⊕ F− ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

or, equivalently, by

PbZc+ ` F− → ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

and then the verifying proof (3.6) is in PbZ+v instead of just PbZv , where PbZ+v is

the extension of PbZv with Exp and Prod, see Definition 3.12. The exponential

functional constants Exp and Prod are needed in the verifying proof only

because of the elimination of F− .

Let E−PbZc+ be the fully extensional variant of system PbZc+ , obtained from

it by removing all implicit ∆ axioms, by adding the full compatibility axiom

“x =σ y → B(x)→ B(y) ” and by restricting the choice axioms AxACnc/AxAC
cl
nc

to those instances with dg(x) + dg(y) ≤ 1, and moreover such that:

a) If dg(x) = 1 then the pure-ncm radical Bnc(x, y) shall actually be an

(ncm-)quantifier-free formula.

b) If dg(x) = 0 then all the (ncm-)quantified variables of Bnc shall have

type degree at most 1 (hence all variables of AxACnc/AxAC
cl
nc shall have

type degree at most 1, since in this case also dg(Y ) = 0 is enforced).



3.2. A polynomial bounded Arithmetic/Analysis due to Kohlenbach 117

Then, by means of the ncm-adapted (see Section 2.4) procedure for the

elimination of extensionality, originally due to Luckhardt [89], we obtain the

following adaptation of Theorem 3.3 of [71]:

Corollary 3.25 In Theorem 3.23, the premise (3.5) can be replaced by

E−PbZc+ + F− ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)

where besides dg(γ) ≤ 2 we also restrict dg(δ) ≤ 1. Just like in Corollary 3.24,

the verifying proof (3.6) is in PbZ+v instead of PbZv . Here as well, the exponen-

tial functional constants Exp and Prod are only needed in the verifying proof

because of the elimination of F− .

Of course, the elimination of F− in Corollaries 3.24 and 3.25 can be obtained

as a particular case of the (ncm-adapted, see Section 2.4) more general “ε-

arithmetization” technique developed by Kohlenbach initially in [63] and later

in [68, 69] (see also [62] for a survey). Basically all the main results of Section

2.4, i.e., Theorem 2.35, Corollary 2.41, Proposition 2.40 and Theorem 2.46

can be rewritten in the polynomial-bound context by replacing WeZ∃,nc,c+m with

PbZc+ , Z∃,nc,c+m with E−PbZc+ , and then their corresponding WeZ∃m with PbZ+v .

Remark 3.26 (Kohlenbach,[69]) For many ineffective theorems ∆ of the

Analysis, the corresponding ε-weakenings ∆ε are (constructively) provable in

(subsystems of) WeZ∃m . E.g., for ∆ ≡ F− one has PbZ+v ` (F−)ε , see [68].

It is now clear how Corollaries 3.24 and 3.25 can be obtained as immediate

consequences of the polynomial-bound adapted Corollary 2.41 and respectively

Theorem 2.46. Even more important in the ncm context is that instead of F−

we can here also use the ncm variant Fnc of the stronger axiom F, defined by

(3.13) in the next subsection 3.2.2, see it also for the definition of Fnc .

3.2.2 Verification in the full set-theoretic type structure

Let ∆ ≡ { ∀xρ ∃y ≤σ rx ∀zτ Bnc(x, y, z)} be as in Definition 3.22, hence

possibly including formulas which may contain ncm quantifiers. From here

and to the end of this section, the sentences in ∆ are restricted to formulas in

which all positively (ncm-)universal and negatively (ncm-)existential quantified

variables have type degree at most 2 and also all positively (ncm-)existential

and negatively (ncm-)universal quantified variables have type degree at most 1.

Hence in particular, the regularly universal quantified variables xρ and zτ have



118 Feasible systems of Arithmetic and Analysis

the restriction dg(ρ), dg(τ) ≤ 2, and also the regularly existential quantified

variable yσ has the restriction dg(σ) ≤ 1. We further assume that Sω |= ∆reg ,

where ∆reg ≡ { ∀xρ ∃y ≤σ rx ∀zτ B(x, y, z)} is the direct regular-quantifier

translation of ∆ (here B is the usual full regular-quantifier translation of Bnc).

Let also ∆′ be another set of sentences like in Definition 3.22, but moreover

such thatMω |= ∆′reg , where ∆′reg is the direct regular-quantifier translation of

∆′ , as expected (no type degree restriction). From here on to the end of this

section, system PbZc+ will no longer contain any implicit ∆-kind of axiom set.

Finally, in this section we settle that the Π-set of axioms of PbZc+ (recall

Definition 3.22) consists of all possible sentences of the Π-shape (see Con-

ventions 1.66 and 1.57) for which the direct regular-quantifier correspondents

from Π̃ are true (in the sense of the full ZFC set-theoretic type structure

Sω , i.e., Sω |= Π̃) and which moreover fulfill the following restriction3 on the

type degrees of their variables4: all positively (ncm-)universal and negatively

ncm-existential quantified variables have type degree at most 2 and also all po-

sitively ncm-existential and negatively ncm-universal quantified variables have

type degree at most 1. Notice that this limitation is consistent with Kohlen-

bach’s restriction from [68], where the variables of the (there) purely universal

Π-sentences of GnA
ω are forced to have type degree ≤ 2.

If instead of a syntactic verifying proof, a simple guarantee that the verifi-

cation holds in the full set-theoretic type structure Sω suffices, then the follow-

ing extraction theorems can be established in the spirit of Theorem 4.9 of [68].

Theorem 3.27 Let A1(x
ιι, kι, yδ, zγ) be a quasi-purely-existential PbZ for-

mula with x, k, y, z all its free variables, i.e., A1 ≡ ∃vAnc(xιι, kι, yδ, zγ, vα),

and moreover such that dg(δ) ≤ 1, dg(γ), dg(α) ≤ 2 and further all positi-

vely ncm-universal and negatively ncm-existential quantified variables of Anc

have type degree at most 1 and also all positively ncm-existential and nega-

tively ncm-universal quantified variables of Anc have type degree at most 2.

Let s(ιι)ιδ be a closed term of PbZ. Let ∆ and ∆′ be the explicit sets of axiom

sentences defined above (recall that Sω |= ∆reg and Mω |= ∆′reg). Then there

3Notice that this is the same restriction as for the explicit ∆ axiom set above. Since the

only regular quantifiers of a Π axiom are the leading positive universal ones, the restriction

is here somewhat simpler, with only one parenthesized “(ncm-)”.
4All these explicit type-degree limitations, although apparently artifficial due to their

complicated expression, are truly effectively needed for the extraction and soundness theo-

rems presented below.



3.2. A polynomial bounded Arithmetic/Analysis due to Kohlenbach 119

exists an algorithm which from a given proof

PbZc++∆+∆′ ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z) (3.9)

produces the syntactic polynomial p[xιι, kι, uιι, lι]ι ∈ Tm
-
(PbZ) such that

Sω |= ∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ λuιι, lι. p[xM , k, uM , l] Ã1(x, k, y, z) (3.10)

where u, l are (possibly empty) tuples determined by γ and Ã1(x, k, y, z) ≡
∃vA(x, k, y, z, v), i.e., it is the regular-quantifier translation of A1 . Hence if

γ ≡ ι then p is a polynomial bound for z in xM and k which is uniform w.r.t. y.

Proof: Just like in the proof of Theorem 3.23, one first algorithmically

obtains a verifying proof in PbZv+∆̃+∆̃′ of

∀xιι ∀kι ∀y ≤δ sxk ∃z ≤γ λuιι, lι. p[xM , k, uM , l] Ã1(x, k, y, z) (3.11)

Note that the sentences in both ∆̃ and ∆̃′ are all of the shape ∃Y ≤ρσ r∀xρ
∀zτB(x, Y x, z), where the formula B may use only regular quantifiers, which

are the direct regular correspondents of the ncm quantifiers which possibly

occur in the ∆-sentence of origin, namely ∀xρ∃y ≤σ rx∀zτ Bnc(x, y, z) . Let

AxBAC denote the following principle (Axiom) of Bounded Choice:

∀Rρ→σ [∀xρ∃y ≤σ RxC(x, y, R) → ∃Y ≤ρ→σ R∀xC(x, Y x,R) ]

where ρ and σ are arbitrary types and C is an arbitrary regular formula of PbZ,

see also Definition 3.2.1 of [68]. Thus for R := r and C(x, y, R) :≡ ∀zB(x, y, z)

one obtains that

∀xρ ∃y ≤σ rx ∀zτ B(x, y, z) + AxBAC ` ∃Y ≤ρσ r ∀xρ ∀zτ B(x, Y x, z)

Hence the whole ·̃-correspondent of a sentence in ∆ or ∆′ is a fully regular for-

mula, which can be obtained like in Theorems 3.2.2 - 4.9 of [68] from the direct

regular correspondent of the original sentence and AxBAC. In consequence,

∆reg + ∆′reg + AxBAC ` ∆̃ + ∆̃′

hence one can also write

PbZv + ∆reg + ∆′reg + AxBAC ` PbZv + ∆̃ + ∆̃′ (3.12)

Because of the restrictions on the types of the variables in ∆reg and the Π̃

implicitely included in PbZv , it follows that all these sentences are valid not



120 Feasible systems of Arithmetic and Analysis

only in Sω but also in Bezem’s type structure of all strongly majorizable func-

tionals Mω (using that M0 = S0 , M1 = S1 and M2 ( S2 , see [68]). Since

by assumption Mω is also a model for ∆′reg , it follows that Mω is generally

a model for PbZv+∆reg+∆′reg+AxBAC - see also [64, 68] for an indication to

the easy proof5 ofMω |= PbZv+AxBAC. Hence from (3.12) we have that (3.11)

is valid in Mω . Due to the restriction that the type degree of all positively

universal and negatively existential quantified variables of (3.11) is at most 1

(this includes dg(δ) ≤ 1) and also all positively existential and negatively uni-

versal quantified variables of (3.11) have type degree at most 2 (this includes

dg(γ), dg(α) ≤ 2) and using M0 = S0 , M1 = S1 and M2 ( S2 , in conse-

quence also Sω is a model of (3.11), which establishes the conclusion (3.10).

2

It is easy to check that the analytical axiom F− can be included into the

axiom set ∆′ of Theorem 3.27, since F− is a ∆-shape axiom and moreover

Mω |= F− (see Remark 4.17 of [68]). On the other hand, the stronger axiom

F :≡ ∀Φι(ιι)ι ∀xιιι ∃y ≤ιιι x ∀kι ∀z ≤ιι yk ( Φkz ≤ι Φk(yk) ) (3.13)

is not directly of ∆ shape, because of the type-ι negative universal quantifier

expanded from the extensional definition of z ≤ιι yk. Nevertheless, F can be

made into a ∆′ axiom by using an ncm-universal quantifier instead of the

regular universal quantifier which causes the trouble. Let

Fnc :≡ ∀Φι(ιι)ι ∀xιιι ∃y ≤ιιι x∀kι ∀zιι [∀lι (zl ≤ι ykl) → Φkz ≤ι Φk(yk) ]

be such an ncm-variant of F, which is easily seen to be a ∆-shape axiom.

Since moreover Mω |= F (this is Proposition 4.6 of [68]), which is the direct

regular-quantifier translation of Fnc , i.e., F ≡ (Fnc)reg , it follows that Fnc is

also a ∆′ axiom. Note that none of F− , Fnc is an explicit ∆ axiom (in the

sense of Theorem 3.27 above) because Sω 6|= F− and also Sω 6|= F ≡ (Fnc)reg
(see [68] for indications to the proofs of these).

One thus obtains, without using Luckhardt’s elimination-of-extensionality

procedure (in contrast to Theorem 4.9 of [68] which uses it), the following:

Corollary 3.28 (Admissibility at input of axioms F− and Fnc) Theorem

3.27 above holds as well in the variant when the hypothesis (3.9) is replaced by

PbZc+ + ∆ + F− + Fnc ` ∀xιι ∀kι ∀y ≤δ sxk ∃zγ A1(x, k, y, z)
5The only novelty here, relative to the corresponding proof in [68], appears to be the

inclusion of AxCA in PbZv . But both Sω and Mω are models of AxCA, which thus poses no

problem.



3.3. Our proposal for a feasible Arithmetic/Analysis system 121

3.3 Proposal for feasible Arithmetic/Analysis

We here combine PtZ and PbZ (and thus IPVω and G2A
ω) into a new system

for feasible Arithmetic and Analysis denoted PtbZ (a short for “poly-time

bounded” Z) which extends both systems and has the characteristic property

that the Skolem functions for its provable Π0
2 sentences can be majorized by

poly-time computable functions. Intuitively, the new system adds to PbZ the

ability to use binary integers in computations at ground type such that also

PtZ gets included into PtbZ. Kohlenbach’s original hierarchy (GnA
ω)n∈N only

uses Peano (i.e., unary) integers, and therefore the gap is big already between

G2A
ω , for which the majorants extracted by the (light) monotone Dialectica

are at most integer polynomials and G3A
ω , for which such majorants already

include elementary recursive functions. The new system PtbZ attempts to fit

into this gap by allowing the extraction of poly-time computable majorants,

see Remark 3.29 below. The use of binary integers allows the inclusion in

PtbZ of exponential functions with the exponent at most a polynomial in

the binary lengths of the arguments. System PtbZ will thus characterize the

class of poly-time computable majorants obtained by the (light) monotone

Dialectica interpretation.

Remark 3.29 The class of poly-time computable functions (N, . . . ,N) 7→ N
is strictly bigger than the class of polynomials (N, . . . ,N) 7→ N since it contains

the mapping n 7→ n|n|, where |n| is the length of n written in binary. This func-

tion grows strictly faster than any polynomial, but is poly-time computable.

System PtbZ has base types o for booleans and [ for positive integers,

where [ is a superset of both ι and [
-
. Hence all constants of PtZ and PbZ are

included in PtbZ together with their defining rewrite rules and axioms such

that type [ replaces type ι in PtZ signatures and type [
-

in PbZ signatures.

The only exception is the binary recursor R which needs to be adapted in

order to carry on the value on the new argument O. The type of Rτ therefore

becomes τ τ ([ [ τ) ([ τ) [ τ . Because of the presence of min in our system we

also find more suitable to adapt the defining rewrite rules of Rτ to the more

readable:

Rτ x0 x1 y
[ [ τ v Ow ↪→ x0w

Rτ x0 x1 y
[ [ τ v 1w ↪→ x1w

Rτ x
τ
0 x

τ
1 y v

[τ (S
0
u z[)w ↪→ minτ (t0[z] , v (S

0
u z)w)

Rτ x
τ
0 x

τ
1 y v

[τ (S
1
u z[)w ↪→ minτ (t1[z] , v (S

1
u z)w)



122 Feasible systems of Arithmetic and Analysis

– where we abbreviated by ti[z] :≡ y (S
i
u z) (Rτ x y v z w)w for i ∈ {0, 1} .

The following rewrite rules for type [ are also added:

S
0
u O ↪→ O S

1
u O ↪→ 1

Suc O ↪→ 1 Suc 1 ↪→ S
0
u 1

Suc (S
0
u z) ↪→ S

1
u z Suc (S

1
u z) ↪→ S

0
u (Suc z)

Pred 1 ↪→ O Suc (Pred (S
i
u z)) ↪→ S

i
u z

Pred (S
1
u z) ↪→ S

0
u z Pred (S

0
u z) ↪→ S

1
u (Pred z)

Pls(x, 1) ↪→ Sucx Pls(S
1
ux, S

1
u y) ↪→ S

0
u (Suc (Plsx y))

Pls(1, x) ↪→ Sucx Pls(S
1
ux, S

0
u y) ↪→ Suc (S

0
u (Plsx y))

Pls(S
0
ux, S

0
u y) ↪→ S

0
u (Plsx y) Pls(S

0
ux, S

1
u y) ↪→ Suc (S

0
u (Plsx y))

Tms(x, 1) ↪→ x Tms(S
1
ux, y) ↪→ Pls(S

0
u (Tmsx y) , y)

Tms(1, x) ↪→ x Tms(x, S
1
u y) ↪→ Pls(S

0
u (Tmsx y) , x)

Tms(S
0
ux, y) ↪→ S

0
u (Tmsx y) Tms(x, S

0
u y) ↪→ S

0
u (Tmsx y)

Remark 3.30 It follows that Suc O =[ 1 and Pred 1 =[ O are axioms of PtbZ.

The constant Suc of PtbZ is fully equivalent with the term Suc of PtZ defined

in Section 3.1. In contrast, there is a small difference between the PtbZ con-

stant Pred and the PtZ term Pred from Definition 3.4, where we had to set

Pred 1 =
[- 1 (since O was not available there).

Convention 3.31 From here on by PtZ we understand the subsystem of PtbZ

which corresponds to system PtZ defined in Section 3.1, but which includes

constants O, Pls and Tms as above and R is defined as above. These additions

do not alter6 the properties and results involving system PtZ from Section 3.1.

Remark 3.32 Notice that the inclusion in PtbZ of rewrite rules like

S
0
u (Suc z) ↪→ Suc (Suc (S

0
u z)) S

1
u (Suc z) ↪→ Suc (Suc (Suc (S

0
u z)))

6This is because Pls and Tms denote poly-time computable functions and therefore can

be expressed in the original PtZ. However this can be done only by means of the binary

recursor R, fact which we want to avoid in view of the subsequent development.



3.3. Our proposal for a feasible Arithmetic/Analysis system 123

would allow two normal forms for certain closed terms of type [ : a unary form

in terms of Suc, O and a binary form in terms of S
0
u, S

1
u, O, 1. Our interest is

to have a unique, binary normal form for all closed terms of type [, hence such

rules are banned from our system. Nevertheless,

S
0
u (Suc z) =[ Suc (Suc (S

0
u z)) S

1
u (Suc z) =[ Suc (Suc (Suc (S

0
u z)))

are immediately seen to be theorems of PtbZ (due to the reverse rewriting).

Definition 3.33 Let Tm
-
(PtbZ) denote the set of all terms of PtbZ which do

not contain Max, Sum, µb, R̃, Pred, min, Max and also not the binary recursor R.
We also denote by Tm

-
(PtZ) the set of all terms of PtZ built without R.

Proposition 3.34 To each term t[x1, . . . , xk] of PtbZ (with x1, . . . , xk all free

variables of t) one can syntactically associate a term t?[x1, . . . , xk] ∈ Tm
-
(PtbZ)

(with x1, . . . , xk all free variables of t?) such that:

` x?1 � x1 → . . .→ x?k � xk → t?[x?1, . . . , x
?
k] � t[x1, . . . , xk] (3.14)

Proof: Follows immediately from Proposition 3.15 once we provide majoriz-

ing terms in Tm
-
(PtbZ) for the PtZ arithmetic constants (see Definition 1.63)

included in PtbZ. Thus S
0
u, S

1
u, Pad, and Sma are monotone increasing on [ and

therefore they majorize themselves. Constants Hal and Cho are majorized by

the identity on [, respectively the left projection [× [ 7→ [. The selector Ifτ

with τ ≡ τ1 . . . τn[ is majorized by λpo, yτ , zτ , xτ11 , . . . , x
τn
n . Pls

[(yx)(zx), where

x ≡ x1, . . . , xn .At last, the binary recursorRτ is majorized by λx, y, v, z. S
1
u(vz).

2

Proposition 3.35 Let t ∈ Tm
-
(PtbZ) be a term of type ι such that all its free

variables are xσ11 , . . . , x
σk
k with dg(σi) ≤ 1 for i ∈ 1, k. Then the βη normal

form t̂[x1, . . . , xk] of t is an element of Tm
-
(PtbZ) built without λ-abstraction.

Proof: Identical to the proof of the corresponding Proposition 3.17 since

also the term constants allowed in Tm
-
(PtbZ) have type degree at most 1. 2

Remark 3.36 In fact, according to Convention 3.31, Tm
-
(PtbZ) ≡ Tm

-
(PtZ),

hence such terms denote poly-time computable functions. On the other hand

not all PtZ terms are comprised among Tm
-
(PtbZ), since, e.g., the binary re-

cursor Rτ is not comprised in Tm
-
(PtbZ). Also Tm

-
(PtbZ) is strictly bigger than

Tm
-
(PbZ) because Sma cannot be majorized by any term of Tm

-
(PbZ), see also

Remark 3.29. Otherwise, all terms of Tm
-
(PtbZ) which do not contain Sma can,

in fact, be majorized by terms of Tm
-
(PbZ).



124 Feasible systems of Arithmetic and Analysis

Theorem 3.37 (Poly-time bound synthesis by monotone Dialectica)

Theorems 3.23, 3.27 and Corollaries 3.24 3.25 hold also when PbZ is replaced

by PtbZ in the premise and correspondingly in the conclusion the demand for

a syntactic polynomial p is replaced by a demand for a syntactic poly-time

computable term of Tm
-
(PtZ).

Proof: Immediate in view of Propositions 3.34 and 3.35 and Remark 3.36.

2

Discussion

This chapter has developed the theory of the extraction of feasible, poly-

time computable programs from proofs by means of our adaptations of Gödel’s

Dialectica and of the Monotone Dialectica Interpretation. For this purpose

we combined two pre-existent and rather incomparable frameworks. The

crossbreeding of Ferreira’s base theory for feasible Analysis and Kohlenbach’s

polynomially bounded Analysis is exposed in the Natural Deduction frame-

work developed earlier in Chapter 1, including the ncm quantifiers. Whereas

Kohlenbach developed many concrete applications of the Monotone Dialec-

tica extraction of polynomial bounds, we have not yet found a situation where

the extraction of a poly-time computable program would be possible, in con-

trast to the mere polynomial bound synthesis. In theory such situations are

nonetheless quite possible and the development of concrete examples is not to

be excluded. We thus hope to have justified the novelty of our contribution to

the extraction of feasible programs from (classical) proofs by means of proof

interpretations.





Chapter 4

Comparison with other

techniques for extraction of

exact realizers. Case Studies

1 The proof-theoretic techniques for program extraction from (classical)

proofs can be viewed as either based on cut elimination or on proof inter-

pretations. In contrast to the hyper-exponential worst-case complexity of cut

elimination, proof interpretations provide practically feasible extraction algo-

rithms [55], mainly because of their modularity. The normalization of terms

(programs) extracted by proof interpretations would nevertheless equate the

worst-case complexity of the two aforementioned classes of techniques. The

separation of program extraction from cut elimination (normalization) by

means of proof interpretations appears nonetheless to be more useful in prac-

tice since the normalization of extracted programs is actually not needed in

important applications (see [62]). Also various optimizations of normalization

can be performed during the extraction process, see [52] for such an example.

Amidst proof interpretations, Kreisel’s modified realizability [84] and Gödel’s

functional Dialectica interpretation (D-interpretation) [44, 4] have a prominent

place. The two differ only with respect to the treatment of logical implica-

tion. In contrast to modified realizability, Gödel’s technique takes counterex-

amples into account and therefore directly extends to classical (arithmetical)

proofs via some negative translation. The extension goes further to (classi-

cal) analytical proofs [67]. Remarkable new theorems in Numerical Analysis

1This chapter is based on [49], but the text is extended and largely rephrased in view of

the new developments theresince, reported in [50] and the previous chapters here.

126



4.1. The BBS refined A-translation 127

have recently been obtained by means of (Kohlenbach’s monotone variant

of) functional interpretation (see [80, 62] for surveys of such results). Unlike

the D-interpretation, modified realizability requires an intermediate so-called

Friedman-Dragalin “A-translation” after a negative translation and the combi-

nation of the three interpretations is only known to handle classical proofs of

Π0
2-formulas. Various refinements of the latter combined proof interpretation

were produced in recent years [9, 22]. One purpose of such refinements was

the simplification of the translation in terms of complexity of the extracted

programs. On the other hand the extension of the class of proofs at input was

attempted.

4.1 The BBS refined A-translation

The Berger-Buchholz-Schwichtenberg (BBS for short) refined interpreta-

tion [9] succeeds in both directions. It can directly handle classical proofs of

formulas in a class which extends Π0
2 . The type complexity of the extracted

programs is significantly reduced in comparison with the unrefined combina-

tion of the three aforementioned translations. The BBS refined A-translation

[9] was implemented in the proof system MinLog [115] and has been success-

fully used to extract programs from classical proofs (see, e.g., [14]). However,

this technique cannot directly handle all proofs of Π0
2-formulas in the semi-

classical arithmetical system Z of Berger, Buchholz and Schwichtenberg [9], as

we explain in the sequel.

Definition 4.1 Let Z∃ be the extensional variant of system WeZ∃ from Chapter

1, obtained by adding to it the compatibility axiom x =σ y → B(x)→ B(y)

or the full extensionality axiom ∀zστ , xσ, yσ. x =σ y → zx =τ zy. Also let Z∃0
denote the minimal logic variant of Z∃ which includes only AxFLS, the so-called

boolean ex-falso-quodlibet schema at(ff)→ A but not the full, so-called logical

ex-falso ⊥ → A. The original BBS systems Z and Z0 from [9] can be obtained by

eliminating the strong existential quantifier ∃ Z∃ , respectively Z∃0 . Obviously,

systems Z∃ and Z can be obtained by simply adding an axiom ⊥ → at(ff) to

Z∃0 , respectively Z0 .

The BBS refined A-translation fails to directly interpret (in the sense of

Theorem 3.3 of [9]) the axiom ⊥ → at(ff), hence Theorem 3.3 of [9] would no

longer hold if Z0 were replaced by Z as input system. On the other hand, the

BBS technique can directly extract programs from (minimal arithmetical) Z0



128
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

proofs of formulas in a class which extends Π0
2 by means of so-called definite

and goal formulas. Namely from proofs Z0 `
−→
D → ∀y(

−→
G → ⊥)→ ⊥, where

−→
D

are definite and
−→
G are goal formulas (by their definition in [9],

−→
D and

−→
G do not

contain the strong, intuitionistic, ∃), the BBS refined A-translation syntactically

produces a proof Z `
−→
D → ∃y

−→
G. From this intuitionistic proof exact realizers

t for ∃y can be produced by means of Kreisel’s modified realizability which

yields syntactically a verifying proof Z `
−→
D →

−→
G [y ← t], also using the fact

that
−→
D and

−→
G are ∃-free.

An extension of this result is indicated in [8]. Both the strong ∃ and the ncm

quantifiers can be allowed in the proof translations mentioned above. They can

also be included in an extension of the definition of definite and goal formulas

so that from proofs Z∃0 `
−→
D → ∀y(

−→
G → ⊥)→ ⊥ the extended BBS refined A-

translation syntactically produces proofs Z∃ `
−→
D → ∃y

−→
G. Even with the new

definition, definite formulas D are ∃-negative and goal formulas G are ∃-
positive. Therefore, from the latter intuitionistic proof realizing terms t can be

read by modified realizability and a final verifying proof Z∃ `
−→
D →

−→
G [y ← t]

can be syntactically produced.

Since the input proof must be in minimal logic, not all classical proofs

of Π0
2 formulas can be directly treated by this technique. Despite the inclu-

sion of the strong ∃ in parts of the proof at input, by this extraction method

the existential quantifiers to be realized are weak (classical, ¬∀¬, usually de-

noted ∃cl, see [110]). Since modified realizability gives a simpler, more direct

treatment when definite and goal formulas do not include the strong ∃ and

also because full stability ¬¬A→ A is provable in Z for ∃-free formulas A, it

appears practically useful to first eliminate the use of ∃ in the fully classical

proofs (which use stability for formulas which include the strong ∃). This

can be achieved by simply replacing everywhere in the proof ∃ with ∃cl . Since

after this replacement Ax∃+ and Ax∃− become provable in Z it follows that

all fully classical proofs can actually be expressed in Z. However, the use of

⊥ → at(ff) is essential in the proof of ∃cl elimination and therefore not all

classical proofs can be expressed in Z0 .

The situation can be repaired by using a preprocessing reduced negative

translation which is exposed in [110]. This is based on the Gödel-Gentzen

negative translation of Z into Z0 which simply double negates all prime for-

mulas (see [110]). Since negations contribute negatively to the complexity of

extracted programs (by the increase of the type degree), it appears important

to reduce as many as possible such negations from the negative-translated



4.2. Berger’s hsh example 129

formula. Such an optimization is possible, e.g., because triple negations may

appear and these can be replaced by simple negations. In the end one ob-

tains that, after such a negative translation preprocessing, the BBS refined

A-translation can handle all PAω proofs of a class of formulas which extends

Π0
2 . See also [116] for an extension of the BBS refined A-translation to formulas

containing inductive definitions and also to extractions using so-called external

realizers for part of the lemmas used in the input proof.

4.1.1 Theoretical comparison with the BBS technique

In contrast to the BBS refined A-translation, the (light) (M)D-interpretation

directly interprets all WeZ-proofs P in the sense that it algorithmically synthe-

sizes a realizer (or majorant) for the existential quantifiers of the translated

conclusion formula of P .
System Z may be viewed as the Natural Deduction formulation of some

restriction of PAω to the language without the strong ∃. It can also be viewed

as a superset of HAω without the strong ∃. The design of system Z and of fun-

ctional interpretation in Natural Deduction style [50] trigger the elimination

of a preprocessing negative translation in the interpretation of this subsystem

of PAω. The treatment of full PAω under FI nevertheless requires a negative

translation preprocessing, just like BBS. The (rather big) difference is that FI

handles2 all proofs in (suitable versions of) PAω via this preprocessing.

In conclusion, all proofs which BBS handles directly, FI handles directly as

well. On the other hand, there exist proofs which FI handles directly but BBS

handles only via a negative translation.

4.2 Berger’s hsh example

An example of such is the proof of the statement that if h, s : N 7→ N
are two functions over the set of natural numbers and s has only strictly

positive values then h ◦ s ◦ h cannot be the identity (this case-study suggested

2In the sense that realizing terms can be produced for the negative translation of the

conclusion of the (arbitrary) PAω proof at input. This is the basis for the full modularity

feature of FI-based techniques which contrasts with the more limited modularity of the

techniques based on modified realizability (including the BBS technique). Here modularity

means the ability of making unrestricted use of Lemmas in the proof at input, see also

[55]. The techniques based on modified realizability can only use those Lemmas for which

a realizer can be manually (external) if not machine (automated, internal) provided [116].



130
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

by Berger got to be called hsh). More formally,

∀s, h [

A︷ ︸︸ ︷
(∀m s(m) 6= 0) −→ ∃n h(s(h(n))) 6= n ] (4.1)

We implemented a FI-extraction module in the proof system MinLog. We

compared the machine performance of the two program-extraction algorithms

on the hsh example. The solution found by machine via both BBS and FI is

unexpectedly clever. It relies on the fact that the conjunction of the following

three clauses cannot hold in the presence of the implicative assumption of

(4.1), which we denoted by A :

hs h(shh0)︸ ︷︷ ︸ = shh0 (4.2)

hsh(h0) = h0 (4.3)

hsh(0) = 0 (4.4)

More exactly, the following hold:

(4.2) ∧ (4.3) =⇒ hsh0 = shh0 (4.5)

(4.4) ∧ (4.5) =⇒ shh0 = 0 (4.6)

(4.6) ∧ A =⇒ ⊥ (4.7)

We conclude that (4.2) ∧ (4.3) ∧ (4.4) ∧ A =⇒ ⊥, hence

A =⇒ ¬(4.2) ∨ ¬(4.3) ∨ ¬(4.4) .

In contrast to BBS, FI directly provides the additional term h(h(0)) which

realizes the ∀m of (4.1). This gives more information on the reasoning pro-

cess employed for the extraction of the realizer for ∃n. Only the instance

m := h(h(0)) is needed in the verifying proof. Notice that s(h(h(0))) = 0 of

(4.6) is just a counterexample to A.

Since the FI algorithm is already known to have cubic time complexity

(see [55] for a detailed proof of this), it would be interesting to investigate the

computational complexity of BBS in order to have a quantitative comparison

as well between the two extraction techniques.

4.2.1 MinLog source code for Berger’s hsh example

(load "$MINLOGPATH/init.scm")



4.2. Berger’s hsh example 131

(mload "../lib/nat.scm")

(add-var-name "f" "g" "h" "s" (py "nat=>nat"))

(add-program-constant "c"

(py "(nat=>nat)=>(nat=>nat)=>nat=>nat") 1)

(add-computation-rule (pt "c g f n") (pt "g(f n)"))

(add-global-assumption "Compat"

(pf "allnc f,n,m.n=m -> f n=f m"))

(set-goal

(pf "all f,g.all m excl n g(f n)=m -> all m excl n g n=m"))

(search)

(save "Surj-Lemma")

(set-goal (pf "all f,g.(all n,m.g(f n)=g(f m) -> n=m)

-> all n,m.f n=f m -> n=m"))

(strip)

(use 1)

(use "Compat")

(use 2)

(save "Inj-Lemma")

(set-goal (pf "all f,g.(all m excl n g(f n)=m) ->

(all n,m.g n=g m -> n=m) ->

all m excl n f n=m"))

(search)

(save "Surj-Inj-Lemma")

;;; We now prove the hsh-Theorem

(set-goal

(pf "all s,h.(all n.s n=0 -> bot)

-> all n h(s(h n))=n -> bot"))

(assume "s" "h" "s-not-0" "hsh-is-id")

(cut (pf "all m excl n.h(s(h n))=m"))

(assume "hsh-surj")

(cut (pf "all m excl n.h(s n)=m"))

(assume "hs-surj")

(cut (pf "all n,m.h(s(h n))=h(s(h m)) -> n=m"))



132
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

(assume "hsh-inj")

(cut (pf "all n,m.s(h n)=s(h m) -> n=m"))

(assume "sh-inj")

(cut (pf "all n,m.h n=h m -> n=m"))

(assume "h-inj")

(cut (pf "all m excl n s n=m"))

(assume "s-surj")

(use-with "s-surj" (pt "0") "s-not-0")

(use "Surj-Inj-Lemma" (pt "h"))

(use "hs-surj")

(use "h-inj")

(use "Inj-Lemma" (pt "s"))

(use "sh-inj")

(use-with "Inj-Lemma" (pt "c s h") (pt "h") "?")

(use "hsh-inj")

(assume "n" "m")

(inst-with-to "hsh-is-id" (pt "n") "hshn-is-n")

(simp "hshn-is-n")

(inst-with-to "hsh-is-id" (pt "m") "hshn-is-m")

(simp "hshn-is-m")

(prop)

(use-with "Surj-Lemma" (pt "h") (pt "c h s") "?")

(use "hsh-surj")

(assume "m" "m-not-hsh-value")

(use "m-not-hsh-value" (pt "m"))

(use "hsh-is-id")

(save "hsh-Theorem")

(define hsh-proof (theorem-name-to-proof "hsh-Theorem"))

(mload "../FI/fiets.scm")

(define vatmp (time (FI-extracted-vatmpair hsh-proof)))

(define FI-tmtup (tmpair-to-tuple

(vatmpair-to-tmpair vatmp)))

(define FI-tmlst (tmtuple-to-tmlist FI-tmtup))

(define n1 (car FI-tmlst))

(define n2 (cadr FI-tmlst))

(define n-n1 (time (nt n1)))



4.2. Berger’s hsh example 133

(define n-n2 (time (nt n2)))

(term-to-string n-n1)

; "[f0,f1]f1(f1 0)"

; With renaming (f0 -> s and f1 -> h)

; "[s,h] h(h 0)"

(term-to-string n-n2)

;"[f0,f1][if (f1(f0(f1 0))=0)

; [if (f1(f0(f1(f0(f1(f1 0)))))=f0(f1(f1 0))) (f1 0)

; (f0(f1(f1 0)))]

; 0]"

; With renaming (f0 -> s and f1 -> h) and indentation

;"[s,h][if (h(s(h 0))=0)

; [if (h(s(h(s(h(h 0)))))=s(h(h 0))) (h 0)

; (s(h(h 0)))]

; 0]"

(define ggn-proof

(proof-to-reduced-goedel-gentzen-translation hsh-proof))

(define min-excl-proof (expand-thm gg-proof "Surj-Lemma"))

(mload "../modules/atr.scm")

(define et

(atr-min-excl-proof-to-structured-extracted-term

min-excl-proof))

; (term-to-string (nt et))

; "[f0,f1][if (f1(f0(f1(f1 0)))=f1 0)

; [if (f1(f0(f1(f0(f1(f1 0)))))=f0(f1(f1 0))) 0

; (f0(f1(f1 0)))]

; (f1 0)]"

; With renaming (f0 -> s and f1 -> h) and indentation

; [s,h][if (h(s(h(h 0)))=h 0)

; [if (h(s(h(s(h(h 0)))))=s(h(h 0)))

; 0

; (s(h(h 0)))]

; (h 0)]



134
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

4.3 The (semi-)classical Fibonacci proof

3 We here demonstrate program extraction by the Light Dialectica interpre-

tation on a minimal logic proof of the classical existence of Fibonacci numbers.

This semi-classical proof is available in MinLog’s library of examples. The term

of Gödel’s T extracted by the LD-interpretation is, after strong normalization,

exactly the usual recursive algorithm which defines the Fibonacci numbers (in

pairs). This outcome of the Light Dialectica meta-algorithm is much better

than the T-program extracted by means of the pure Gödel Dialectica inter-

pretation. This situation holds both for the original input classical Fibonacci

proof from [9] (human built) and for a “distorted” variant of this proof which

is generated by the unrestricted automated proof search of MinLog (see Foot-

note 14 in the sequel). On the other hand, a different outcome is yielded by

the refined A-translation technique of Berger, Buchholz and Schwichtenberg

on the two classical Fibonacci proofs. Thus the program obtained by Light

Dialectica is strictly less complex than the result obtained by means of the BBS

refined A-translation on the artificially distorted variant of the input proof, but

otherwise it is identical with the term yielded by Berger’s Kripke-style refined

A-translation. Although syntactically different, it also has the same computa-

tional complexity as the original program yielded by the refined A-translation

from the undistorted input classical Fibonacci proof.

4.3.1 Motivation for treatment of Fibonacci in MinLog

There has been quite some work in the last years in the field of program

extraction from classical proofs. Although strong mathematical results have

recently been obtained in the Proof Mining of classical analytical proofs (see,

e.g., [77, 62, 80, 88, 96]), the computer-implemented program extraction meta-

algorithms were able to produce only limited results, for rather small test-cases

and even then, the extracted program is not the optimal one.

Such a situation one partly encounters in the extraction of a rather un-

usual, distorted algorithm for the computation of Fibonacci numbers by means

of the Berger-Buchholz-Schwichtenberg (BBS) refined A-translation of [9]. The

term tBBS of Gödel’s T extracted via this BBS refined A-translation from an

artificially distorted4 variant of the MinLog minimal logic proof of the weak

3This section is mainly based on [53], from which only the exposition of Light Dialectica

was excerpted.
4This artificial distortion is due to the automated proof-search mechanism of MinLog,



4.3. The (semi-)classical Fibonacci proof 135

(classical) existence of the Fibonacci numbers, followed by Kreisel’s Modified

Realizability [84] and finally strongly normalized [10, 11] not only makes nec-

essarily use of a type-2 Gödel recursor (present also in the original extraction

from [9]), but also uses two times the corresponding type-2 functional, fact

which strictly increases its computational complexity. The program tBBS has

an unexpected exponential time complexity, see the end of Section 4.3.4. On

the other hand, the program extracted by the BBS technique from the original

classical Fibonacci proof outlined in [9] is nonetheless linear-time in the unary

representation of natural numbers, see [9] for full technical details.

The aforementioned type-2 recursor is R(ι→ι→ι)→ι , where the type level

(degree) of (ι→ ι→ ι)→ ι is 2. Here ι is the base type which denotes the set

of natural numbers N and Rρ is the denotation for the so-called “type-ρ Gödel

recursor”, which actually has the type ρ → (ι → ρ → ρ) → ι → ρ in Gödel’s

T5. This situation is quite unexpected since the usual recursive definition of

Fibonacci numbers (in pairs) can be expressed in Gödel’s T by means of a

type-0 Gödel recursor only, namely Rι×ι . Here σ × τ denotes the pairing of

types σ and τ . In fact such a T-term was actually extracted in MinLog [115]

by pure Modified Realizability, from the usual pure intuitionistic proof of the

strong (intuitionistic) existence of Fibonacci numbers, see [9]6.

The point of the endeavour of extracting programs from classical rather

than constructive or even purely intuitionistic proofs is that (semi-)classical

proofs are much easier and more direct to build, both by human brain and also

in the various computer-implemented proof-systems. It is therefore desirable

that the algorithms synthesized from classical proofs by means of the more

complex program extraction meta-algorithms7 are at least as good as those

yielded by the more common extraction techniques8 from the corresponding

constructive/purely intuitionistic proofs. When applied to the semi-classical

MinLog Fibonacci proof (by this we hereon mean the distorted variant obtained

by automated proof-search, present in [115, 48], and not the manual one,

originally introduced in [9]), this is not the case, neither for the BBS refined

relative to the more manually given input proof which was originally used in the classical

Fibonacci extraction reported in [9].
5See paper [9] for more such technical details.
6On the other hand, this linear - in the unary representation of natural numbers -

algorithm is outperformed by other logarithmic algorithms, see [110] for such an example.
7Here we think particularly (but not exclusively) at those from the Dialectica family (see

[97] for a nice unification work) and the Refined A-translation family.
8Basically variants of Kreisel’s Modified Realizability [84], which is a simpler but weaker

form of Gödel’s functional (Dialectica) interpretation [4, 44].



136
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

A-translation, nor for the pure Gödel Dialectica Interpretation, as we show

later in the sequel. A repair of this situation can be provided for the BBS

refined A-translation by eliminating the distortion from the proof at input9 or

by using its Kripke-style variant due to Berger in [8]10. The latter extraction

technique actually produces exactly the same program as our Light Dialectica

interpretation (originally introduced in [50], but see also Section 2.1 here for

a much larger and more unified exposition).

On the other hand, none of the monotone [67] or bounded [32] optimizations

of Gödel’s technique can handle such an exact realizer extraction problem (in

an efficient manner). It is the Light Dialectica interpretation (abbreviated LD-

interpretation) which gives the solution. The term of Gödel’s T extracted by

the LD-interpretation is, after strong normalization, exactly the usual recursive

algorithm which defines the Fibonacci numbers (in pairs).

4.3.2 The semi-classical Fibonacci proof in MinLog

MinLog is an interactive proof- and program-extraction system developed

by H. Schwichtenberg and members of the logic group at the University of Mu-

nich. It is based on first order Natural Deduction calculus and uses as primitive

minimal rather than classical or intuitionistic logic. See [48, 115] for full details.

Definition 4.2 (Fibonacci Numbers) The inductive definition is as usual

Base : F0 :≡ 0, F1 :≡ 1 Step : Fn+1 :≡Fn + Fn−1 for n ≥ 1, n ∈ N

The Fibonacci Numbers example was implemented in MinLog and it was

comparatively analysed in [9] by both pure Modified Realizability (from the

usual pure intuitionistic proof) and also by the BBS refined A-translation (from

a minimal logic proof of the weak, classical existence of Fibonacci Numbers;

we dub such proofs as “semi-classical”) followed by Modified Realizability.

9See [9, 110] or the end of Section 4.3.4 for a display of the original program that is

obtained by BBS from the undistorted classical Fibonacci proof, which is also of linear-time

complexity in the unary representation of the natural-number input. See also Footnote 14.
10Berger’s Kripke-style refined A-translation introduced in [8] nicely combines the opti-

mizing (in the sense of the efficiency of programs extracted from classical proofs) features

of both the BBS [9] and the Coquand-Hofmann [22] refined A-translations. It also further-

more adds the so-called uniform quantifiers, which are used to “label” and thus isolate

parts of the input proof which are meant not to have a computational content under such

a translation.



4.3. The (semi-)classical Fibonacci proof 137

The semi-classical Fibonacci proof in MinLog is a Natural Deduction proof

of ∀n∃clk G(n, k) – where ∃clk G(n, k) :≡ (∀k.G(n, k) → ⊥) → ⊥ – from

assumptions expressing that G is the graph of the Fibonacci function, i.e.,

G(0, 0) AND G(1, 1) AND ∀n, k, l. [G(n, k) ∧G(n+ 1, l)]→ G(n+ 2, k + l) .

The best source for reading and analysing this proof is the MinLog distribution

[48] (or [115]), particularly that this differs, due to the use of automated

proof-search, from the more manually given proof from Section 6 of [9]. See

also Footnote 14 for some hints on how these semi-classical proofs can be

constructed in MinLog. Notice that in the context of program extraction by

the Light Dialectica interpretation (shortly presented in Section 4.3.3 below)

the assumption on G is rather expressed as

G(0, 0) AND G(1, 1) AND ∀n, k, l. [G(n, k) ∧G(n+ 1, l)]→ G(n+ 2, k + l) ,

where ∀ is the universal quantifier without computational meaning, see below.

4.3.3 The light functional “Dialectica” interpretation

The “light” variant of Gödel’s functional “Dialectica” Interpretation was

introduced in [50] as an optimization for term-extraction of Gödel’s original

technique11 from [44]. The main feature of “Dialectica Light” is the elimi-

nation already at extraction time of a number of relevant (for the Dialectica

program extraction) Contractions which are identified as redundant and in

consequence are isolated by means of an adaptation of Berger’s quantifiers

without computational content12 (introduced in [8] as “uniform quantifiers”).

See Section 2.1 for full details on Light Dialectica.

Remark 4.3 Recall that Gödel’s functional “Dialectica” interpretation be-

comes relatively (far) more complicated at the moment when it has to face

computationally relevant contraction. In the Natural Deduction setting, con-

traction amounts to the discharging of at least two copies (from the same

parcel13) of an open assumption formula A during an Implication Introduc-

tion
[A] . . . /B

A→ B
. This is because, for the so-called “Dialectica-relevant” con-

tractions (see Definition 1.18), formula A becomes part of the (raw, i.e., not

11Paper [4] provides a nice survey in English which includes the extensions to full Analysis.
12In [50] we named these special existential and universal quantifiers “without (or non-)

computational meaning”, abbreviated ncm. We here continue to use our own terminology.
13In the sense of the terminology from [42]. This is the same notion as “assumption

variable” in [110].



138
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

yet normalized) realizing term. Therefore, the a priori (i.e., already at the

extraction stage) elimination of some of these D-relevant contractions, rather

than a posteriori (i.e., during the subsequent strong normalization process),

represents an important complexity improvement of the extracted program.

We exemplify our statement in the following Section 4.3.4.

4.3.4 A comparison of the three extraction techniques

It can be immediately seen, also from the machine benchmarks below, that

the program yielded by the Light Dialectica interpretation clearly outperforms

the algorithm given by the BBS refined A-translation14. The latter is at its

turn much more efficient than the term extracted by means of the pure Gödel

Dialectica interpretation, which contains an important quantity of redundant

information. All three extracted (by the three program-synthesis techniques)

terms are presented below in a human-processed adaptation of the raw MinLog

output. See [48] for the pure machine-extracted programs. We stress the fact

that the outcomes of the pure and the light Dialectica meta-algorithms would

remain the same even if the input classical Fibonacci proof would be the

original, undistorted one from [9]. Only the output of the BBS A-translation

would get better when using its original input, see Footnote 14. Our point

here is that if the user is unable or unwilling to optimize the input proof, then

it is the responsibility of the extraction technique to deal with such practically

very possible artificial situations and overcome the complexity loss.

It appears that the BBS refined A-translation is more directly dependent on

the shape of the input proof and hence its performance decreases with the arti-

ficial distortions. This is because the BBS interpretation is based on an initial

proof translation which literally includes the translation of the distortions.

The witness is subsequently literally read from such a translated proof by

Modified Realizability, which cannot avoid to preserve the distortions. In the

case of the distorted classical Fibonacci proof, the redundant use twice of the

(basically the induction hypothesis) assumption ∃clk, l. G(n, k) ∧ G(n + 1, l)

during the automated search for a proof of the induction step will yield the

double appearance of the type-2 functional H in the BBS-extracted program,

14 This situation holds only for the more artificial input proof. When its distortions

are eliminated by using a (search 1) restricted proof-search command instead of just

(search), the run-time performance of the two extracted programs is quite equal. Here

(search 1) means that the open assumptions may only be used at most once in the wanted

searched proof. See [110] and the MinLog manual [115] for more details.



4.3. The (semi-)classical Fibonacci proof 139

see it below at 2). On the contrary, for both the D-interpretation and the

LD-interpretation, the artificial distortion is harmless w.r.t. already the raw

extracted program. Only a purely logical contraction, irrelevant already for

the pure Dialectica, over the open assumption ∃clk, l. G(n, k) ∧ G(n + 1, l)

will occur. This contraction has no computational content anyway, already

in the case of the D-interpretation, because its formula translation has an

empty universal side, see Definitions 2.1 and 1.18. For the LD-interpretation

the situation is identical, without any use of the special quantifiers without

computational meaning. In fact not only this extra contraction, but the whole

redundant proof-branch produced by the artificial distortion is without com-

putational content under both the D-interpretation and the LD-interpretation.

This is why the raw programs extracted by the two techniques are unchanged

by the redundant distortion in the proof at input, i.e., regardless of whether

the afore-mentioned assumption had been used once or twice, etc. Such an

invariant situation was not possible for the BBS refined A-translation because

this extraction technique lacks the full modularity of the Dialectica interpre-

tations (see also [49] for an extended comment on this issue) and is more

proof-dependent (as explained above).

We now attempt a theoretical explanation of why the program extracted

by the LD-interpretation outperforms so neatly the one given by the pure D-

interpretation. As hinted by Remark 4.3, the difference in performance is

yielded by (the elimination of) a computationally D-redundant contraction.

This contraction is given by the fact that the assumption u : ∀n, k, l. [G(n, k)∧
G(n + 1, l)] → G(n + 2, k + l) is open in the proof of the induction step of

the classical Fibonacci proof. The contraction is inserted in the proof to be

mined independently of the number of open occurrences of u in the original

proof at input. The mechanism of the Dialectica interpretation in Natural

Deduction will actually double the number of open occurrences of u, hence a

logical contraction appears anyway. See Section 1.3.5 for the technical details

of such a contraction yielded by the simulation of the general Induction Rule

(and thus also of the Induction Axiom) in terms of the more particular rule

of induction restricted to assumption-less base and step input proofs. Now,

what happens as a consequence of our “light” optimization? Because of the

use of the quantifier without computational meaning ∀ instead of the regular ∀
in u, this open assumption looses its Dialectica computational content, which

existed only due to the presence of (the three) regular ∀ in a positive position.

See Section 2.1 for this terminology and full technical details. The number



140
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

of open occurrences (in the original input proof) of the computationally D-

redundant assumption u becomes irrelevant since this assumption is ignored

anyway by the program extraction via the Light Dialectica Interpretation.

The subsequent computer benchmarks were performed on a DELL laptop

(model X1, hence powered by an Intel Centrino CPU) running the Windows

XP Prof. operating system. We used the more special MinLog distribution

[48], which is not yet integrated with the official MinLog [115]. As Scheme

interpreter we used the Petite Chez Scheme 7.0a, see [91]. The quantitative

measures of computing time and space overhead were obtained by means of

the Scheme “time” procedure.

1) The (MinLog, adapted) outcome of pure Gödel’s Dialectica interpretation:

..........................

(add-var-name "n" "m" (py "nat"))

(add-var-name "G" (py "nat=>nat=>boole"))

(add-var-name "H" (py "(nat@@(nat@@nat)@@(nat@@nat))"))

..........................

> t_{PDI} == [G,n] left right

((Rec nat=>nat@@(nat@@nat)@@(nat@@nat))((0@0@0)@0@1)

([m,H] [if

[if (G left left H left right left H)

[if (G (Succ left left H) right right left H)

(G (Succ(Succ left left H))

(left right left H + right right left H))

True]

True]

(m @ right H) (left H)] @ right right H@

left right H + right right H)

n)

> (time (nt (mk-term-in-app-form t_{PDI} (pt "G") (pt "5"))))

314 collections

6031 ms elapsed cpu time, including 676 ms collecting

6110 ms elapsed real time, including 687 ms collecting

341280176 bytes allocated, including 337674848 bytes reclaimed

"5"

> (time (nt (make-term-in-app-form t_{PDI} (pt "G") (pt "6"))))

2700 collections

56750 ms elapsed cpu time, including 9676 ms collecting



4.3. The (semi-)classical Fibonacci proof 141

58375 ms elapsed real time, including 10008 ms collecting

2937460672 bytes allocated, including 2933419728 bytes reclaimed

"8"

2) The outcome of the BBS refined A-translation (MinLog output, adapted):

..........................

(add-var-name "i" "j" "k" "l" "m" "n" (py "nat=>nat=>nat"))

(add-var-name "f" (py "nat=>nat=>nat"))

(add-var-name "H" (py "(nat=>nat=>nat)=>nat"))

..........................

> > > t_{BBS} == "[k](Rec nat=>(nat=>nat=>nat)=>nat)

([f] f 0 1) ([l,H,f] H ([i,j] H ([n,m] f m (n+m))))

k ([n,m] n)"

> (time (nt (make-term-in-app-form t_{BBS} (pt "12"))))

39 collections

813 ms elapsed cpu time, including 109 ms collecting

813 ms elapsed real time, including 107 ms collecting

42919528 bytes allocated, including 39266296 bytes reclaimed

"144"

> (time (nt (make-term-in-app-form t_{BBS} (pt "15"))))

321 collections

7094 ms elapsed cpu time, including 1153 ms collecting

7203 ms elapsed real time, including 1246 ms collecting

348911096 bytes allocated, including 326154920 bytes reclaimed

"610"

3) The outcome of Light Dialectica interpretation (MinLog output, adapted):

..........................

(add-var-name "n" "m" (py "nat"))

(add-var-name "G" (py "nat=>nat=>boole"))

(add-var-name "H" (py "(nat@@nat)"))

..........................

> t_{LDI} == "[G,n] left ((Rec nat=>nat@@nat) (0@1)

([m,H] right H @ left H + right H) n)"

> (time (nt (mk-term-in-app-form t_{LDI} (pt "G") (pt "15"))))

6 collections

125 ms elapsed cpu time, including 0 ms collecting



142
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

140 ms elapsed real time, including 0 ms collecting

6802576 bytes allocated, including 6383624 bytes reclaimed

"610"

> (time (nt (mk-term-in-app-form t_{LDI} (pt "G") (pt "20"))))

68 collections

1343 ms elapsed cpu time, including 62 ms collecting

1344 ms elapsed real time, including 63 ms collecting

73584536 bytes allocated, including 71466424 bytes reclaimed

"6765"

> (time (nt (mk-term-in-app-form t_{LDI} (pt "G") (pt "25"))))

750 collections

16219 ms elapsed cpu time, including 2279 ms collecting

16657 ms elapsed real time, including 2331 ms collecting

816525224 bytes allocated, including 803991296 bytes reclaimed

"75025"

Notice that the above concrete quantitative measurements of time and

space overhead correspond to the distorted classical Fibonacci proof. For

both Dialectica interpretation and the LD-interpretation they would be the

same also for the original input proof from [9], or the proof obtained by lim-

ited automated search via (search 1) (instead of the unlimited (search)).

On the contrary, for the BBS refined A-translation the difference would be

rather big, since from the cleaner input proof a linear-time program is ob-

tained, with run-time performance fairly equal to that of the output of the

LD-interpretation technique (despite the difference of syntactic shape). The

program tBBS displayed above at 2) can be written as a Scheme [91] program

as follows:

(define (FiboBis n)

(fibo2 n (lambda (k l) k)))

(define (fibo2 n1 f)

(if (= n1 0) (f 0 1)

(fibo2 (- n1 1) (lambda (kk ll)

(fibo2 (- n1 1) (lambda (k l) (f l (+ k l))))))))

Recall that the algorithm originally obtained in [9] could be spelled in Scheme

as:

(define (Fibo n)



4.4. Conclusions and future work 143

(fibo1 n (lambda (k l) k)))

(define (fibo1 n1 f)

(if (= n1 0) (f 0 1)

(fibo1 (- n1 1) (lambda (k l) (f l (+ k l))))))

We immediately figure out that the price to pay for the distortion in the input

proof is rather big when using the BBS technique. The algorithm FiboBis is

exponential in n because the call of fibo2 on n1 induces two recursive calls

of fibo2 on n1-1.

4.4 Conclusions and future work

More practical examples should be found for the application of the “light”

optimization of Gödel’s Dialectica interpretation. A negative result exists for

the case of the MinLog-implemented semi-classical proof of Dickson’s Lemma

(see [14]). Here three nested Inductions give rise to three Contractions which

are thus all three included in the extracted term(s), within the triply nested

recursion. It is hence immediate to figure out that such a program would be

very complex. Unfortunately, the Light Dialectica cannot repair this situation.

4.5 The integer square root example

This example is part of MinLog’s library as an(other) small case-study

for program-extraction from classical proofs by the BBS refined A-translation.

It was first described in [13]. The problem is to extract an algorithm for the

computation of the greatest k ∈ N such that k2 ≤ n, for the given input n ∈ N.
Hence n < (k + 1)2 , and thus k is the so-called “integer part” of the square

root of n, since k ≤
√
n < k + 1.

The problem is more interesting because the program synthesis is from a

minimal logic proof of the weak existence of k, hence a proof that it is not

true that for all k ∈ N, either n < k2 or (k + 1)2 ≤ n. In fact one consid-

ers a more general proof, where the integer square function is replaced by a

more generic unbounded function f : N → N for which f(0) = 0, where the

unboundedness of f is specified by a(nother) function g : N → N for which

∀n ∈ N . n < f(g(n)), i.e., g witnesses for the unboundedness of f . Here is

the MinLog code for building such a proof of the weak existence of k, given

f , g and n :



144
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

(load "c:/minlog/init.scm")

(mload "../lib/nat.scm")

(add-var-name "f" "g" (py "nat=>nat"))

(set-goal (pf "all f,g,n. (all n. n < f 0 -> bot) ->

all n n < f(g n) ->

excl k. (n < f k -> bot) ! n < f(k+1)"))

(assume "f" "g" "n" 1 2 3)

(cut (pf "all k. n < f k -> bot"))

(search)

(ind)

(search)

(search)

(save "Square-Root-Theorem")

The proof is quite simple and apparently harmless, except that the induction

step is proved via the uncancelled assumption

∀k. (n < fk → ⊥) → n < f(Suck) → ⊥ (4.8)

which triggers a computationally relevant contraction over such formula in

the simulation in terms of IR . Unfortunately this contraction cannot be elim-

inated by means of the ncm quantifiers, in the sense that the ∀ in (4.8) cannot

be replaced by ∀. Nonetheless a purely cosmetic use of the ncm quantifiers can

still improve the layout of the extracted program. One thus changes the input

proof to

(set-goal (pf "all f,g,n. (allnc n. n < f 0 -> bot) ->

allnc n n < f(g n) ->

excl k. (n < f k -> bot) ! n < f(k+1)"))

(assume "f" "g" "n" 1 2 3)

(cut (pf "all k. n < f k -> bot"))

(search)

(ind)

(search)

(search)

Thus the Light Dialectica will only produce one extracted term, instead of

three produced by the Pure Dialectica (two of which would be simply ignored).

The MinLog output of the application of Pure Dialectica is



4.5. The integer square root example 145

> (pp (nt tk))

[f,g,n2]

right((Rec nat=>nat@@nat) (n2@0)

([n3,(nat@@nat)_4]

left(nat@@nat)_4@

[if [if [if (n2 < f(right(nat@@nat)_4)) False True]

[if (n2 <f(Succ right(nat@@nat)_4)) False True]

True]

n3

(right(nat@@nat)_4)])

(g n2))

whereas the application of Light Dialectica yields the far more readable

> (pp tk)

[f,g,n2]

(Rec nat=>nat) 0

([n3,n4]

[if [if [if (n2 < f n4) False True]

[if (n2 < f(Succ n4)) False True] True]

n3

n4])

(g n2)

The computational complexity of the two programs is the same, yet the “light”

optimization of Dialectica helps to clean up some garbage from the extracted

program. This gets to look very close to the output of the BBS refined A-

translation (which seems to be even simpler):

> (pp et)

[f,g,n2] (Rec nat=>nat) 0

([n3,n4] [if (n2<f n3) n4 n3])

(g n2)

But this very small difference covers a bigger difference in the run-time per-

formance of the programs extracted via these two different techniques for the

mining of classical proofs. On the input n ≡ 127 the program extracted by Di-

alectica Light is ten times faster than the program yielded by the BBS refined



146
Comparison with other techniques for extraction of exact

realizers from non-intuitionistic proofs. Case Studies

A-translation. Just compare these raw figures, obtained in equal execution

conditions15:

================ Output by Dialectica Light ====================

> (time (nt (mk-term-in-app-form tk sqr (pt "Succ") (pt "127"))))

251 collections

6922 ms elapsed cpu time, including 189 ms collecting

7031 ms elapsed real time, including 186 ms collecting

273169608 bytes allocated, including 272116664 bytes reclaimed

"11"

================ Output by BBS A-translation ===================

> (time (nt (mk-term-in-app-form et sqr (pt "Succ") (pt "127"))))

2327 collections

65907 ms elapsed cpu time, including 2530 ms collecting

66250 ms elapsed real time, including 2531 ms collecting

2529576584 bytes allocated, including 2529612232 bytes reclaimed

"11"

Despite the unavoidably included Contraction, the program synthesized

Light Dialectica is simply more efficient than the one given by the BBS refined

A-translation. The explanation is immediate once we compare the operational

semantics of the two programs. The one yielded by the BBS A-translation

computes all the squares of k, downwards from n + 1 to the integer part of√
n. For n ≡ 127 this makes 127−11 = 116 operations. The program given by

light Dialectica makes the more clever choice of going bottom-up, computing

squares of k, upwards from 0 to the integer part of
√
n+ 1, hence only 12

such operations for n ≡ 127. It is true that the program will have to first go

recursively downwards from n to 0, hence consuming a lot of the stack-space,

but at the moment when it finds the answer, squares are computed repeatedly

just for k ≡ 11, which is much faster than the calculation of squares for bigger

numbers k ∈ 11, 127, particularly with unary integers. Hence there are a lot

of redundancies also in the Light Dialectica program, but these are only due

15These computer benchmarks were performed on a DELL laptop (model X1, hence pow-

ered by an Intel Centrino CPU) running the Windows XP Prof. operating system. Each

of the two runs had available all the system resources, no other user-applications were being

executed in parallel. We used the more special MinLog distribution [48], which is not yet

integrated with the official MinLog [115]. As Scheme interpreter we used the Petite Chez

Scheme 7.0a, see [91]. The quantitative measures of computing time and space overhead

were obtained by means of the Scheme “time” procedure.



4.5. The integer square root example 147

to the restrictions of our term language, in particular the very generic Gödel

recursor R, which imposes a top-down recursion for simulating the bottom-up

search. Nonetheless, it is immediately clear that the Light Dialectica program

is conceptually superior to the refined A-translation program.

Discussion

More practical examples should be found for the application of the “light”

optimization of Gödel’s Dialectica interpretation. A negative result exists for

the case of the MinLog-implemented semi-classical proof of Dickson’s Lemma

(see [14]). Here three nested Inductions give rise at three Contractions which

are thus all three included in the extracted term(s), within the triply nested

recursion. It is hence immediate to figure out that such a program would be

very complex. Unfortunately, the Light Dialectica cannot repair this situation.

In connection with Dickson’s Lemma we have to mention the recent impressive

practical result obtained by Raffalli [105]. He extracted a quite fast algorithm

from a “Mixed Logic” proof of the most general form of Dickson’s Lemma,

outperforming the results obtained by means of the BBS refined A-translation,

which only applies for limited cases (due to the lack of full polymorphism in

MinLog). Moreover, the BBS extracted programs are slower than Raffalli’s.

In the comparison of results for program extraction from classical proofs

one should also consider other such program-synthesis techniques. One such

promising method is Berger’s Kripke-style refined A-translation from [8], which

can be viewed as an upgrade of the BBS technique, which integrates both ncm

and “Kripke” optimizations and allows a limited form of quantification over

predicates. Another refined A-translation is due to Avigad [2, 3]. The refined

A-translation of Coquand and Hofmann [22] is already integrated into Berger’s,

which produces much cleaner output, see the Fibonacci example in [8].

Also the techniques of Parigot [101] and Krivine [86] should be analysed

in comparison with the more proof-theoretical methods. Such work is already

reported in [95].



Chapter 5

Synthesis of moduli of

uniform continuity by the

LMD-interpretation in MinLog

1 We extract on the computer a number of moduli of uniform continu-

ity for the first few elements of a sequence of closed terms t of Gödel’s T of

type (N→N)→(N→N). The generic solution may then be quickly inferred

by the human. The automated synthesis of such moduli proceeds from a proof

of the hereditarily extensional equality (≈) of t to itself, hence a proof in a

weakly extensional variant of Berger-Buchholz-Schwichtenberg’s system Z of

t ≈(N→N)→(N→N) t. We use an implementation on the machine, in Schwichten-

berg’s MinLog proof-system, of the light Monotone Dialectica interpretation,

introduced in Section 2.2. Non-computational-meaning quantifiers put aside,

this is a non-literal adaptation to Natural Deduction of Kohlenbach’s mono-

tone functional interpretation. Moreover, we here use a variant of the light

Monotone Dialectica which directly produces terms in NbE-normal form by

means of a recurrent partial NbE-normalization. Such partial evaluation is

strictly necessary in order to obtain programs on the machine in due time.

For the practical results described in this section the ncm quantifiers were not

actually used, but we suspect that they may reduce the running time of the

monotone extraction algorithm in this case. Nonetheless, they would not re-

ally impact on the normalized extracted term, which we obtain in a reasonable

amount of time anyway (less than a minute, for the crucial run).

1This section is mainly based on [54], but the text is here largely rephrased, also in view

of the new developments theresince.

148



149

In order to proceed with our exposition, please recall from Section 1.5 the

definition of our base monotonic arithmetical systems and from Section 2.2 the

actual definition of the LMD-interpretation. On the other hand, Kohlenbach’s

original Monotone Dialectica interpretation (abbreviated MD-interpretation) is

a recursive syntactic translation from proofs in WeZ∃+m to proofs in WeZ∃m , such

that the positive occurrences of the strong ∃ and the negative occurrences of ∀
in the proof’s conclusion formula get effectively (either Howard [57] or Bezem

[15]) majorized at each of the proof-recursion steps 2 by terms in Gödel’s T.

These majorizing terms are also called “the programs extracted by” the MDI

and (if only the extracted terms are wanted) this translation process is also

referred to as “Monotone Dialectica program-extraction”. Here WeZ∃+m is the

system WeZ∃,nc+m without the ncm quantifiers and their related restrictions.

Gödel’s Dialectica interpretation becomes far more complicated when it has

to face Contraction, which in Natural Deduction amounts to the discharging of

more than one copy of an uncancelled assumption in an Implication Introduc-

tion
[A] . . . /B

A→ B
. This is because, for the contractions which are relevant to

Dialectica3, the contraction formula A becomes4 part of the raw (not yet nor-

malized) realizing term. A number of such D-relevant contraction formulas,

which would not be part of the executed finally strongly normalized extracted

term, can be eliminated already at the extraction stage, see [53] (or Section

4.3 here) for such an example. Unfortunately, such an a priori elimination

during extraction of some of the contractions (which we named “redundant”

in [53], see Remark 1.19 here) is not always possible, see also [53] for such a

negative example. The MD-interpretation simplifies the Dialectica treatment of

all non-redundant relevant contractions and therefore represents an important

complexity improvement of the extracted program whenever such “persistent”

contractions occur in the proof at input.

Even though in the application presented in this chapter we do not use the

optimization brought by the ncm quantifiers, we still develop another improve-

ment of the MD-interpretation, which shows to be very effective in the machine

2This is exactly the point of Kohlenbach’s MD-interpretation from [67], in contrast to his

precursor of the MDI from [63] which first extracts the effective Gödel’s Dialectica exact

realizers and subsequently majorizes them via the algorithms of either Howard or Bezem.
3Not all logical contractions are relevant for the Dialectica interpretations, see [53] for a

short account of this issue or Section 1.2 for full details.
4Via the boolean term associated (Definition 2.6) to the Dialectica-radical formula AD (a

quantifier-free formula) which is at its turn associated to the formula A via Definition 2.1.



150
Synthesis of moduli of uniform continuity by the
LMD-interpretation in the proof-system MinLog

implementation. We continue to name “light Monotone Dialectica” our vari-

ant, which still differs from Kohlenbach’s, even though the ncm quantifiers are

not used here. See Section 5.2 below for full details of this LMD-interpretation.

5.1 The minimal arithmetic HeExtEq proof in

the computer-system MinLog

We used the variant [48] of MinLog which includes the light and the mo-

notone Dialectica extraction modules. Except for this addition, our variant

does not really differ from the mainstream MinLog distribution [115]. Recall

that MinLog is based on a first order Natural Deduction calculus and uses as

primitive minimal rather than classical or intuitionistic logic.

The hereditarily-extensional-equality test-case (abbreviated HeExtEq) was

suggested by U. Kohlenbach as an interesting example for the application of

the Monotone Dialectica program extraction from proofs, see Chapter 8 of [62].

In fact it had been carried out at a theoretical level already in Chapter 5 of [70]

by means of the precursor of the Monotone Dialectica introduced in [63]. The

treatment in [62] is even more platonic, by means of a good number of meta-

theorems. We took the challenge to use a machine extraction in order to ana-

lyse on the computer a number of concrete instances of the HeExtEq example.

Definition 5.1 (Hereditarily extensional equality) As a parallel with the

majorizability relation (see Definition 1.61), the hereditarily extensional equal-

ity is defined over the T type structure by

x ≈ι y :≡ x =ι y

x ≈ρτ y :≡ ∀zρ1 , z
ρ
2 (z1 ≈ρ z2 → xz1 ≈τ yz2) .

Recall that our equality is extensional, hence defined by (σ ≡ σ1 . . . σnι) :

x =ι y :≡ at(= xy)

x =σ y :≡ ∀zσ11 . . . zσnn (xz1 . . . zn =ι yz1 . . . zn) ,

where = is the usual equality boolean function on N× N. It is immediate that

x =ρτ y ≡ ∀zρ(xz =τ yz).

Definition 5.2 (Minimal Arithmetic) We denote by WeZmin the system

WeZ∃ without the strong ∃ and also without the Ex-Falso-Quodlibet axiom

⊥ → F , hence with an underlying Minimal Logic (in the sense of [59]) sub-

structure.



5.1. The minimal arithmetic HeExtEq proof in the
computer-system MinLog 151

Proposition 5.3 ([70] - 5.13 or [62] - 8.17 , adapted)

Let tρ be a closed term of Gödel’s T. Then WeZmin ` t ≈ρ t .

Proof: By induction on the combinatorial structure of t, since closed terms of

Gödel’s T can be expressed as built by application only (i.e., without lambda-

abstraction) from 0, Suc, Gödel’s recursor R and combinators Σ and Π. See

Proposition 1.53 for the translation from lambda-terms to combinatorial terms

which is inspired by Lemma 2.6 of [70]. 2

Corollary 5.4 ([70, 62] adapted) Let t(ι→ι)→(ι→ι) be a closed T-term. Since

WeZmin ` ∀xι→ι, yι→ι [x =ι→ι y ↔ x ≈ι→ι y ]

it immediately follows that

WeZmin ` ∀xι→ι, yι→ι [x =ι→ι y → t(x) =ι→ι t(y) ] .

Proposition 5.5 ([70] - 5.15 or [62] - 8.19 , adapted) Let t(ι→ι)→(ι→ι)

be a closed term of Gödel’s T. Then t is uniformly continuous on every closed

interval By :≡ {xι→ι | ∀zι. y(z) �ι x(z)} with a modulus of uniform continuity

which is effectively synthesizable (uniformly in yι→ι) as a closed term t̃(y)ι→ι

of T, i.e., one can extract (by LMD-interpretation) a closed T-term t̃ (ι→ι)→(ι→ι)

such that:

WeZmin ` ∀y ∀x1, x2 ∈ By ∀kι [

t̃(y)(k)∧
i=0

x1(i) =ι x2(i) →
k∧
j=0

t(x1)(j) =ι t(x2)(j) ]

Proof: Straightforward from Corollary 5.4 and Corollary 2.14, in our majo-

rant extraction “light” setting. See also [70, 62] for details (in the Hilbert-style

setting) of the proof originally introduced in [64]. 2

The HeExtEq example was implemented in MinLog [48] in the sense that a

minimal arithmetic MinLog proof of

∀xι→ι, yι→ι [x =ι→ι y → t(x) =ι→ι t(y) ]

is mechanically generated for each particular T-term t(ι→ι)→(ι→ι) by a Scheme

[91] procedure which takes as argument such a concrete MinLog T-term t.



152
Synthesis of moduli of uniform continuity by the
LMD-interpretation in the proof-system MinLog

5.2 The MinLog machine majorant extraction

Our approach for the MinLog extraction (theoretically described by Propo-

sition 5.5) of the generic modulus of uniform continuity t̃, given the concrete

MinLog term t, differs from Kohlenbach’s original Monotone Dialectica from

[67] not only by the Natural Deduction formulation but also by allowing free

variables in the extracted pre-majorants. We thus combine those features of

the pre-existing versions due to Kohlenbach5 which turn out to be useful on the

machine. One extra particularity of this new “light” MD-interpretation is the

production of terms in NbE-normal form. In general, the normal form of a term

may show to be (much) bigger than its more compact representation by means

of lambda-abstractions. But on the other hand normalization may eliminate

many redundant parts of the lambda-terms. Our practical experience with

the automated, machine program-extraction, shows that the latter situation

appears more often in our experiments, in particular for the HeExtEq case.

The key features of this novel form of MD-interpretation are the following:

1. The terms extracted at each step of the recursion over the input proof

structure are neither exact realizers, nor majorants, but pre-majorants

(i.e. their lambda-closures are true majorants)

2. An NbE-normalization (see [12, 10, 11] for the original NbE) of such ex-

tracted pre-majorants is carried out for optimization purposes after the

proof mining of the conclusion at each Implication Elimination (aka

Modus Ponens) application. This recurrent form of partial normaliza-

tion turns out to bring a huge improvement w.r.t. the one single final

call-by-value NbE normalization process in situations of long sequences of

nested Modus Ponens. We named this technique6 “Normalization dur-

ing Extraction” (abbreviated “NdE”), see [52] for a short account. The

HeExtEq proof (described in Section 5.1 above) does actually contain

quite long sequences of nested Modus Ponens.

3. The final such extracted pre-majorant is NbE-normalized. Let t[x1, x2, j]

be this pre-majorant (in normal form). Then the searched modulus of

5We distinguish three such variants of the Monotone Dialectica interpretation, which

were introduced in (chronologically ordered) [63], [67] and finally [68]. See also Zucker’s

chapter VI in [122], particularly its sections 8 . 3 - 6 , for a raw, unformalized and quite

primitive form of MD-interpretation.
6Which is a recurrent form of Partial Evaluation. See the volume [23] for accounts of

the partial evaluation programming methodology.



5.3. Machine results for the HeExtEq case-study 153

uniform continuity is t̃ :≡ λy, k. t[yM , yM , k], where the type-2 functional

·M is defined in Proposition 2.19.

5.3 Machine results for the HeExtEq case-study

We used our light Monotone Dialectica MinLog extraction modules which

are available within the special7 MinLog distribution [48]. We applied the LMDI

extraction on the MinLog HeExtEq proof for the following concrete instances

of the term t:

The simple sum: f, k 7→ f(0) + . . .+ f(k) .

The double sum: f, k 7→ f(f(0)) + . . .+ f(f(k)) .

The triple sum: f, k 7→ f(f(f(0))) + . . .+ f(f(f(k))) .

In the case of the simple sum, the machine output is, as expected, the

identity function, regardless of the actual f , hence the functional f, k 7→ k .

Also for the double sum, the outcome is the expected one, namely

f, k 7→ max{k , f(0) , . . . , f(k)} .

On the contrary, for the triple sum, the mathematician needs to work a

good number of minutes to produce the following optimal result

f, k 7→ max{k , f(0) , f(1) , . . . , f(max{k , f(0) , f(1) , . . . , f(k)})} (5.1)

The machine produces in less than one minute an output which can be

isomorphically adapted for display as follows:

f, k 7→ max{k , f(0) , . . . , f(k) ,

max{f(0) , . . . , f(max{f(0) , . . . , f(k)})}}(5.2)

It is easy to notice that the machine-yielded expression (5.2) is immediately

equivalent to the more human expression (5.1). Note also that in the context

of a pointwise continuity demand, the optimal answer would be

f, g, k 7→ max{k , f(0) , f(1) , . . . , f(k) , max{f(f(0)) , f(f(1)) , . . . , f(f(k))}}
7Our Dialectica modules are for the moment not compatible with the official MinLog

distribution from [115].



154
Synthesis of moduli of uniform continuity by the
LMD-interpretation in the proof-system MinLog

which is strictly lower than the machine (or human) optimal output for the

case of uniform continuity. In fact, while first trying to solve by brain the triple

sum problem, we first erroneously thought that this were a modulus of uniform

continuity, which is not the case. We later produced (5.1) by simplifying the

machine outcome (5.2) and after some checks we realized the error. Hence we

could produce a correct answer only with the help of the computer extraction.

Notwithstanding, right now a pattern can be noticed by the human in the

solution of the HeExtEq problem for terms tl :≡ λf, k. f (l)(0) + . . .+ f (l)(k) ,

with f (l)(i) :≡ f(f . . . (f(i))) , where f appears l times on the right-hand side.

We write again the above moduli of uniform continuity for tl , with l := 1, 2, 3:

t̃1(f, k) ≡ k

t̃2(f, k) ≡ max{k, f(0), . . . , f(t̃1(f, k))}
t̃3(f, k) ≡ max{k, f(0), . . . , f(t̃2(f, k))}
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

We thus immediately infer the generic (recursive) solution for every l ∈ N :

t̃l+1(f, k) ≡ max{k, f(0), . . . , f(t̃l(f, k))}

The verification that t̃l is the optimal modulus of uniform continuity for tl is

now an easy exercise.

Discussion

More such MinLog extractions of moduli of uniform continuity for other

various concrete instances of the input term t can and ought to be per-

formed. Section 2.2 presents a full mathematical formalization of the light

MD-interpretation, which integrates the light optimization of Gödel’s Dialec-

tica from [50] with the optimization of the Monotone Dialectica from [54] (also

called “light”). We thus accomplished part of the research schedule outlined in

the “Conclusions and future work” section of [54]. We still need to see whether

some of the contractions of the HeExtEq proof can be completely eliminated.

Even if this would be the case, it would nevertheless not have any impact on

the already extracted program, but only on the extraction process, which is

already “quick enough”. Also a complete mathematical formulation of the

Normalization during Extraction (NdE) ought to be given as soon as possible.



5.3. Machine results for the HeExtEq case-study 155

MinLog source code and output for HeExtEq

MinLog source code for the Double Sum

(load "$MINLOGPATH/init.scm")

(mload "../lib/nat.scm")

(mload "../FI/pds.scm")

(mload "../FI/max.scm")

(mload "../FI/heeq/heeq-def.scm")

(av "g" (py "(nat=>nat)=>nat"))

(av "h" (py "(nat=>nat)=>nat=>nat"))

(define t0 (pt "[f,k] ((Rec nat=>nat) 0 ([n,m](f (f n))+m) k)"))

(define p1 (term-to-heeq-proof t0))

(make-max)

(mload "../FI/mon_fiets.scm")

(define vatmp (time (FI-extracted-vatmpair p1)))

(define untup (tmpair-to-tuple (vatmpair-to-tmpair vatmp)))

(define tmlst (tmtuple-to-tmlist untup))

(length tmlst)

(define raw_et (car tmlst))

(string-length (term-to-string raw_et))

(define size_and_depth (term-to-sad raw_et ))

(cdr size_and_depth)

(car size_and_depth)

(set! UNFOLDING-FLAG #t)

(define norm_et (time (nt raw_et)))

(define un_et (mk-term-in-app-form norm_et

(term-to-maj (pt "f1"))

(term-to-maj (pt "f2"))))

(define et (nt un_et))

(pp et)

(pp (time (nt (mk-term-in-app-form et (pt "5")))))

MinLog selected output for the Double Sum

(time (fi-extracted-vatmpair p1))



156
Synthesis of moduli of uniform continuity by the
LMD-interpretation in the proof-system MinLog

918 collections

53250 ms elapsed cpu time, including 3230 ms collecting

55219 ms elapsed real time, including 3341 ms collecting

997496240 bytes allocated, including 992936792 bytes reclaimed

> > > 1 > > 78282 > > 252 > 3911

> > (time (nt raw_et))

7 collections

265 ms elapsed cpu time, including 0 ms collecting

281 ms elapsed real time, including 0 ms collecting

7728760 bytes allocated, including 7433432 bytes reclaimed

> > > [n3] Max

left right((Rec nat=>nat@@(nat@@(nat@@nat)))(0@0@0@0)

([n4,(nat@@(nat@@(nat@@nat)))_5]

Max left(nat@@(nat@@(nat@@nat)))_5 n4@

Max left right(nat@@(nat@@(nat@@nat)))_5 n4@

Max left right right(nat@@(nat@@(nat@@nat)))_5

((Rec nat=>nat)0

([n6] NatPlus (Max

((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))

(Max((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))n6)(f1 n6)))

(f1(Max((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))n6)(f1 n6)))))

n4)@

Max right right right(nat@@(nat@@(nat@@nat)))_5

((Rec nat=>nat)0

([n6] NatPlus (Max

((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))

(Max((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))n6)(f2 n6)))

(f2(Max((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))n6)(f2 n6)))))

n4)) n3)

(Max

((Rec nat=>nat)0([n4,n5]Max n5(f2 n4))

left right((Rec nat=>nat@@(nat@@(nat@@nat)))(0@0@0@0)

([n4,(nat@@(nat@@(nat@@nat)))_5]

Max left(nat@@(nat@@(nat@@nat)))_5 n4@

Max left right(nat@@(nat@@(nat@@nat)))_5 n4@

Max left right right(nat@@(nat@@(nat@@nat)))_5

((Rec nat=>nat)0



5.3. Machine results for the HeExtEq case-study 157

([n6] NatPlus (Max

((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))

(Max((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))n6)(f1 n6)))

(f1(Max((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))n6)(f1 n6)))))

n4)@

Max right right right(nat@@(nat@@(nat@@nat)))_5

((Rec nat=>nat)0

([n6] NatPlus (Max

((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))

(Max((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))n6)(f2 n6)))

(f2(Max((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))n6)(f2 n6)))))

n4)) n3))

(f2

left right((Rec nat=>nat@@(nat@@(nat@@nat)))(0@0@0@0)

([n4,(nat@@(nat@@(nat@@nat)))_5]

Max left(nat@@(nat@@(nat@@nat)))_5 n4@

Max left right(nat@@(nat@@(nat@@nat)))_5 n4@

Max left right right(nat@@(nat@@(nat@@nat)))_5

((Rec nat=>nat)0

([n6] NatPlus (Max

((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))

(Max((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))n6)(f1 n6)))

(f1(Max((Rec nat=>nat)0([n8,n9]Max n9(f1 n8))n6)(f1 n6)))))

n4)@

Max right right right(nat@@(nat@@(nat@@nat)))_5

((Rec nat=>nat)0

([n6] NatPlus (Max

((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))

(Max((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))n6)(f2 n6)))

(f2(Max((Rec nat=>nat)0([n8,n9]Max n9(f2 n8))n6)(f2 n6)))))

n4)) n3)))

> (time (nt (mk-term-in-app-form et (pt "5"))))

47 collections

1515 ms elapsed cpu time, including 16 ms collecting

1546 ms elapsed real time, including 15 ms collecting

51104760 bytes allocated, including 50986624 bytes reclaimed

Max 4(Max(Max(Max(Max(f2 0)(f2 1))(f2 2))(f2 3))(f2 4))



Conclusions

We presented in this thesis both the theory and the practice of extracting

programs from (classical) arithmetical proofs by means of an optimization of

Gödel’s Dialectica interpretation and of its monotone variant due to Kohlen-

bach. The novel proof interpretation which we named “Dialectica Light”

completely eliminates in some cases the contractions from the input proof

which would otherwise be included in the pure Dialectica extracted terms and

therefore would be computationally redundant. This was achieved by means

of an adaptation of Berger’s non-computational (or “uniform”) quantifiers

(abbreviated ncm) to the Dialectica-extraction context. The addition of the

ncm quantifiers was much simpler in the case of the monotonic arithmetics

to which Kohlenbach’s majorant extraction by Monotone Dialectica normally

applies. Therefore, the new light monotone functional interpretation extends

much easier to majorant and bound extractions from fully classical proofs.

The concrete examples treated on the computer by means of the Light (Mo-

notone) Dialectica are quite promising in the cases where these new extraction

techniques truly apply. Also the theory of extracting poly-time computable

bounds by the LMD-interpretation is developed as an extension of Kohlenbach’s

framework for a polynomially bounded Analysis with elements from an older

poly-time framework due to Cook and Urquhart. Practical applications of

this theory are nonetheless still to be found.

In the end, the Appendix chapter presented a somewhat older joint work

with Ulrich Kohlenbach on the computational complexity of the Dialectica ex-

traction algorithms. The very low (worst-case cubic) complexity was obtained

for a presentation of Dialectica in Hilbert-style systems, but the result imme-

diately adapts to the Natural Deduction systems used in the main part of this

thesis. Our Natural Deduction framework for the Dialectica interpretation is

an improvement of Jørgensen’s historically first such presentation of Gödel’s

original extraction technique.

158





Bibliography

[1] W. Alexi. Extraction and verification of programs by analysis of formal proofs.

Theoretical Computer Science, 61:225–258, 1988. (p. 181.)

[2] J. Avigad. Formalizing forcing arguments in subsystems of second-order arith-

metic. Annals of Pure and Applied Logic, 82:165–191, 1996. (pp. 147, 181

and 236.)

[3] J. Avigad. Interpreting classical theories in constructive ones. The Journal

of Symbolic Logic, 65:1785–1812, 2000. (pp. 10, 11 and 147.)

[4] J. Avigad and S. Feferman. Gödel’s functional (‘Dialectica’) interpretation.

In S. Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic

and the Foundations of Mathematics, pages 337–405. Elsevier, 1998. (pp. 11,

16, 59, 76, 126, 135, 137, 179, 187, 225, 234, 235, 236 and 237.)

[5] F. Barbanera and S. Berardi. Extracting constructive content from classical

logic via control–like reductions. In M. Bezem and J. Groote, editors, Typed

Lambda Calculi and Applications, pages 45–59. LNCS Vol. 664, 1993. (p. 10.)

[6] J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on

Programming Languages and Systems, 7(1):113–136, January 1985. (p. 10.)

[7] A. Beckmann. Exact bounds for lengths of reductions in typed λ-calculus. J.

of Symbolic Logic, 66(3):1277–1285, 2001. (pp. 108, 113 and 114.)

[8] U. Berger. Uniform Heyting Arithmetic. Annals of Pure and Applied Logic,

133(1-3):125–148, 2005. Festschrift for H. Schwichtenbergs 60th birthday.

(pp. 11, 12, 13, 20, 21, 24, 27, 29, 49, 60, 128, 136, 137 and 147.)

[9] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extraction

from classical proofs. Annals of Pure and Applied Logic, 114:3–25, 2002.

(pp. 10, 11, 16, 17, 19, 20, 24, 29, 37, 41, 44, 127, 128, 134, 135, 136, 137,

138, 142, 180 and 181.)

160



Bibliography 161

[10] U. Berger, M. Eberl, and H. Schwichtenberg. Normalization by evaluation. In

B. Möller and J. Tucker, editors, Prospects for Hardware Foundations, volume

1546 of LNCS, pages 117–137. Springer Verlag, 1998. (pp. 135 and 152.)

[11] U. Berger, M. Eberl, and H. Schwichtenberg. Term rewriting for normalization

by evaluation. Information and Computation, 183(1):19–42, May 2003. Inter-

national Workshop on Implicit Computational Complexity (ICC’99). (pp. 135

and 152.)

[12] U. Berger and H. Schwichtenberg. An inverse of the evaluation functional

for typed λ-calculus. In R. Vemuri, editor, Proceedings 6’th Symposium on

Logic in Computer Science (LICS’91), pages 203–211. IEEE Computer Soci-

ety Press, Los Alamitos, 1991. (p. 152.)

[13] U. Berger and H. Schwichtenberg. Program extraction from classical proofs.

In D. Leivant, editor, Logic and Computational Complexity, International

Workshop LCC ’94, Indianapolis, IN, USA, October 1994, volume 960 of

LNCS, pages 77–97. Springer Verlag, 1995. (p. 143.)

[14] U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall algorithm

and Dickson’s lemma: Two examples of realistic program extraction. Journal

of Automated Reasoning, 26:205–221, 2001. (pp. 10, 127, 143 and 147.)

[15] M. Bezem. Strongly majorizable functionals of finite type: A model for bar-

recursion containing discontinuous functionals. J. Symb. Log., 50(3):652–660,

1985. (pp. 83 and 149.)

[16] J. Blanck and al., editors. Proceedings Fourth Workshop on Computability

and Complexity in Analysis (CCA 2000), volume 2064 of Springer LNCS.

Springer, 2001. (p. 165.)

[17] W. Burr. Functional interpretation of Aczel’s constructive set theory. Annals

of Pure and Applied Logic, 104:31–75, 2000. (p. 179.)

[18] S. Buss, editor. Handbook of Proof Theory, volume 137 of Studies in Logic

and the Foundations of Mathematics. Elsevier, 1998. (pp. 169 and 170.)

[19] R. L. Constable and C. Murthy. Finding computational content in classical

proofs. In G. Huet and G. Plotkin, editors, Logical Frameworks, pages 341–

362. Cambridge University Press, 1991. (p. 10.)

[20] S. Cook. Feasibly constructive proofs and the propositional calculus. In

Proceedings of the 7th ACM Symposium on the Theory of Computation, pages

83–97, 1975. (pp. 104, 108 and 109.)



162 Bibliography

[21] S. Cook and A. Urquhart. Functional interpretations of feasibly constructive

arithmetic. Annals of Pure and Applied Logic, 63:103–200, 1993. (pp. 13, 102,

104, 108, 109, 110, 113, 179, 181, 195 and 233.)

[22] T. Coquand and M. Hofmann. A new method for establishing conservativity

of classical systems over their intuitionistic version. Mathematical Structures

in Computer Science, 9(4):323–333, 1999. (pp. 10, 11, 127, 136, 147 and 180.)

[23] O. Danvy, R. Glück, and P. Thiemann, editors. Partial Evaluation. Dagstuhl

Castle, Germany, February 1996, volume 1110 of Lecture Notes in Computer

Science. Springer Verlag, 1996. (p. 152.)

[24] J. Diller and W. Nahm. Eine Variante zur Dialectica Interpretation der Heyt-

ing Arithmetik endlicher Typen. Arch. Mathem. Logik und Grundl., 16:49–66,

1974. (pp. 59, 102 and 187.)

[25] A. Dragalin. New kinds of realisability and the Markov rule. Dokl. Akad.

Nauk. SSSR, 251:534–537, 1980. In Russian, the English Translation is [26].

(pp. 11 and 180.)

[26] A. Dragalin. New kinds of realisability and the Markov rule. Soviet Math.

Dokl., 21:461–464, 1980. (p. 162.)

[27] S. Feferman. Theories of finite type related to mathematical practice. In [?],

pages 913–972. (pp. 179 and 233.)

[28] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory

of sequential control. Theoretical Computer Science, 52:205–237, 1987. (p. 10.)

[29] M. Felleisen and R. Hieb. The revised report on the syntactic theory of se-

quential control and state. Theoretical Computer Science, 102:235–271, 1992.

(p. 10.)

[30] A. Fernandes and F. Ferreira. Groundwork for Weak Analysis. The Journal

of Symbolic Logic, 67(2):557–578, 2002. (p. 104.)

[31] F. Ferreira. A feasible theory for analysis. The Journal of Symbolic Logic,

59(3):1001–1011, September 1994. (p. 103.)

[32] F. Ferreira and P. Oliva. Bounded functional interpretation. Annals of Pure

and Applied Logic, 135(1-3):73–112, September 2005. (pp. 11, 59, 61, 76, 103

and 136.)

[33] F. Ferreira and P. Oliva. Bounded functional interpretation and feasible anal-

ysis. Annals of Pure and Applied Logic, 145(2):115–129, 2007. (pp. 61, 103

and 104.)



Bibliography 163

[34] H. Friedman. Systems of second order arithmetic with restricted induction,

I, II (abstracts). The Journal of Symbolic Logic, 41:557–559, 1976. (p. 235.)

[35] H. Friedman. Classical and intuitionistically provably recursive functions. In

G. Müller and D. Scott, editors, Higher Set Theory, volume 669 of Lecture

Notes in Mathematics, pages 21–27. Springer Verlag, 1978. (pp. 11 and 180.)

[36] P. Gerhardy. Improved Complexity Analysis of Cut Elimination and Her-

brand’s Theorem. Master’s thesis, University of Aarhus, Department of Com-

puter Science, 2003. (p. 179.)

[37] P. Gerhardy. Refined Complexity Analysis of Cut Elimination. In M. Baaz

and J. Makovsky, editors, Proceedings of the 17th International Workshop

CSL 2003, volume 2803 of LNCS, pages 212–225. Springer-Verlag, Berlin,

2003. (p. 179.)

[38] P. Gerhardy. The role of quantifier alternations in Cut Elimination. Notre

Dame Journal of Formal Logic, 46(2):165–171, 2005. (p. 179.)

[39] P. Gerhardy and U. Kohlenbach. Extracting Herbrand disjunctions by functio-

nal interpretation. Archive for Mathematical Logic, 44:633–644, 2005. (p. 179.)

[40] P. Gerhardy and U. Kohlenbach. Strongly uniform bounds from semi-

constructive proofs. Annals of Pure and Applied Logic, 141:89–107, 2006.

(p. 59.)

[41] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans

l’arithmétique d’ordre supérior. PhD thesis, Université de Paris VII, 1972.

(p. 179.)

[42] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge Uni-

versity Press, 1989. (pp. 25, 137 and 173.)

[43] K. Gödel. Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse

eines Mathematischen Kolloquiums, 4:34–38, 1933. (pp. 83 and 224.)

[44] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Stand-

punktes. Dialectica, 12:280–287, 1958. (pp. 11, 58, 59, 76, 102, 126, 135, 137,

179, 182, 188, 197 and 233.)

[45] T. G. Griffin. A formulae–as–types notion of control. In Conference Record

of the Seventeenth Annual ACM Symposium on Principles of Programming

Languages, pages 47–58, 1990. (p. 10.)



164 Bibliography

[46] P. Hájek. Interpretability and fragments of arithmetic. In Arithmetic, proof

theory, and computational complexity (Prague, 1991), volume 23 of Oxford

Logic Guides, pages 185–196. Oxford Univ. Press, New York, 1993. (pp. 181

and 236.)

[47] S. Hayashi and H. Nakano. PX: A Computational Logic. MIT Press, 1988.

(p. 180.)

[48] M.-D. Hernest. The MinLog proof-system for Dialectica program-

extraction. Free software, with full code source and documentation @

http://www.brics.dk/̃ danher/MinLogForDialectica. (pp. 14, 29, 135, 136,

137, 138, 140, 146, 150, 151 and 153.)

[49] M.-D. Hernest. A comparison between two techniques of program extraction

from classical proofs. In M. Baaz, J. Makovsky, and A. Voronkov, editors,

LPAR 2002: Short Contributions and CSL 2003: Extended Posters, volume

VIII of Kurt Gödel Society’s Collegium Logicum, pages 99–102. Springer Ver-

lag, 2004. (pp. 10, 11, 126, 139 and 181.)

[50] M.-D. Hernest. Light Functional Interpretation. Lecture Notes in Computer

Science, 3634:477 – 492, July 2005. Computer Science Logic: 19th Inter-

national Workshop, CSL 2005. (pp. 10, 12, 63, 76, 126, 129, 136, 137, 154

and 164.)

[51] M.-D. Hernest. Technical appendix to [50]. Available in the author’s web-

page, June 2005. (p. 10.)

[52] M.-D. Hernest. NdE - Normalization during Extraction. In Local Proceed-

ings of CiE06 (Computability in Europe 2006). Computability in Europe, IT

Wales - University of Wales, Swansea, 2006. Extended Abstract. Full paper

in preparation. Available in the author’s web-page. (pp. 79, 126 and 152.)

[53] M.-D. Hernest. Light Dialectica program extraction from a classical Fibonacci

proof. In Proceedings of DCM’06 at ICALP’06, Electronic Notes in Theoreti-

cal Computer Science (ENTCS), page 10pp. Elsevier, 2007. Accepted for pub-

lication, Downloadable @ http://www.brics.dk/̃ danher/. (pp. 134 and 149.)

[54] M.-D. Hernest. Synthesis of moduli of uniform continuity by the Mono-

tone Dialectica Interpretation in the proof-system MinLog. In Proceedings

of LFMTP’06 at FLoC’06, Electronic Notes in Theoretical Computer Science

(ENTCS), page 12pp. Elsevier, 2007. Accepted for publication, Downloadable

@ http://www.brics.dk/̃ danher/. (pp. 10, 12, 79, 148 and 154.)



Bibliography 165

[55] M.-D. Hernest and U. Kohlenbach. A complexity analysis of functional inter-

pretations. Technical report BRICS RS-03-12, DAIMI, Department of Com-

puter Science, University of Aarhus, Aarhus, Denmark, Feb 2003. Published

in a slightly revised form as [56]. (pp. 11, 126, 129, 130 and 178.)

[56] M.-D. Hernest and U. Kohlenbach. A complexity analysis of functional in-

terpretations. Theoretical Computer Science, 338(1-3):200–246, June 2005.

Shortened and slightly revised version of the BRICS Technical report RS-03-

12, University of Aarhus, Denmark, Feb 2003. (pp. 13, 44, 74, 84, 86, 165

and 178.)

[57] W. Howard. Hereditarily majorizable functionals of finite type. In [122], pages

454–461. (pp. 38, 39, 83, 149, 179, 181, 195, 228 and 239.)

[58] W. Howard. Ordinal analysis of simple cases of bar recursion. Journal of

Symbolic Logic, 46(1):17–30, 1981. (p. 103.)

[59] I. Johansson. Der Minimalkalkül, ein reduzierter intuitionistischer Formalis-

mus. Compositio Matematica, 4:119–136, 1936. (pp. 20 and 150.)

[60] K. Jørgensen. Finite type arithmetic. Master’s thesis, University of Roskilde,

Departments of Mathematics and Philosophy, 2001. (pp. 13, 38, 59, 76

and 187.)

[61] U. Kohlenbach. On the computational content of the Krasnoselski and

Ishikawa fixed point theorems. In [16], pages 119–145. (p. 59.)

[62] U. Kohlenbach. Proof Interpretations and the Computational Content of

Proofs. Lecture Course, latest version in the author’s web page. (pp. 10, 11,

16, 38, 44, 59, 81, 83, 84, 86, 93, 95, 96, 97, 98, 101, 117, 126, 127, 134, 150,

151, 225 and 226.)

[63] U. Kohlenbach. Effective bounds from ineffective proofs in analysis: an appli-

cation of functional interpretation and majorization. The Journal of Symbolic

Logic, 57(4):1239–1273, 1992. (pp. 59, 93, 117, 149, 150, 152, 229, 233, 235,

236 and 238.)

[64] U. Kohlenbach. Pointwise hereditary majorization and some applications.

Archive for Mathematical Logic, 31:227–241, 1992. (pp. 120 and 151.)

[65] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. An un-

winding of de La Vallée Poussin’s proof for Chebycheff approximation. Annals

of Pure and Applied Logic, 64:27–94, 1993. (p. 59.)



166 Bibliography

[66] U. Kohlenbach. New effective moduli of uniqueness and uniform a–priori

estimates for constants of strong unicity by logical analysis of known proofs in

best approximation theory. Numerical Functional Analysis and Optimization,

14:581–606, 1993. (p. 59.)

[67] U. Kohlenbach. Analysing proofs in Analysis. In W. Hodges, M. Hyland,

C. Steinhorn, and J. Truss, editors, Logic: from Foundations to Applications,

Keele, 1993, European Logic Colloquium, pages 225–260. Oxford University

Press, 1996. (pp. 10, 11, 12, 44, 58, 59, 76, 83, 102, 126, 136, 149, 152, 181,

182, 187, 228, 230 and 233.)

[68] U. Kohlenbach. Mathematically strong subsystems of analysis with low rate

of growth of provably recursive functionals. Archive for Mathematical Logic,

36:31–71, 1996. (pp. 93, 104, 110, 112, 113, 115, 116, 117, 118, 119, 120, 152,

179 and 233.)

[69] U. Kohlenbach. Arithmetizing proofs in analysis. In J. Larrazabal, D. Lascar,

and G. Mints, editors, Logic Colloquium 1996, volume 12 of Lecture Notes in

Logic, pages 115–158. Springer Verlag, 1998. (pp. 93, 95, 110 and 117.)

[70] U. Kohlenbach. Proof interpretations. Technical report BRICS LS-98-1,

DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Den-

mark, June 1998. Free downloadble @ http://www.brics.dk/LS/Abs/BRICS-

LS-Abs/BRICS-LS-Abs.html. These lecture notes are a polished version of

notes from a BRICS PhD course given in the spring term 1998. (pp. 150

and 151.)

[71] U. Kohlenbach. Proof theory and computational analysis. Electronic Notes in

Theoretical Computer Science, 13:124–157, 1998. Comprox III, Third Work-

shop on Computation and Approximation Proof theory and computational

analysis. (pp. 104, 110 and 117.)

[72] U. Kohlenbach. On the no-counterexample interpretation. The Journal of

Symbolic Logic, 64:1491–1511, 1999. (p. 179.)

[73] U. Kohlenbach. A note on Spector’s quantifier-free rule of extensionality.

Archive for Mathematical Logic, 40:89–92, 2001. (p. 186.)

[74] U. Kohlenbach. A quantitative version of a theorem due to Borwein-Reich-

Shafrir. Numerical Functional Analysis and Optimization, 22:641–656, 2001.

(p. 59.)

[75] U. Kohlenbach. Uniform asymptotic regularity for Mann iterates. Journal of

Mathematical Analysis and Applications, 279:531–544, 2003. (p. 59.)



Bibliography 167

[76] U. Kohlenbach. Some computational aspects of metric fixed point theory.

Nonlinear Analysis, 61(5):823–837, 2005. (p. 59.)

[77] U. Kohlenbach. Some logical metatheorems with applications in functional

analysis. Transactions American Mathematical Society, 357(1):89–128, 2005.

(pp. 59 and 134.)

[78] U. Kohlenbach and B. Lambov. Bounds on iterations of asymptotically quasi–

nonexpansive mappings. In J. Falset, E. Fuster, and B. Sims, editors, Inter-

national Conference on Fixed Point Theory and Applications, Valencia, 2003,

pages 143–172. Yokohama Publishers, 2004. (p. 59.)

[79] U. Kohlenbach and L. Leuştean. Mann iterates of directionally nonexpansive

mappings in hyperbolic spaces. Abstract and Applied Analysis, 2003(8):449–

477, 2003. (p. 59.)

[80] U. Kohlenbach and P. Oliva. Proof mining: a systematic way of analysing

proofs in Mathematics. Proceedings of the Steklov Institute of Mathematics,

242:136–164, 2003. (pp. 10, 11, 59, 84, 86, 127, 134, 180, 187, 229 and 233.)

[81] U. Kohlenbach and P. Oliva. Proof mining in L1-approximation. Annals of

Pure and Applied Logic, 121:1–38, 2003. (p. 59.)

[82] G. Kreisel. On the interpretation of non-finitist proofs, part I. The Journal

of Symbolic Logic, 16:241–267, 1951. (p. 179.)

[83] G. Kreisel. On the interpretation of non-finitist proofs, part II: Interpretation

of number theory. The Journal of Symbolic Logic, 17:43–58, 1952. (p. 179.)

[84] G. Kreisel. Interpretation of analysis by means of constructive functionals of

finite types. In A. Heyting, editor, Constructivity in Mathematics, pages 101–

128. North-Holland Publishing Company, 1959. (pp. 11, 102, 126 and 135.)

[85] G. Kreisel. On weak completeness of intuitionistic predicate logic. The Journal

of Symbolic Logic, 27:139–158, 1962. (p. 179.)

[86] J.-L. Krivine. Classical logic, storage operators and second-order lambda-

calculus. Annals of Pure and Applied Logic, 68:53–78, 1994. (pp. 10 and 147.)

[87] D. Leivant. Syntactic translations and provably recursive functions. The

Journal of Symbolic Logic, 50(3):682–688, September 1985. (p. 10.)

[88] L. Leuştean. A quadratic rate of asymptotic regularity for CAT(0)-spaces.

Journal of Mathematical Analysis and Applications, 325(1):386–399, 2007.

(p. 134.)



168 Bibliography

[89] H. Luckhardt. Extensional Gödel Functional Interpretation, volume 306 of

Lecture Notes in Mathematics. Springer Verlag, 1973. (pp. 59, 84, 96, 117,

179, 186, 197, 225 and 237.)

[90] H. Luckhardt. Bounds extracted by Kreisel from ineffective proofs. In

P. Odifreddi, editor, Kreiseliana: About and around Georg Kreisel, pages

289–300. A. K. Peters, Wellesley, MA, 1996. (p. 10.)

[91] Cadence Research Systems. Chez Scheme. http://www.scheme.com, 2006.

(pp. 140, 142, 146 and 151.)

[92] C. Murthy. Extracting constructive content from classical proofs. Technical

Report 90–1151, Dept. of Comp. Science of Cornell University, Ithaca, New

York, 1990. PhD thesis. (p. 10.)

[93] C. Murthy. Extracting Constructive Content from Classical Proofs. PhD

thesis, Cornell University, 1990. (p. 180.)

[94] P. Oliva. Polynomial-time algorithms from ineffective proofs. In Proc. of the

Eighteenth Annual IEEE Symposium on Logic in Computer Science LICS’03,

pages 128–137, 2003. (pp. 103, 104 and 110.)

[95] P. Oliva. On Krivine’s realizability interpretation of classical second-order

arithmetic. To appear in Fundamenta Mathematicae, available in author’s

home-page, September 2006. (p. 147.)

[96] P. Oliva. Understanding and using Spector’s bar recursive interpretation of

classical analysis. In Proceedings of CiE’2006, volume 3988 of LNCS, pages

423–434. Springer Verlag, 2006. (p. 134.)

[97] P. Oliva. Unifying functional interpretations. Notre Dame Journal of Formal

Logic, 47:263–290, 2006. (p. 135.)

[98] V. P. Orevkov. Lower bounds on the increase in complexity of deductions

after cut elimination. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov

(LOMI), 88:137–162, 1979. (pp. 108 and 179.)

[99] V. P. Orevkov. Complexity of proofs and their transformations in axiomatic

theories. In D. Louvish, editor, Translations of Mathematical Monographs,

volume 128. American Mathematical Society, Providence, RI, USA, 1993.

(p. 179.)

[100] G. Ostrin and S. Wainer. Elementary arithmetic. Preprint 29, University of

Leeds, Department of Pure Mathematics, 2001. (p. 10.)



Bibliography 169

[101] M. Parigot. λµ–calculus: an algorithmic interpretation of classical natural

deduction. In Proc. of Log. Prog. and Automatic Reasoning, St. Petersburg,

volume 624 of LNCS, pages 190–201. Springer Verlag, 1992. (pp. 10 and 147.)

[102] C. Parsons. On n-quantifier induction. Journal of Symbolic Logic, 37:466–482,

1972. (pp. 37, 179, 233 and 239.)

[103] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system

Coq. Journal of Symbolic Computation, 15(5/6):607–640, 1993. (p. 10.)

[104] P. Pudlak. The lengths of proofs. In [18], pages 547–637. (pp. 108 and 179.)

[105] C. Raffalli. Getting results from programs extracted from classical proofs.

Theoretical Computer Science, 323(1-3):49–70, 2004. (pp. 10 and 147.)

[106] P. Rath. Eine verallgemeinerte Funktionalinterpretation der Heyting Arith-

metik endlicher Typen. PhD thesis, Universität Münster, 1978. (pp. 59

and 187.)

[107] B. Scarpellini. A model for bar recursion of higher types. Compositio Math-

ematica, 23:123–153, 1971. (p. 103.)

[108] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematis-

che Annalen, 92:305–316, 1924. (pp. 187 and 195.)

[109] H. Schwichtenberg. An arithmetic for polynomial-time computation. To be

published by Theoretical Computer Science. Available in the author’s web

page. (pp. 179, 181 and 195.)

[110] H. Schwichtenberg. Minimal logic for computable functions. Lecture course

on program-extraction from (classical) proofs. Available in the author’s web

page or in the Minlog distribution [115]. (pp. 12, 17, 19, 22, 24, 25, 29, 34,

35, 37, 40, 41, 44, 84, 128, 135, 136, 137 and 138.)

[111] H. Schwichtenberg. Complexity of normalization in the pure typed lambda-

calculus. In A. Troelstra and D. Van Dalen, editors, The L.E.J. Brouwer

Centenary Symposium, pages 453–457. North-Holland Publishing Company,

1982. (pp. 108, 113 and 114.)

[112] H. Schwichtenberg. An upper bound for reduction sequences in the typed

λ-calculus. Arch. Math. Logic, 30:405–408, 1991. (pp. 108, 113 and 114.)

[113] H. Schwichtenberg. Monotone majorizable functionals. Studia Logica, 62:283–

289, 1999. (p. 38.)



170 Bibliography

[114] H. Schwichtenberg and S. Bellantoni. Feasible computation with higher

types. In H. Schwichtenberg and R. Steinbrüggen, editors, Proof and System–

Reliability, Proceedings of the NATO Advanced Study Institute, Marktober-

dorf, 2001, pages 399–415. Kluwer Academic Publisher, 2002. (p. 179.)

[115] H. Schwichtenberg and Others. Proof- and program-extraction system Min-

log. Free code and documentation at http://www.minlog-system.de. (pp. 14,

22, 29, 41, 127, 135, 136, 137, 138, 140, 146, 150, 153, 169 and 181.)

[116] M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Univer-

sity of Munich, Faculty of Mathematics, 2003. (p. 129.)

[117] S. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Mathe-

matical Logic. Springer-Verlag, 1999. (p. 235.)

[118] C. Spector. Provably recursive functionals of analysis: a consistency proof

of analysis by an extension of principles formulated in current intuitionistic

mathematics. In J. Dekker, editor, Recursive function theory, volume 5 of

Symposia in Pure Mathematics, pages 1–27, 1962. (pp. 103 and 179.)

[119] R. Statman. Lower bounds on Herbrand’s theorem. Proceedings of the Amer-

ican Mathematical Society, 75(1):104–107, 1979. (pp. 108 and 179.)

[120] M. Stein. Interpretation der Heyting-Arithmetik endlicher Typen. PhD thesis,

Universität Münster, 1976. (pp. 59 and 187.)

[121] A. Troelstra. Realisability. In [18], pages 407–473. (p. 179.)

[122] A. Troelstra, editor. Metamathematical investigation of intuitionistic Arith-

metic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-

Verlag, Berlin - Heidelberg - New York, 1973. (pp. 16, 29, 34, 35, 59, 84, 152,

165, 195, 197, 233 and 238.)

[123] A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Number 43 in

Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, 2nd edition, 2000. (p. 179.)





Index of Chapters 1 and 2

all notations

↪→, →?, 40

at(to), ⊥, 20

∀−z,t , ∀ −z,t , 26

∀+z , ∀ +

z , 27

∀, ∃, ∃cl, 21

≥ι, ≥o, ≥τ , 47

�, Geq, Max, 48

∧, →, ∀, ∃, 20

∧−l , ∧−r , ∧+, →−, →+, 25

∨, ¬, ↔, ∃cl, 20

F , F∃, Fnc, F∃,nc, 21

L, L∃, Lnc, L∃,nc, 21

dg(τ), dg(t), 20

mdg(t), d(t), S(t), 21

Andooo, Impooo, Orooo, 19

Oι, Sucιι, Rτ , 18

R?τ , Maxτ , t
?, 52

Σδ,ρ,τ , Πρ,τ , 41

ffo, tto, Eq ι ι o, Ifτ , 18

s =o/ι/τ t, s 6=τ t, 20

ncm−FC(A), 25

occ?, occ+, occ−, 22

Occ+, Occ−, 23

Ifnτ , Oτ , 19

qfr - A0, B0, . . . , 20

T, F, eA, 29

T , T 18

all systems

IL, 16, 28

IL0, 16

IL∃, 17, 29

IL∃0, 17, 29

ILnc, 17, 28

ILnc0 , 17

IL∃,nc, 17, 29

IL
∃,nc
0 , 17, 29

IL(∃), IL
(∃)
0 , IL

(nc)
0 , 29

ML, 16, 27

ML0, 16, 27

ML∃, 17, 29

ML∃0, 17, 29

MLnc, 17, 27

MLnc0 , 17, 27

ML∃,nc, 17, 29

ML
∃,nc
0 , 17, 29

WeZ, 16, 40, 58

WeZ0, 40, 41

WeZ∃, 16, 40, 58

WeZ∃0, 40

WeZnc, 16, 40, 44

WeZnc+, 47

WeZnc0 , 40

WeZnc,cl, 53

WeZnc,c+, 53, 56, 58

WeZ∃,cl, 44, 53

WeZ∃,nc, 16, 40, 44

172



Index of Chapters 1 and 2 173

WeZ
∃,nc
0 , 40

WeZ∃,nc+, 47, 58

WeZm, 48

WeZ∃m, 48

WeZncm , 17, 48

WeZnc+m , 17, 48

WeZ∃,ncm , 17, 48

WeZ∃,nc,clm , 53

WeZ∃,nc+m , 17, 48

WeZ∃,nc,c+m , 53, 56

Z, 16, 40

Z0, 40

Z∃, 17

assumption, 25

parcel, [42], 25

assumption variable, 25

discharged assumptions, 25

undischarged assumptions, 25

axioms and rules

AxMK and AxMK, 44

ncm-Stability AxSTABnc, 45

anti-symmetry rule, 49

Axiom of Choice AxAC, 44

Axiom of Choice AxACnc, 55

Axiom of Choice AxACclnc, 45

Axiom of Choice AxACclnc, 56

axioms Π and Π̃, 46

boolean axioms, 27

AxFLS, AxTRH, AxBIA, 27

Compatibility Axiom, 39

Compatibility Rule CMP, 39

equality axioms, 27

Equality axioms AxEQL, 39

Equality rules

REF, SYM, TRZ, 38

Substitution rule SUB, 39

existential axioms

Ax∃−, Ax∃+, Ax∃−, Ax∃+
, 28

extensionality axiom Eσ,τ , 38

full comprehension AxCA, 48

full Stability, 44, 50

full Stability AxSTAB, 54, 83

Imp Intro →+, 24, 25, 54, 59

Independence of Premises

AxIPcl, 46

AxIP−∃+∀, 45

AxIPclnc, 46, 55

induction, 37

Equivalence of IA, IR, IR, 42

Equivalence Theorem 1.54, 42

Induction Axiom IA, 37

Induction Rule IR, 37

Induction Rule IR, 38

logical axiom AxEFQ, 28, 40

logical rules

∧−l , ∧−r , ∧+, →−, →+, 25

Markov’s Principle AxMK, 44

monotone axioms ∆, 50

portab. of Π, ∆ to cl. sys, 55

reflexivity of ≥τ , 49

transitivity of ≥τ , 49

universal rules

∀−z,t, ∀+z , ∀ −z,t, ∀
+

z , 26

boolean

boolean conjunction Andooo, 19

boolean disjunction Orooo, 19

boolean falsity ffo, 18

boolean implication Impooo, 19

boolean semantics, 19

boolean truth tto, 18

combinators

combinatorial term, 41

lambda-to-combinatorial, 41



174 Index of Chapters 1 and 2

Σδ,ρ,τ and Πρ,τ , 41, 52

contraction, 25

→+ with logical contr., 25

→+ without logical contr., 25

n-contraction, 26

LDR-contraction, 26, 48

LD-relevant contraction, 26

contraction formula, 25

comput. D-relevant, 58

comput. LD-irrelevant, 26, 58

comput. LD-relevant, 26, 58

D-relevant contraction, 26

D-redundant contr., 26, 58

purely logical contractions, 26

degree

max type degree mdg(t), 21

type level/degree dg(τ), 20

Dialectica

Dialectica terms, 62

extraction/synthesis

arithm ax and rules, 72

axioms of Int. Logic, 69

boolean axioms, 71

extens to fully class prfs, 83

extracted programs, 58

other ax and rules, 73

program extraction, 58

rules of Int. Logic, 64

soundness

Light Dialectica sndness, 63

synthesis/extraction

GNLMD-interpretation, 92

KNLD-interpretation, 88

KNLMD-interpretation, 90

LMDI majorant synthesis, 78

exact realizer synthesis, 76

monot realizer synthesis, 76

unif bound synthesis, 81

translated proof, 58

verifying proof, 58

formula condition

ncm - Formula Condition, 25, 85

ncm−FC restriction, 25, 48

ncm−FC restriction, 25

formulas, 18

∀ closure, 22

→+ introduction formula, 25

ncm-stable formulas, 63

D-int of non-ncm fmlas, 80

qfr formula, 20

assumption formula, 25

atomic formula, 20

logical false F ≡ at(ff), 29

logical truth T ≡ at(tt), 29

Bezem’s strong smaj, 83

boolean negation ≯A, 29

Definition 1.59

sets Fm, F∃m , Fnc
m , F∃,ncm , 47

Definition 1.7

sets F , F∃, Fnc, F∃,nc, 21

Howard’s majorization �, 48

literal translation A 7→ Anc, 45

notation for qfr formulas, 20

open formula, 22

predicate inequality s ≥τ t, 47

predicate symbols, 20

atom at, 20

logical falsity ⊥, 20

prime formula, 20

quantifier-free formula, 20

radical/root formula AD, 62

if-then-else Ifτ selector, 18



Index of Chapters 1 and 2 175

interpretation/translation

GN-translation, 91

KN-translation, 85

GN-translation, 84

KN-translation, 84

LD-interpretation, 61

LMD-interpretation, 76

Gödel’s Dialectica Interp., 58

D-interpretation, 58

Diller-Nahm interpretation, 59

double negation trs, 83

extens to fully class prfs, 83

extraction/synthesis

GNLMD-interpretation, 92

KNLD-interpretation, 88

KNLMD-interpretation, 90

LMDI majorant synthesis, 78

exact realizer synthesis, 76

monot realizer synthesis, 76

unif bound synthesis, 81

functional interpretation, 58

Gentzen neg trs, 17, 55, 84

Kuroda neg trs, 17, 45, 54, 58, 84

LD-interpretation, 58

LD-translation, 58

Light Dialectica, 58, 61

light monotone Dialectica, 59, 76

LMD-interpretation, 59

MD-interpretation, 59

negative translations, 83

radical/root associated AD, 62

soundness

monotonic GN-transl, 92

monotonic KN-transl, 89

non-monot KN-transl, 86

lambda

lambda-abstraction, 18

lambda-bound variable, 18

lambda-free variable, 18

languages, 18

Definition 1.7

L, L∃, Lnc, L∃,nc, 21

monotonic languages

Lm, L∃m, Lncm , L∃,ncm , 47

lemmas

Case Distinction, 29

Bool Mult Dist on atm fmlas, 30

Case Dist for qfr fmlas, 33

Cs Dist on atomic formulas, 30

Multip Case Dist qfrfmlas, 33

Contraction Lemma, 59

Decidability, 29

Decidability for qfr fmlas, 33

Decidability of atomic fmlas, 31

Multip Decid for qfr fmlas, 33

Multip Decid of atmc fmlas, 31

Disjunction Introd/Elim, 29, 31

LmAND, LmIMP, LmOR, 32

Equiv qfr ↔ atmc fmlas, 32

multiple If lemma LmIf··, 41

properties of �, 51

Stability, 29

Exist-free Stabil for L, 35

Non-Stability for L∃,nc, 36

Non-Stability in general, 36

Partial Stability for L∃, 36

Stability for qfr fmlas, 33

Stability of atomic fmlas, 30

Zero lemmas LmO, 41

logical

logical constants

base logical constants, 20

forall quantifier ∀, 20

logical conjunction ∧, 20



176 Index of Chapters 1 and 2

logical implication →, 20

strong exists ∃, 20

logical contraction, 25

logical conventions

associativity for →, 22

order of precedence, 22

logical rules, 25

∧−l , ∧−r , ∧+, →−, →+, 25

ncm-ForAll elimination ∀ −, 26

ncm-ForAll introduction ∀ +
, 27

conjunction elimination ∧−l/r, 25

conjunction introduction ∧+, 25

deduction from assumption, 25

ForAll elimination ∀−, 26

ForAll introduction ∀+, 27

implication elimination →−, 25

implication introduction→+, 25

logical sugar

disjunction ∨, 20

equivalence ↔, 20

negation ¬, 20

non-equality 6=τ , 20

predicate equality s =o/ι t, 20

weak exists ∃cl, 20

weak ncm exists ∃cl, 21

no-undischarged-assumptions IR, 37

non-computational-meaning, 21

ncm quantifiers ∀, ∃, 21

ncm - Formula Condition, 25

ncm−FC restriction, 25, 48

ncm−FC restriction, 25

proofs

proof gate `, 59

quantifiers

ncm exists ∃, 21

ncm forall ∀, 21

Berger’s uniform quantifiers, 21

computationally meaningful, 21

non-computational-meaning, 21

occurrences of quantifiers Q, 22

Occ+(Q,A), 23

Occ−(Q,A), 23

negative position of Q in A, 23

positive position of Q in A, 23

strictly positive position, 24

quantifier-counting functions, 22

all occurrences occ?(Q, A), 22

negative occ. occ−(Q, A), 22

positive occ. occ+(Q, A), 22

regular quantifiers ∀ and ∃, 21

rewrite

iterated rewrite ↪→?, 40

rewrite relation ↪→, 40, 49

rewrite relation ↪→, 41

scripts

sub-scripts, 19

super-scripts, 19

selector

n-selector Ifnτ , 41, 59

n-selector Ifnτ , 19

selector Ifτ , 18, 53

systems

properties of WeZncm , WeZ∃,ncm , 50

Gödel’s T, 17, 18, 58

Gödel’s T, 38

term system Tm, 47

term system T , 18

terms, 18

combinators

combinatorial terms, 41

lambda-to-combinatorial, 41

Σδ,ρ,τ and Πρ,τ , 41, 52



Index of Chapters 1 and 2 177

denotation rules, 18

Dialectica terms, 62

formation rules, 18

Göedel associated R?τ , 52

majorants for λ-terms, 53

maximum functionals Maxτ , 51

multiple maxima Maxnτ , 51

particular terms, 19

n-selector Ifnτ , 19

boolean conjunction Andooo, 19

boolean disjunction Orooo, 19

boolean implication Impooo, 19

zero terms Oτ , 19

realizing terms, 58

rewrite

iterated rewrite ↪→?, 40

rewrite relation ↪→, 40, 49

rewrite relation ↪→, 41

safe term substitution, 39

simpler maj by NbE, 53

term constants, 18

boolean falsity ffo, 18

boolean truth tto, 18

equality Eq ι ι o, 18

inequality Geq, 47

maximum Max, 47

maximum Maxιιι, 49

recursor Rτ , 18

selector Ifτ , 18

successor Sucιι, 18

zero Oι, 18

term depth d(t), 21

term expressions, 18

term size S(t), 21

tuples

application of term tuples, 19

definition of tuples, 19

left-associativity convention, 19

notation for tuples, 19

tuple of types, 18

types, 18

arithmetic type, 48

base type, 18

boolean type, 48

booleans o, 18

denotation rules, 18

denotations, 18

finite types, 18

formation rules, 18

maximal type degree mdg(t), 21

naturals ι, 18

type level/degree dg(τ), 20

variable conditions

VC(z), VC(z, t), 24

VC(z,P), 27

VC(z,P), 48

variables, 18

functional variables, 18

lambda-bound variables, 18

lambda-free variables, 18



Appendix A

A complexity analysis of

functional interpretations

Note: This chapter is a synthesis of [56] and [55], therefore a joint work with

U. Kohlenbach1 .

Abstract: We give a quantitative analysis of Gödel’s functional interpreta-

tion and its monotone variant. The two have been used for the extraction of

programs and numerical bounds as well as for conservation results. They ap-

ply both to (semi-)intuitionistic as well as (combined with negative translation)

classical proofs. The proofs may be formalized in systems ranging from weak

base systems to arithmetic and analysis (and numerous fragments of these).

We give upper bounds in basic proof data on the depth, size, maximal type

degree and maximal type arity of the extracted terms as well as on the depth of

the verifying proof. In all cases terms of size linear in the size of the proof at

input can be extracted and the corresponding extraction algorithms have cubic

worst-time complexity. The verifying proofs have depth linear in the depth of

the proof at input and the maximal size of a formula of this proof.

This chapter investigates the complexity of the extraction algorithms for

effective data (such as programs and bounds) from proofs provided by Gödel’s

functional (Dialectica) interpretation and its monotone variant. The subject

of extracting programs from proofs already has a long history. The techniques

used can be roughly divided in two categories according to whether they are

1Department of Mathematics, Darmstadt University of Technology, Schlossgartenstrasse

7, D - 64289 Darmstadt, GERMANY, kohlenbach@mathematik.tu-darmstadt.de.

178



179

based on cut-elimination, normalization and related methods or on so-called

proof interpretations. The latter typically make use of functionals of higher

type. Prominent proof interpretations are realizability interpretations, partic-

ularly Kreisel’s [85] modified realizability (see [121] for a survey) and Gödel’s

functional interpretation (first published in [44], see [4] for a survey). The

no-counterexample interpretation (n.c.i.) due to Kreisel [82, 83] is sometimes

viewed as a simplification of the functional interpretation (it uses only types

of degree ≤ 2). In fact n.c.i. is not a real alternative since it has a bad behav-

ior with respect to the modus ponens rule MP. This is overcome only if MP is

interpreted by functional interpretation (see [72]).

Cut-elimination, normalization and the related ε-substitution method glob-

ally rebuild the given proof thereby increasing its length in a potentially non-

elementary recursive way. Hyper-exponential lower-bound examples were pro-

vided by Statman [119], Orevkov [98, 99] and Pudlak [104] – see also [123]

and the more recent [38, 36, 37]. In contrast, proof interpretations extract

witnessing terms by recursion on the given proof tree which remains essen-

tially unchanged in its structure. The latter techniques consequently enjoy

full modularity: the global realizers of a proof can be computed from realizers

of lemmas used in the proof. This suggests a radically lower complexity of

the procedure and a radically smaller size of the extracted programs. Even

though the latter would not be in normal form2 they can be used substan-

tially in many ways without having to normalize them. One merely exploits

properties which can be established inductively over their structure with the

use of logical relations (like, e.g., Howard’s [57] notion of majorizability).

Both (modified) realizability and functional interpretations are applica-

ble to a vast variety of formal systems and provide characterizations of their

provably total programs. They had originally been applied to arithmetic in

all finite types. They were subsequently adapted to various fragments thereof

all the way down to weak systems of bounded arithmetic [21, 68, 102] or –

more recently – the poly-time arithmetic of [109, 114]. They were extended

to analysis [27, 89, 118], type theories [41] and fragments of set theory [17].

Gödel’s functional interpretation was recently adapted to yield an extraction

of Herbrand terms from ordinary first-order predicate logic proofs [39].

Realizability and functional interpretations cannot be directly applied to

classical systems. A canonical manner of interpreting classical proofs would be

to first translate them to intuitionistic proofs via a so-called negative trans-

2Normalization would bring back the aforementioned complexities.



180 A complexity analysis of functional interpretations

lation and to subsequently apply intuitionistic proof interpretations. How-

ever this fails for (modified) realizability since it extracts empty programs

from negative formulas. The problem can be partly overcome by using an

additional intermediate interpretation, the so-called Friedman-Dragalin A-

translation [25, 35] and its variants [22] 3. Unlike realizability interpretations,

functional interpretations are sound for the so-called Markov principle and

therefore feature extraction of programs from arbitrary proofs in fairly rich

classical systems, like Peano arithmetic in all finite types PAω (see also Section

A.4). Hence the need for an intermediate translation is avoided when using

functional interpretations. Moreover, monotone functional interpretation can

extract programs from proofs T ` ∀xρ∃yτRec(x, y) in highly unconstructive

systems T which contain, e.g., the binary König lemma. Here τ is an arbitrary

finite type, ρ is a finite type of degree (aka level) at most 1 and Rec(x, y) is

a specification which must4 be decidable if T is classical (we actually take it

quantifier-free). This gives functional interpretations the ability of extracting

programs and other effective data (such as numerical bounds) under certain

conditions from ineffective proofs (proof mining). Proof mining based on the

monotone functional interpretation has already produced important results in

computational analysis and has helped to obtain new results in mathematical

analysis (see [80]).

A natural question that arises is whether such applications which were

obtained by hand could be automated or at least computer aided by imple-

menting functional interpretations. In order to evaluate the feasibility of such

a tool it is important to investigate the complexity aspects of functional inter-

pretations. In the present chapter we obtain upper bounds on the size of the

terms which express the extracted programs. The interpretation algorithms

only write down the extracted terms, proceeding by recursion on the struc-

ture of the input proof, see Section A.2. It follows that their running time is

proportional with the size of the extracted terms. Hence we obtain the time

complexity of the extraction algorithms as a consequence of our quantitative

analysis. Let n denote the size of the input proof P and m denote the maximal

3See, e.g., [9, 93] for examples of program extractions using this approach. One drawback

of this method is the limited modularity feature: only a restricted class of lemmas can

be used to build the input proof. In contrast, the techniques based on the Dialectica

interpretation feature full modularity: the input proofs may use arbitrary lemmas. See also

[47] for applications of a form of recursive realizability.
4This restriction is generally unavoidable for classical proofs but is not necessary for

intuitionistic proofs.



181

size of a formula of P . Due to the modularity of functional interpretations,

these algorithms feature an almost linear time complexity, namely O(m2 · n)

even for classical and analytical proofs. The almost refers to the fact that m is

much smaller than n in most practical cases. In any case this time complexity

is at most O(n3), a result previously obtained by Alexi in [1] for an ad-hoc

program-extraction technique for intuitionistic proofs only. Since the design

of Alexi’s technique was driven by the optimal-time-overhead issue, cubic is

probably the best worst-time-complexity one can expect from any program-

extraction technique. We also give upper bounds on depths of the resulting

verifying proofs – this is interesting for quantitative conservation results. In

particular we obtain the feasibility of WKL–elimination for Π0
2–sentences over

primitive recursive arithmetic5 in all finite types by means of syntactic transla-

tions. Our technique is immediately implementable and in addition provides

a term extraction procedure from analytical proofs. A program-extraction

module based on Gödel’s functional interpretation was implemented by the

first author in the proof-system MINLOG [115]. An experimental comparison

between the performance of this and the existent refined A-translation [9] ex-

traction module is reported in [49]. The newer module performs better in that

case.

There exists a research line in extractive proof theory which is aimed at

characterizing the classes of proofs from which programs belonging to certain

complexity classes are extracted. Usually the feasible complexity classes are

of interest, particularly poly-time, see e.g. [21, 109]. The issue of character-

izing the complexity of provably total function(al)s of a theory is completely

separate from the present chapter’s topic. We are here concerned more with

the performance of the extraction algorithm rather than with the one of the

extracted programs.

The monotone variant of Gödel’s functional interpretation was developed

by the second author in [67]. It takes into account that most applications of

functional interpretation in recent years both to concrete proofs in numerical

analysis and to conservation results do not actually use terms which realize

the Gödel functional interpretation but terms which majorize6 (some) realiz-

ers. Monotone functional interpretation extracts majorizing terms which are

simpler than the actual realizers produced by functional interpretation. This

5This had been shown for a second–order fragment independently in [46] and [2], in the

latter by means of a formalized forcing technique.
6Majorization is understood in the sense of Howard [57] mentioned before.



182 A complexity analysis of functional interpretations

is due to the much simpler treatment of CT∧, see Proposition A.37 and the

paragraph following Definition A.70. Also the treatment of induction axioms

is much simpler, see Section A.4. Moreover, the upper bound on the depth

of the verifying proof is better in the monotone case if the underlying logical

system fairly supports monotone functional interpretation, see Remark A.73 .

A.0.1 Outline of the main results

We introduce the weak base system EILω, a short for “(weakly extensional)

extended intuitionistic equality logic in all finite types”. EILω contains only

the tools which are strictly necessary for carrying out the functional interpre-

tation even for the most rudimentary intuitionistic systems. We present upper

bounds for the following quantitative measures of realizing/majorizing terms

t extracted from proofs P in both semi-intuitionistic7 and classical systems

based on EILω up to the analytical system PAω+AC0+WKL :

the maximal degree (arity) of a subterm of t, denoted mdg (mar) ;

the depth of t, denoted d (assuming a tree representation of terms) ;

the size of t, denoted S and defined as the number of all constants and

variables used to build t .

We also give upper bounds on the depth8 of the verifying proof and time over-

head of the extraction algorithm, here denoted ∂v and θ respectively. For the

extraction procedure we consider both the usual [44] and the monotone variant

[67] of functional interpretation. We first consider a binary-tree representation

for terms, see also Footnote 34. Such a representation is more intuitive and

therefore provides a better exposition of the bounds for mdg, mar. However it

turns out that the same extracted terms have smaller size if represented in a

more economic manner using pointers9, see Section A.2.4 . Since their defini-

tion does not depend on the term representation, the bounds for mdg and mar

still hold. From Section A.2.4 on it is tacitly assumed that terms are repre-

sented in the economic manner. A representation for types becomes necessary

7Here semi-intuitionistic means intuitionistic plus a version of Markov’s principle MK and

independence of premises for universal premises IP∀, see Section A.2.1 for details.
8Proofs are represented as trees, see also the last paragraph of Section A.0.2 .
9It would be possible to extract other terms which have the same smaller size also in the

case of binary-tree representation for terms, but the bounds for mdg, mar would no longer

hold in such a case – see also the remarks following Theorem A.50 .



183

only at the moment that we are interested in the space/time overhead of the

extraction algorithm, see Section A.2.5 . Let us denote by ∂ the depth and by

Si , Sc, Sm the size (in the sense of Definition A.46) of P and for a formula A by

vdg (var) the maximal degree (arity) of a variable occurring in A ;

id (fd, ld) the implication (forall, logical) depth of A, namely the maxi-

mal number of→ (∀, all logical constants) on a path from root to leaves

in the usual tree representation of A; by fid :≡ max{fd , id} ;

qs the number of all quantifiers (including10 ∨) of the universal closure of A ;

ls the number of all ∀, ∃,∧,∨,→,⊥,= and free variables of A .

We prove that (relative to our underlying deductive framework EILω)

mdg and mar do not depend on ∂; the difference between mdg (mar)

and the maximal degree (arity) of a variable occurring in an axiom of P
is linear (quadratic) in the maximal complexity of an axiom of P ;

d is linear in the maximal logical size ls of an axiom of P and ∂ ;

S is linear in the size of P (here we use the economic representation of

terms); also exponential in ∂ and in the logarithm of the maximal logical

size ls of an axiom of P (in contrast to the former, this holds for both

the economic and the binary-tree representation of terms) ;

∂v is linear in ∂ and the maximal complexity of an axiom of P .

More precisely, for semi-intuitionistic proofs P we have the following situ-

ation (below “FI” means “functional interpretation”) :

10We must count ∨ among the quantifiers because functional interpretation treats dis-

junction as an existential quantifier.



184 A complexity analysis of functional interpretations

usual FI monotone FI

mdg O(1) + vdg + id O(1) + vdg + id
mar O(1) + var + qs · id O(1) + var + qs · id

d O(ld) + qs · ∂ O(1) + qs · ∂
S O(Si) , O(ls · qs ∂ ) O(Sm) , O(qs ∂ )

∂v O(ld + ∂) O(qs + ∂)
θ O(qs · ls · Sm) O(qs · ls · Sm)

where vdg, var, id, qs, ls are maxima taken over all the axioms of P 11

of vdg, var, id, qs and ls respectively and ld, ls are maxima of ld, ls taken

over contractions A→ A ∧ A of P .
For classical proofs P a preprocessing double–negation translation must

be employed, see Section A.3.1. The above upper bounds must be adapted

to take it into account. The situation changes as follows. There exists k ∈ IN

constant (independent of P) such that (below “FI” means “functional inter-

pretation”) :

usual FI monotone FI

mdg vdg +O(fid) vdg +O(fid)
mar var +O(qs · fid) var +O(qs · fid)

d O(ls · ∂) O(qs · ∂)
S O(Sc) , O(ls · qs k·∂ ) O(Sm) , O(qs k·∂ )

∂v O(ls + ∂) O(qs + ∂)
θ O(qs · ls · Sm) O(qs · ls · Sm)

where vdg, var, qs, ls are maxima taken over all the axioms of P of vdg,

var, qs and ls respectively and fid is the maximum of fid over all the for-

mulas of P .

Since they are not produced by functional interpretation, we normally do

not count the terms t1, t2 which appear in prime formulas t1 = t2 of contrac-

tions A→ A ∧ A and the quantifier axioms terms as part of the realizing

11In fact it is sufficient to consider only the axioms of the transformed proof Ptr , see Def-

inition A.23 . The same holds for the subsequent definitions as well, including the classical

case.



185

terms. We rather consider them as “black boxes” and use their type and

free variables information only (see Definition A.25). From a programming

perspective, they may be considered as subprograms residing in libraries and

made accessible to the extracted program via references. The bounds for the

usual functional interpretation actually hold also if we take into account the

terms mentioned above provided that instead of ld, ls one uses wd, respec-

tively ws, where

wd is the whole depth of A, assuming a tree representation of A where

tree representations of the terms occurring in A are linked from the

corresponding leaves of the usual tree representation of A ;

ws is the whole size of A, i.e., the number of all logical constants of A

plus the number of all occurrences of variables and constants in A .

For mdg and mar also the maximal degree, respectively arity of constants oc-

curring in contraction and quantifier axioms terms must be taken into account.

For more details see Remark A.41 .

A.0.2 Notational conventions

The symbols :≡ and ≡ belong to the meta-level and mean equal by def-

inition to and is identical to respectively. The symbol = is used by abuse

for equality in both meta-level and formal systems. For a set M we let

M≤ω :≡ ∪n≤ω Mn . The symbol IN denotes the set of natural numbers. For a

function f : M ′ 7→ IN and M ⊆M ′ , M finite, we let

f(M) :≡ max{f(m) |m ∈M} .

An enumeration S1, . . . ,Sn denotes an ordered tuple abbreviated S . We de-

note by {S} the set corresponding to S , by |S| the length of S and by S ′,S ′′ the

concatenation of S ′ and S ′′ . If {S} ⊆M ′ we abbreviate by f(S) :≡ f({S}) .
If p is a permutation of {1, . . . , n}, Sp abbreviates the tuple Sp1 , . . . ,Spn .

Let k0 ∈ IN be a sufficiently large constant (k0 ≡ 10 suffices for our pur-

poses) 12. For a labeled tree 4 we denote by ∂(4) the depth of 4 plus k0 ;

12 The meta–constant k0 is only needed for technical reasons. It just helps to increase the

readability of the numerous upper–bound expressions from the sequel. We consider that

is clarifies the exposition when including k0 unchanged in the various computations rather

than combine (and therefore loose its trace) an actual constant. The indication k0 ≡ 10

just gives a hint of the order of magnitude of k0 .



186 A complexity analysis of functional interpretations

by ∂L(4) the L depth of 4 (here L is a meta–variable for labels), i.e., the

maximal number of L labels on a path from root to leaves plus k0 ; by Lv(4)

the set of labels of leaves of 4 and by Vt(4) the set of labels of all vertices of

4 .

A (formal) proof in some logical system is a tree whose vertices are labeled

with formulas, such that the leaves are labeled with axioms and assumptions

and any parent vertex is labeled with the result of the application of an in-

stance of some rule to the labels of its sons. The edges which connect the

parent vertex with its sons are labeled with the name of the corresponding

rule. We denote by L(·) the labeling function on vertices and edges. We call

a proof complete if all its leaves are labeled with axioms only. Notice that

an incomplete proof is complete in the system extended with its assumptions

as axioms. We will denote proofs by ` or , possibly with bounds on the

depth attached, such as `n for a proof of depth at most n, n ∈ IN .

A.1 The weak base system EILω

In the following we introduce the system EILω 13 which forms in a sense a

weak base system containing exactly the tools needed to carry out the functio-

nal interpretation. It extends intuitionistic logic in finite types with appropri-

ate combinators14, a cases operator D and some very basic arithmetic needed

to define characteristic functionals for quantifier-free formulas. We also in-

clude C. Spector’s quantifier-free rule of extensionality ER0, see Section A.1.3 .

This allows an as extensional as possible treatment of higher type equality in

the context of functional interpretation15 – see also [73] .

We first carry out a full quantitative analysis for the functional interpre-

tation of an extension EILω++AC+IP∀+MK 16 of EILω into the quantifier-free

fragment of EILω . Due to the modularity of functional interpretation this anal-

ysis immediately relativises to further extensions of EILω with certain axioms

like, e.g., induction. Suppose that we consider an additional (closed) axiom

13Acronym for “(weakly extensional) extended intuitionistic logic in all finite types”.
14These allow the definition of λ-terms, see Definition A.12 .
15Most applications of functional interpretation have been based on such an extensional

variant. For sentences containing only variables of type 0 or 1 the use of full extensionality

is admissible since the elimination-of-extensionality procedure from [89] is applicable.
16AC is the Axiom of Choice, IP∀ is Independence of Premises for universal premises. MK

is a variant of Markov’s principle, see Section A.2.1 . For EILω+ see Definition A.25 .



A.1. The weak base system EILω 187

A . Let us add to EILω new constants c of appropriate types and the axiom17

∀yAD(c, y) expressing that c satisfies the functional interpretation of A . The

quantitative analysis for the functional interpretation of EILω++AC+IP∀+MK im-

mediately relativises to this extension. Functional interpretation now provides

realizing terms t[c] built up out of the EILω-material and c . The complex-

ity analysis for the extended theory is then completed by determining actual

terms s which satisfy the functional interpretation ∃x∀yAD(x, y) of A and the

complexity of the verifying proof ` ∀yAD(s, y) .

There are two possible ways of handling λ-abstraction in a system like

EILω . We could treat λ-abstraction either as a primitive concept or as defined

by combinators. The treatment via combinators provides a finer complexity

analysis and reflects more faithfully the actual functional interpretation of a

Hilbert-style axiomatization18 of intuitionistic logic which we have – following

Gödel’s original formulation – used for EILω . The combinators and projectors

we use are more flexible than the usualΣ andΠ first introduced by Schönfinkel

in [108]. Our Σ provide in particular extensions of Schönfinkel’s Σ to tuples

(see Definition A.4) and our Π are extensions of Schönfinkel’s Π to tuples.

This is natural since we use tuples of variables throughout our formulation

of functional interpretation. The design of our Σ and Π is made according

to the actual constructs required by functional interpretation while keeping

the benefits of the usual Σ and Π . The latter allow one to avoid any notion

of bound variables in terms and are the most convenient in connection with

logical relations19. Our Σ and Π are in fact definable in terms of usual Σ and

Π, though at the expense of a rather artificial increase in the length of the

verifying proof. The upper bound on the size of the extracted terms would

nevertheless still hold with such a definition, see Remark A.43 .

17Here ∃x∀yAD(x, y) is the functional interpretation of A, see also Section A.2 .
18In a natural deduction context, it might be more natural to treat λ-abstraction as a

primitive concept. Natural deduction formulations of functional interpretation are provided

by Diller-Nahm [24] (see also [106, 120]) and Jørgensen [60]. In the former all definitions

by cases for the realizing terms of contractions are postponed to the end by collecting all

candidates and making a single final global choice. In the latter choices are local and one

has to apply a so-called “contraction lemma” for each of them, i.e., whenever more than one

copy of an assumption gets cancelled. In any case, the analysis carried out in the present

chapter can immediately be adapted to a system with λ-abstraction included as primitive

construct, see Remark A.43 .
19One example of a logical relation is Howard’s majorizability which plays a key role in

most applications of functional interpretation [4, 67, 80].



188 A complexity analysis of functional interpretations

A.1.1 The type structure FT

The set FT of all finite types is inductively generated by the rules

(i) o ∈ FT

(ii) If σ, τ ∈ FT then (στ) ∈ FT.

Intuitively type o represents the set of natural numbers and (στ) represents

the set of functions which map objects of type σ to objects of type τ. There

are many alternative notations in the literature for (στ), like for example

τ(σ), (σ)τ, (σ → τ). We make the convention that concatenation of types is

right associative and consequently omit unnecessary parenthesis, writing δστ

instead of (δ(στ)) . It can immediately be verified by induction over FT that

each σ ∈ FT has the form σ1 . . . σno with n ≥ 0 . We abbreviate by :

σ the ordered tuple of types σ1, . . . , σn

στ the type σ1 . . . σnτ .

Definition A.1 For a type we define :

the arity by ar(o) :≡ 0 and ar(στ) :≡ ar(τ) + 1 ;

the degree by dg(o) :≡ 0 and dg(στ) :≡max{dg(σ) + 1 , dg(τ)}

and for a tuple of types we define

the arity by ar(σ) :≡ max{ar(σ1) , . . . , ar(σn)} ;

the degree by dg(σ) :≡ max{dg(σ1) , . . . , dg(σn)} .

Then dg(στ) = max{dg(σ) + 1 , dg(τ)} and ar(στ) = ar(τ) + |σ| .

A.1.2 Intuitionistic Equality Logic over FT (IELω)

Our formalization of IELω below is a slight modification of the axiomatic

calculus for multisorted intuitionistic predicate logic used by Gödel in his

original paper on functional interpretation [44]. The only differences are :

1. The syllogism and expansion are formulated as axioms instead of rules.

Gödel’s formulation with rules was designed to ease the formulation of

the soundness proof for the functional interpretation. Nevertheless for

the quantitative analysis it is more convenient to use the axiom versions

of



A.1. The weak base system EILω 189

(a) the expansion rule
A→ B

C ∨ A→ C ∨B
, since the formula C may in-

troduce realizing terms of arbitrary complexities; also the formula

complexity of the conclusion is higher than that of the premise ;

(b) the syllogism rule
A→ B , B → C

A→ C
, which would force us to con-

sider the sum of quantitative measures of both premises when com-

puting upper bounds for quantitative measures of the conclusion.

We can immediately notice that the mere Modus Ponens

A , A→ B

B
avoids such a situation, since the formula complexity

of the premise A→ B upper bounds that of the conclusion B .

2. The quantifier rules and axioms are formulated with tuples of variables

since we use tuples throughout the functional interpretation .

The language of IELω[C] contains, aside from the constants C, the fol-

lowing :

denumerably many variables which we denote by letters x, y, z, u, v, w,

possibly capitalized or adorned with subscripts; x :≡x1, . . . , xn denotes

a tuple of variables; in the same context we use x as metavariable for

an individual element of x; each of the variables is associated a unique

sort (mostly called type) which is an element of FT, such that there exist

denumerably many variables for each sort; we possibly indicate the type

of a variable by carrying it as a superscript, like xσ and then we denote

xσ :≡ xσ11 , . . . , x
σn
n ;

a binary predicate constant =o for equality between objects of type o ;

logical constants ⊥, ∧, ∨, →, ∀x and ∃x (for each variable x) .

Each of the constants in C is sorted as well, with the type possibly indicated

as superscript. We often do not indicate C and write IELω when the set

of constants is either clear from the context or not relevant. We use l as

metavariable for both variables and constants.

The terms of IELω are sorted, with their types possibly indicated in super-

scripts and are inductively generated from variables and constants according

to the rule that if tστ and sσ are terms then (ts)τ is a term. Terms are de-

noted by letters s, t, r, possibly adorned with subscripts; tuples of terms are



190 A complexity analysis of functional interpretations

denoted like t :≡ t1, . . . , tn ; in the same context we use t as metavariable for

an individual element of t . We denote by V(t) the set of variables occurring

in t and write t[x] to indicate that {x} ⊆ V(t) . If V(t) = ∅ we say that t is a

closed term. We make the convention that concatenation of terms is left asso-

ciative and consequently omit unnecessary parenthesis, writing rst instead of

((rs)t) . When writing down an expression it is always assumed that the terms

are well-formed, i.e. the types are fitting. For tσ we denote by typ(t) :≡σ and

by

ar(t) :≡ ar(σ) the arity of t ;

dg(t) :≡ dg(σ) the degree of t .

For a term we define

the depth by d(l) :≡ 0 and d(ts) :≡ max{d(t) , d(s)}+ 1 ;

the size by S(l) :≡ 1 and S(ts) :≡ S(t) + S(s) .

The subterm relation is defined as the reflexive transitive closure of {(s, ts), (t, ts)} .
We denote by s ≤ t the fact that s is a subterm of t . It is obvious that ≤ is

a partial order relation. Let mdg(t) :≡ max{dg(s) | s ≤ t} and

mar(t) :≡ max{ar(s) | s ≤ t} .

We notice that :

dg(t) ≥ dg(ts) , hence mdg(r) = maxl≤r dg(l)

ar(t) ≥ ar(ts) , hence mar(r) = maxl≤r ar(l)

We will abbreviate by t(s) :≡ t s1 . . . sm and t(s) :≡ t1(s), . . . , tn(s) .

The formulas of IELω are inductively generated from prime formulas

so =o t
o and ⊥ according to the rule that if A and B are formulas then

(A ∧B), (A ∨B), (A→ B), (∀xA) and (∃xA) are formulas. Equivalence

and negation of formulas are defined as A↔ B :≡ ((A→ B) ∧ (B → A)) and

respectively ¬A :≡ (A→ ⊥). The expressions ∀x, ∃x abbreviate ∀x1 . . . ∀xn
and ∃x1 . . . ∃xn respectively. Equality between the terms s and t of type

σ = σ1 . . . σno (with 1 ≤ n) is just an abbreviation for

∀xσ11 . . . xσnn (s x1 . . . xn =o t x1 . . . xn),



A.1. The weak base system EILω 191

where the variables x1, . . . , xn do not occur in s or t . Non–equality (or differ-

ence) between terms s and t is defined by s 6= t :≡¬(s = t) . We abbreviate by

s = t :≡ (s1 = t1), . . . , (sn = tn) – hence a tuple of formulas.

We denote formulas by letters A,B,C, possibly adorned with subscripts

or superscripts. In order to avoid unnecessary parenthesis we make the con-

vention that ∀x, ∃x, ¬, ∧, ∨, →, ↔ is the decreasing order of precedence

and that → is right associative. We call a formula quantifier-free if it does

not contain ∀, ∃,∨ . The subscript 0 always indicates a quantifier-free for-

mula, such as A0, B0, C0 . We denote by Vf(A), Vb(A), V(A) the set of free,

bound, respectively all variables occurring in A and write A(x) to indicate that

{x} ⊆ Vf(A) . We denote by C(A) the set of constants occurring in A and by

vdg(A) :≡ dg(V(A)), var(A) :≡ ar(V(A)), cdg(A) :≡ dg(C(A)) and

car(A) :≡ ar(C(A)) . We denote by dS(·) the S-depth of a formula which is

defined for S ⊆ {∀,∃,∧,∨,→} by

dS(s =o t) :≡ dS(⊥) :≡ k0 (see Section A.0.2 for the definition of k0)

For Q ∈ {∀,∃}, dS(QxA) :≡

{
dS(A) + 1 , if Q ∈ S
dS(A) , if Q 6∈ S

For 2 ∈ {∧,∨,→}, dS(A2B) :≡

{
max{dS(A) , dS(B)}+ 1 , if 2 ∈ S
max{dS(A) , dS(B)} , if 2 6∈ S

For a formula A we define the following :

the logical constants depth by ld(A) :≡ d∀,∃,∧,∨,→(A) ;

the whole depth by wd(A) :≡ d′∀,∃,∧,∨,→(A) ; here d′ differs from d just in

d′S(s =o t) :≡ k0 +max{d(s) , d(t)} ;

the implication depth id(A) :≡ d→(A) and the forall depth fd(A) :≡ d∀(A) ;

here d differs from d just in dS(A0) :≡ k0 ;

the forall/implication depth by fid(A) :≡ max{fd(A) , id(A)} ;

the quantifier size, denoted qs(A), is the number of quantifiers (including

∨) occurring in A, when A is a closed formula and the quantifier size of

its universal closure in the general case ;

the logical constants size, denoted ls(A), is obtained by adding to qs(A)

the number of ∧,→,⊥,= occurring in A ;



192 A complexity analysis of functional interpretations

the whole size, denoted ws(A), is obtained by adding to ls(A) the number

of all occurrences of variables and constants in A .

We present below the axioms and rules of IELω :

Equality axioms

REF : x =o x (reflexivity)

SYM : x =o y → y =o x (symmetry)

TRZ : x =o y ∧ y =o z → x =o z (transitivity)

Logical axioms

CT∨ :
CT∧ :

A ∨ A→ A
A→ A ∧ A (contraction)

WK∨ :
WK∧ :

A→ A ∨B
A ∧B → A

(weakening)

PM∨ :
PM∧ :

A ∨B → B ∨ A
A ∧B → B ∧ A (permutation)

SYL : (A→ B) ∧ (B → C)→ (A→ C) (syllogism)
EPN : (A→ B)→ (C ∨ A→ C ∨B) (expansion)
EFQ : ⊥ → A (ex falso quodlibet)

QA∀ :
QA∃ :

∀zA(z)→ A(s)
A(s)→ ∃zA(z)

(quantifier axioms)

We denote by QA :≡ QA∀+ QA∃ . At QA, s is free for z in A
and the substitution is simultaneous.

For instances B(s) of QA which involve the constants s , we define the

term depth of B(s) by td(B) :≡ d(s) ;

term size of B(s) by ts(B) :≡ Σs∈sS(s) .

Logical rules

MP : A , A→ B ` B (modus ponens)

EXP : A ∧B → C ` A→ (B → C) (exportation)

IMP : A→ (B → C) ` A ∧B → C (importation)

QR∀ :

QR∃ :

B → A ` B → ∀zA
A→ B ` ∃zA→ B

(quantifier rules)

We denote by QR :≡ QR∀+ QR∃ . At QR, z is not free in B .



A.1. The weak base system EILω 193

Recall that `n , with n ∈ IN, denotes a deduction of length at most n .

Remark A.2 There exists k ∈ IN constant such that for all σ :

Higher-order equality

REF[σ] : IELω `k x =σ x (reflexivity)

SYM[σ] : IELω `k x =σ y → y =σ x (symmetry)

TRZ[σ] : IELω `k x =σ y ∧ y =σ z → x =σ z (transitivity)

Given a set of rules (axioms are comprised as rules with empty premise) Rl

whose formulas contain the constants C, we denote by IELω[Rl] the system

IELω[C] extended with the rules in Rl.We sometimes abbreviate IELω[Rl] with a

different denotation (like EILω below) and then (IELω[Rl])[Rl′] :≡ IELω[Rl ∪ Rl′].

A.1.3 EILω - Extended Intuitionistic Equality Logic

Multisorted weakly extensional extended intuitionistic equality logic over

FT, which we denote by EILω, is obtained by extending IELω with exactly the

elements which are strictly necessary to carry out functional interpretation

even for IELω. The language of EILω contains the following constants :

the zero constant 0 ≡ Oo of type o and for each type ρ ≡ σo the higher–

order zero constant Oρ which is defined by the axiom

AxO : Oρ(z
σ) = 0

(hence for any type there exists at least one constant)

the successor constant S of type oo which is defined by the axioms

AxS : Sx 6= 0 and Sx = S y → x = y

the boolean constants ν, I, E all of type ooo which are defined by

Axν : (x = 0 ∧ y = 0)↔ ν x y = 0

AxI : (x = 0→ y = 0)↔ Ix y = 0

AxE : x = y ↔ Ex y = 0

for each n, i ∈ IN with i ≤ n and types σ ≡ σ1, . . . , σn, the decision con-

stant Dσi of type oσ σσi which is defined by the axioms (below |z| = |z′|)

AxD : x = 0→ Dσi (x, z, z′) = zi and x 6= 0→ Dσi (x, z, z′) = z′i

for each choice of the following



194 A complexity analysis of functional interpretations

- n,m ∈ IN and n :≡n0, n1, . . . , nm ∈ IN and n :≡n1, . . . , nm ∈ IN such

that n0, n1, . . . , nm ≤ n and n1, . . . , nm ≤ n

- permutations p :≡ p0, p1, . . . , pm and p :≡ p1, . . . , pm of {1, . . . , n}

- types τ, σ ≡ σ1, . . . , σn and δ ≡ δ1, . . . , δm

the combinator constant Σσ,δ,τ,m
p,p,n,n which is defined by the following

AxΣ : Σσ,δ,τ,m
p,p,n,n (x, y, z) = x(z0, y1(z

1), z1, . . . , ym(zm), zm)

The type of Σ is (σ0 δ1 σ1 . . . δm σm τ) (σ1 δ1) . . . (σ
m δm)σ τ , where we

abbreviated {σj :≡σ(pj)1 , . . . , σ(pj)nj }
m
j=0 and {σj :≡σ(pj)1 , . . . , σ(pj)nj }

m
j=1 .

for each n ∈ IN, permutation p of {1, . . . , n} and types τ, σ ≡ σ1, . . . , σn ,

the permutation constant P σ,τ
n,p of type (στ)σpτ which is defined by

AxP : P σ,τ
n,p (x, zp) = x(z)

Recall from Section A.0.2 that σp and zp are the p–permuted σ and z .

for each n, i ∈ IN, i ≤ n and types σ ≡ σ1, . . . , σn , the projector constant

Πσ
i of type σσi which is defined by the axiom

AxΠ : Πσ
i (z) = zi

For simplicity we abbreviate by 1 :≡ S0 . The system EILω is finally obtained

by adding the quantifier-free tertium non datur axiom

TND0 : x = 0 ∨ ¬(x = 0)

and the quantifier-free extensionality rule

ER0 :
A0 → s1 = t1 , . . . , A0 → sn = tn

A0 → B0(s)→ B0(t)
.

The formal proofs in the sequel will be in EILω if not otherwise indicated.

Remark A.3 The constants P and Π are definable in terms of Σ and also

Oσo = Πo,σ
1 0 . We nevertheless chose to define them separately since they play

a particular rôle.

Definition A.4 As particular cases of Σ we distinguish the tuple-Schönfinkel

combinators with defining axioms of shape

Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n)

(x, y, z) = x(z, y(z)) .



A.1. The weak base system EILω 195

These are generalizations of the usual20 Schönfinkel combinators Σ to tuples

and will be used in the λ-abstraction Definition A.12 . The usual Schönfinkel

combinators Σ are in fact particular cases of our Σ of shape Σ
σ,(δ),τ,1
(11,11),(11),(1,0),(1)

with defining axioms

Σ
σ,(δ),τ,1
(11,11),(11),(1,0),(1)

(x, y, z) = x(z, y(z)) .

Also the usual Schönfinkel projectors Π are particular cases of our Π of shape

Π
(σ1,σ2)
1 with defining axioms Π

(σ1,σ2)
1 (z1, z2) = z1 .

Remark A.5 The quantifier-free tertium-non-datur TND0 becomes derivable

in the presence of induction for propositional formulas. Moreover, in the

presence of a modest amount of arithmetic, the constants D, ν, I and E are

definable and their axioms derivable. Therefore these axioms are in fact redun-

dant in any concrete application of functional interpretations, e.g., to HAω and

fragments thereof. Examples of the latter are systems of bounded arithmetic

like IPVω of [21] and the poly-time arithmetic LHA of [109] 21 .

Remark A.6 The extensionality axiom

EA[σ] : xσ = yσ → fσo x =o f
σo y ( let EA :≡ ∪σ EA[σ])

is derivable in EILω for σ ≡ o, . . . , o, particularly using the rule ER0. Therefore

EILω contains all equality axioms for type o. This no longer holds in general

when σ contains higher types (follows from Section 3.5.10 of [122] and [57]).

On the other hand, ER0 is derivable from EA in EILω r ER0, hence the rule is

strictly weaker than the axiom, but only at higher types.

Remark A.7 These hold in EILω : ` ⊥ ↔ 1 = 0 and ` x 6= 0↔ Ix1 = 0 .

Remark A.8 There exists k ∈ IN constant such that for all s, t, r, r1, r2, B0,

the following hold :
s = t `k B0(s)→ B0(t) (A.1)

s = t `k r[s] = r[t]

r1 = r2, s = t `k r1(s) = r2(t). (A.2)

20For the original definition of Schönfinkel’s Σ and Π see [108]. See also the last paragraph

before Section A.1.1 .
21Even though LHA was designed in a modified realizability context, the outline of similar

systems corresponding to functional interpretations is quite straightforward.



196 A complexity analysis of functional interpretations

Proposition A.9 The following equalities hold:

dg(Σσ,δ,τ,m
p,p,n,n ) = max{dg(σ, δ) + 2 , dg(τ) + 1} dg(Πσ

i ) = dg(σ) + 1

dg(P σ,τ
n,p ) = max{dg(σ) + 2 , dg(τ) + 1} dg(Dσi ) = dg(σ) + 1

ar(Σσ,δ,τ,m
p,p,n,n ) = ar(τ) + |σ|+ |δ|+ 1 ar(Πσ

i ) = ar(σi) + |σ|
ar(Dσi ) = ar(σi) + 2|σ|+ 1 ar(P σ,τ

n,p ) = ar(τ) + |σ|+ 1

In the proposition below we show how and at which cost in proof depth the

quantifier-free formulas can be viewed as prime formulas.

Proposition A.10 (Association of terms to quantifier-free formulas)

There exists k ∈ IN constant and an association of terms to quantifier-free for-

mulas A0 7→ tA0 such that for all A0 ,

`k·ld(A0) A0(a)↔ tA0 [a] = 0 .

Proof: The proof is by induction on the structure of A0, making use of the

boolean constants axioms. For prime formulas just take tt1=t2 :≡ E t1t2 and

t⊥ :≡ 1, then recursively define tB0∧C0 :≡ ν tB0tC0 and tB0→C0 :≡ I tB0tC0 . 2

Corollary A.11 (TND and Stability for quantifier-free formulas)

There exists k ∈ IN constant such that for all quantifier–free A0 ,

`k·ld(A0) A0(a) ∨ ¬A0(a) (A.3)

`k·ld(A0) ¬¬A0(a) → A0(a) .

Proof: The principle STAB0 : ¬¬x = 0 → x = 0 follows immediately

with constant-depth proof from TND0 . Both (A.3) and (A.4) follow immedi-

ately from TND0 and STAB0 respectively by (A.3) and (A.1) .2

Definition A.12 (λ-abstraction) To every term tτ one associates a term

(λxσ. t)στ , with V(λx. t) = V(t)− {x} , recursively defined as follows :

λx. xi :≡ Πσ
i

λx. t :≡ Π
(τ,σ)
1 t , if {x} ∩ V(t) = ∅

λx. (tδτsδ) :≡ Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n)

(λx. t)(λx. s) , if {x} ∩ V(ts) 6= ∅

Proposition A.13 (β-reduction) There exists k ∈ IN constant such that

for all t and r the following holds :

`k·d(t) (λxσ. t[x] ) rσ =τ t[r] .



A.2. A quantitative analysis of functional interpretation 197

Proof: By straightforward induction on d(t) , using (A.2) when the induction

step falls under (A.4) . 2

Proposition A.14 The following inequalities hold :

d(λx. t) ≤ 2 · d(t) mdg(λx. t) ≤ max{dg(x) + 1 , mdg(t)}+ 1

S(λx. t) ≤ 3 · S(t) mar(λx. t) ≤ max{mar(t) + 1 , ar(x)}+ |x|

Proof: By structural induction on t , following Definition A.12 . 2

Remark A.15 In order to increase readability we will omit the adornments

of Σ, P and Π from now on. We consider that this side information can be

figured out from the context in a straightforward way. On the other hand its

display would only complicate the exposition.

A.2 A quantitative analysis of the

Dialectica interpretation

Gödel’s functional (Dialectica) interpretation/translation was first intro-

duced in [44] and is also presented in [89](4) and [122](3.5.1). It is a transla-

tion of proofs which includes a translation of formulas. Hence a given formula

A(a), with a all free variables of A, is interpreted to the associated formula

AD ≡ ∃x ∀y AD(x; y; a) with AD quantifier-free and x, y tuples of variables of

finite type such that x, y, a are all free variables of AD. We often omit to

display the tuples of free variables wherever this creates no ambiguity. We

will denote by B(a′)D ≡ ∃u∀v BD(u; v; a′) and C(a′′)D ≡ ∃g ∀h CD(g;h; a′′).

The Dialectica interpretation of formulas is then given by the following list of

rules:



198 A complexity analysis of functional interpretations

Definition A.16 (Gödel’s functional interpretation of formulas)

AD :≡ (AD :≡A) for prime formulas A

(A ∧B)D :≡ ∃x, u∀y, v [(A ∧B)D :≡AD(x; y) ∧BD(u; v)]

(∃zA(a, z))D :≡ ∃z, x ∀y [(∃zA(a, z))D :≡AD(x; y; a, z)]

(∀zA(a, z))D :≡ ∃X ∀z, y (∀zA(a, z))D (A.4)

(∀zA(a, z))D :≡ AD(X(z); y; a, z)

(A→ B)D :≡ ∃Y , U ∀x, v (A→ B)D (A.5)

(A→ B)D :≡ AD(x;Y (x, v))→ BD(U(x); v)

(A ∨B)D :≡ ∃zo, x, u∀y, v (A ∨B)D

(A ∨B)D :≡ (z = 0→ AD(x; y)) ∧ (Iz1 = 0→ BD(u; v))

Remark A.17 For quantifier–free formulas A, AD = AD = A. The types and

lengths of x and y depend only on the logical structure of A . Notice that

Vf(AD) = Vf(A) and Vb(AD) = {x, y} . In the subsequent presentation, unless

otherwise specified, x and y will refer to the x and y from AD . Similarly u, g

and v, h are bound by default to BD and CD respectively.

Proposition A.18 It can be easily proved by induction on the structure of

the formula A 22 that

qs(AD) = |x, y, a| = qs(A) (A.6)

Lemma A.19 The following hold (for k0 see Section A.0.2 and Footnote 12):

dg(Vb(CD)) ≤ vdg(C) + id(C)− k0 + 1 (A.7)

ar(Vb(CD)) ≤ var(C) + qs(C) · (id(C)− k0 + 1)

Proof: The proof is by recursion on the structure of the formula C, following

the Definition A.16 . We simply notice that

dg(Vb(·D)) may increase only at (A.5), with the quantity 1 ; (A.4) forces

us to start with 1 + vdg(C) , since dg(X) = max{dg(x) , dg(z) + 1} ;

ar(Vb(·D)) may increase with the quantity 1 at (A.4) and with at most

|x, v| ≤ qs(A→ B) ≤ qs(C) at (A.5) , hence

ar(Vb(CD)) ≤ var(C) + fd(C) + qs(C) · (id(C)− k0) .
22Recall from Section A.1.3 that qs also counts the free variables.



A.2. A quantitative analysis of functional interpretation 199

2

Definition A.20 Let Ax be an arbitrary but fixed23 set of axioms. For a set

of closed terms Tm and a set Fm of formulas in the language of EILω[Ax] we

define

the prerealization relation by PR[Tm,Fm] :≡ {(t, A(a)) ⊆ Tm≤ω × Fm |
|t| = |x|, {a} = Vf(A) and typ(t(a)) = typ(x)} . For (t, A(a)) ∈ PR[Tm,Fm]

we abbreviate by {] t , A [} :≡ ∀y AD(t(a); y; a) .

the realization relation by

RR[Tm,Fm] :≡ { (t, A) ∈ PR[Tm,Fm] | EILω[Ax] ` {]t, A[} }

the set of realizing tuple selections RTS [Fm,Tm] as the set of those in-

verses to subsets of RR[Tm,Fm] which are functions from Fm to Tm≤ω .

We omit to display Tm when it denotes the set of all the closed terms of

EILω[Ax] or Fm when it denotes the set of all formulas in the language of

EILω[Ax]. The set Ax will be determined by the context. Whenever (t, A) ∈ RR

we denote this fact by t Dr A and say that

t is a realizing tuple for AD ;

t is a realizing term for AD ;

AD is realized by t or t .

We call

realizer any realizing tuple or term ;

realizer-free a formula A for which |x| = 0, where x is from AD .

Definition A.21 We say that a proof P is realizer-free-normal if all realizer-

free formulas of P are located at the leaf level.

Remark A.22 Let P be a realizer-free-normal proof. There exists no in-

stance of ER0 in P since the conclusion is quantifier-free and consequently

realizer-free. Realizer-free formulas of P may label only leaves of P which are

left premises of MP instances. Indeed, if the conclusion in any of the rules QR,

EXP, IMP is non-realizer-free then also the premise must be non-realizer-free.

For the MP rule, if the conclusion is non-realizer-free then also the A→ B

premise must be non-realizer-free.
23See also Definition A.25 and especially Remark A.26 .



200 A complexity analysis of functional interpretations

Definition A.23 To any proof P in some extension of EILω we associate

a realizer-free-normal proof Ptr which is obtained from P by removing its

maximal subtrees rooted at vertices labeled with realizer-free formulas, yet

keeping these roots (which become assumptions in Ptr). There is a fairly

simple algorithm which transforms P to Ptr by recursion on proof structure.

Remark A.24 The proofs we consider in the sequel are realizer-free-normal

if not otherwise specified. See also Remark A.45 .

A.2.1 Axiom extensions of EILω.

The system EILω++AC+IP∀+MK

Instances of the following three schemata are formulas whose correspondents

under functional interpretation can be realized by very simple terms, basi-

cally projectors Π. This makes them the first to be considered for axiom

extensions of EILω since their inclusion in proofs in the domain of functional

interpretation causes no increase in complexity. Moreover the verifying proof

is in EILω and has a constant bound on its depth. The first two are logical

axioms, i.e., they are valid in classical logic. The third axiom is non–logical.

The schemata are :

1. A variant of Markov’s principle (below A0 is quantifier–free)

MK : ¬¬∃xA0(x)→ ∃x¬¬A0(x) .

The usual24 formulation of Markov’s principle

MK′ : ¬¬∃xA0(x)→ ∃xA0(x)

can be deduced from MK with a proof which makes use of (A.4) and

therefore has depth upper bounded by k · ld(A0) for some k ∈ IN con-

stant; on the other hand the proof of MK from MK′ has constant depth .

2. Independence of Premises for universal premises [below y 6∈ Vf(∀xA0(x))]

IP∀ : [∀xA0(x) → ∃y B(y) ] → ∃y [∀xA0(x) → B(y) ] .

3. The Axiom of Choice

AC : ∀x∃y A(x, y) → ∃Y ∀xA(x, Y (x)) .
24We prefer the variant MK because the verifying proof of its functional interpretation is

much simpler than for MK′ . In the latter case the depth of the verifying proof is k · ld(A0)

for some k ∈ IN constant.



A.2. A quantitative analysis of functional interpretation 201

Another simple axiom extension of EILω is with realizer-free formulas since the

quantitative analysis does not get affected in any way. There is a particular

kind of such axiom extension which we consider in the sequel. Strictly speak-

ing, the terms t1, t2 which appear in prime formulas t1 = t2 of contractions

A→ A ∧ A and terms s involved in quantifier axioms A(s) ≡ ∀zB(z)→ B(s)

or A(s) ≡ B(s)→ ∃zB(z) are part of the realizing term (see Section A.2.3).

However we do not count them in the quantitative analysis, but rather in-

troduce new constants t̃1, t̃2, s̃ associated to terms t1, t2, s together with their

defining axioms, such that any of the terms t1, t2, s contributes as much as a

unit (plus the number of its free variables) of size to the realizing term. This

is justified by the fact that we are only interested in the complexity of fun-

ctional interpretation itself. The terms t1, t2, s are not created by functional

interpretation – they are merely given as basic input data.

Definition A.25 Let Ax be an arbitrary but fixed set of axioms and Thrf an

arbitrary but fixed set of realizer-free theorems of EILω[Ax]. We define below

two extensions EILω+ and EILωv of EILω[Ax] . The system EILω+ is obtained by

simply adding Thrf to the set of axioms of EILω[Ax] . Let ·̃ be a map which

uniquely associates the ·̃ constants t̃ to terms t[a] of EILω[Ax] such that

dg(t̃) = max{dg(a) + 1 , dg(t)} and ar(t̃) = |a|+ ar(t)

together with the defining axiom

Axt̃ : t[a] = t̃(a) .

Let Tm be an arbitrary but fixed set of EILω[Ax] terms. The system EILωv
is obtained by extending EILω+ with the defining axioms Axt̃ for the newly

introduced constants t̃ associated to terms t ∈ Tm by (A.8) .

Remark A.26 All arbitrary but fixed items in the above definition will be

implicitly given by their context if not explicitly described.

A.2.2 The treatment of EILω rules

Remark A.27 Remember that the formal proofs below are by default in

EILω. See Section A.0.2 for the definitions of Vt, Lv and ∂. The definitions of

qs, ls and the other quantitative measures of terms or formulas are given in

Section A.1.3. Recall that qs also counts the free variables of its argument.

For the meaning of the relations PR, RR and RTS below see Definition A.20 .



202 A complexity analysis of functional interpretations

Lemma A.28 The following hold for any proof P :

qs(Vt(P)) = qs(Lv(P)) and ls(Vt(P)) = ls(Lv(P)) (A.8)

V(Vt(P)) = V(Lv(P)) and C(Vt(P)) = C(Lv(P))

Proof: The following (in)equalities are immediate :

qs(A→ ∀zB(z)) = qs(A→ B(z)) qs(∃zA(z)→ B) = qs(A(z)→ B)

qs(A ∧B → C) = qs(A→ B → C) qs(B) ≤ qs(A→ B)

It follows by structural induction on P that qs(A) ≤ qs(Lv(P)) for any formula

A ∈ Vt(P) and then qs(Vt(P)) = qs(Lv(P)) is immediate. The argument for

ls is identical and (A.9) has a similar proof, with ⊆ instead of ≤ . 2

Lemma A.29 (MP) Let AMP be the algorithm which produces (t4, B(a′)) ∈ PR

from the input (t1, A(a)), (t2, t3, (A→ B)(ã)) ∈ PR, where {a1} = {a} − {a′},
{ã} = {a} ∪ {a′} and t4 is obtained from t′4 :≡Σ(t3, t1, a1) = λa′. t3(ã, t1(a))

by replacing the variables a1 with constants O of corresponding types. There

exists k ∈ IN constant such that the following hold :

d(t4) ≤ qs(A→ B) + d(t1, t3) (A.9)

S(t4) ≤ 1 + qs(A→ B) · S(t1, t3) (A.10)

dg(t4) ≤ dg(t3) and ar(t4) ≤ ar(t3)

mdg(t4) ≤ max{mdg(t1, t3) , dg(t3) + 1}

mar(t4) ≤ max{mar(t1, t3) , ar(t3) + 1 , ar(a1)}

{] t1 , A [} , {] t2, t3 , A→ B [} `k {] t4 , B [}

Proof: There exists k ∈ IN constant such that for all (t2, t3, A→ B) ∈ PR

and (t1, A) ∈ PR the following deductions hold :

y :≡ t2(ã, t1(a), v)
∀y AD(t1(a); y)

AD(t1(a); t2(ã, t1(a), v))
k

x :≡ t1(a)
∀x, v (AD(x; t2(ã, x, v))→ BD(t3(ã, x); v))

AD(t1(a); t2(ã, t1(a), v))→ BD(t3(ã, t1(a)); v)
k

By using MP once we thus obtain that there exists k ∈ IN constant such that for

all (t1, A) and (t2, t3, A→ B) members of PR the following deduction holds :

∀y AD(t1(a); y) ∀x, v (AD(x; t2(ã, x, v))→ BD(t3(ã, x); v))

BD(t3(ã, t1(a)); v)
k



A.2. A quantitative analysis of functional interpretation 203

By AxΣ there exists k ∈ IN constant such that for all (t1, A) and (t2, t3, A→ B)

members of PR, `k t3(ã, t1(a)) = t′4(a
′) holds. Since BD is quantifier–free, we

obtain from (A.1) that there exists k ∈ IN constant such that for all (t1, A) and

(t2, t3, A→ B) ∈ PR the deduction BD(t3(ã, t1(a)); v) `k BD(t
′
4(a
′); v) holds.

We conclude that there exists k ∈ IN constant such that for all (t1, A) and

(t2, t3, A→ B) members of PR, the following deduction holds :

∀y AD(t1(a); y) ∀x, v (AD(x; t2(ã, x, v))→ BD(t3(ã, x); v))

∀v BD(t
′
4(a
′); v)

k

Since |t1, a1|+ 1 ≤ qs(A) + 1 ≤ qs(A→ B) (for the second inequality here we

also used that B is non-realizer-free), the inequalities (A.9) and (A.10) follow

from
d(t4) ≤ |t1, a1|+ 1 +max{d(t1) , d(t3)}
S(t4) ≤ 1 + (|t1, a1|+ 1) ·max{S(t1) , S(t3)} .

The remaining inequalities follow immediately from

dg(t4) ≤ dg(t3) dg(a1) ≤ dg(Σ) = dg(t3) + 1

ar(t4) ≤ ar(t3) ar(Σ) = ar(t3) + 1

which are proved using t3(ã, t1(a)) = t′4(a
′) = Σ(t3, t1, a1, a

′) . 2

Lemma A.30 (QR∀, QR∃) Let AQR∀ be the algorithm that produces the out-

put (t3, t4, A(a)→ ∀z B(a′, z)) ∈ PR from input (t1, t2, A(a)→ B(a′, z)) ∈ PR ,

where t3 :≡P t1 = λã, x, z. t1(ã, z, x) and t4 :≡P t2 = λã, x, z. t2(ã, z, x) with

{ã} = {a} ∪ {a′} . There exists k ∈ IN constant such that the following hold :

d(t3, t4) ≤ d(t1, t2) + 1 and dg(t3, t4) = dg(t1, t2)

S(t3, t4) ≤ S(t1, t2) + 1 and ar(t3, t4) = ar(t1, t2)

mdg(t3, t4) ≤ max{mdg(t1, t2) , dg(t1, t2) + 1}

mar(t3, t4) ≤ max{mdg(t1, t2) , ar(t1, t2) + 1}

{] t1, t2 , A→ B(z) [} `k {] t3, t4 , A→ ∀z B(z) [}

A corresponding statement holds for QR∃ as well, with the same bounds.

Proof: By definition,

(A→ B(a′, z))D ≡ ∃Y , U ∀x, v [AD(x;Y (x, v))→ BD(U(x); v; a′, z)]

(A→ ∀zB(a′, z))D ≡ ∃Y , U ∀x, z, v [AD(x;Y (x, z, v))→ BD(U(x, z); v; a′, z)] .



204 A complexity analysis of functional interpretations

By AxP , there exists k ∈ IN constant such that for all (t1, t2, A→ B(z)) ∈ PR,

`k t3(ã, x, z, v) = t1(ã, z, x, v) and `k t4(ã, x, z) = t2(ã, z, x) .

Since AD(x; y)→ BD(u; v; a′, z) is quantifier-free, by using (A.1) we obtain that

there exists k ∈ IN constant such that for all (t1, t2, A→ B(z)) member of PR,

AD(x; t1(ã, z, x, v))→ BD(t2(ã, z, x); v; a′, z)

AD(x; t3(ã, x, z, v))→ BD(t4(ã, x, z); v; a′, z)
k .

Further, there exists k ∈ IN constant such that for all (t1, t2, A→ B(z)) ∈ PR,

∀x, v (AD(x; t1(ã, z, x, v))→ BD(t2(ã, z, x); v; a′, z))

∀x, z, v (AD(x; t3(ã, x, z, v))→ BD(t4(ã, x, z); v; a′, z))
k .

Obviously,

dg(t3) = dg(t1) and dg(t4) = dg(t2) , therefore dg(t3, t4) = dg(t1, t2)

ar(t3) = ar(t1) and ar(t4) = ar(t2) , therefore ar(t3, t4) = ar(t1, t2)

and the inequalities in the conclusion of this Lemma follow immediately. 2

Lemma A.31 (EXP, IMP) The following holds :

{] t1, t2, t3 , A→ (B → C) [} = {] t1, t2, t3 , A ∧B → C [} .

Proof: By definition,

(A ∧B → C)D ≡ ∃Y , V ,G∀x, u, h
[AD(x;Y (x, u, h)) ∧BD(u;V (x, u, h))→ CD(G(x, u);h)]

(A→ B → C)D ≡ ∃Y , V ,G∀x, u, h
[AD(x;Y (x, u, h))→ BD(u;V (x, u, h))→ CD(G(x, u);h)] .

2

Theorem A.32 There exists k ∈ IN constant and an algorithm A which does

the following. Let P be some proof of a formulaA in EILω+ and s(·)∈RTS [Lv(P)]

a realizing tuple selection for the set of leaves of P . Let q :≡ maxA∈Lv(P) q(sA)

for q ∈ {d, S, dg, ar,mdg,mar} and q :≡ q(Lv(P)) for q ∈ {qs, var}. Let25

25 See Section A.0.2 for the meaning of ∂MP(P), ∂QR(P) and ∂(P). Notice that QR∀, QR∃
and MP label edges in our EILω-proof-trees P and QR accumulates both QR∀ and QR∃ labels.



A.2. A quantitative analysis of functional interpretation 205

∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P) and ∂ :≡ ∂(P). Let ∂ ∈ IN be a number such

that for all A ∈ Lv(P), `∂ {]sA, A[}. When A is presented with P and s(·) at

input, it produces as output (t, A) ∈ RR and the following hold :

d(t) ≤ d + ∂QR + qs · (∂MP − k0) (A.11)

S(t) ≤ (S + ∂QR − k0 + 1) · qs (∂MP−k)
 (A.12)

dg(t) ≤ dg and mdg(t) ≤ mdg + 1 (A.13)

ar(t) ≤ ar and mar(t) ≤ max{var , mar + 1} (A.14)

EILω+ `∂+k ∂ {] t , A [}

Proof: The algorithm proceeds by recursion on the structure of P , using

the algorithms in Lemmas A.29 and A.30 as subprocedures at the MP, respec-

tively QR recursion steps; (A.15) follows immediately. We notice that dg and

ar do not increase in the recursion, hence (A.13) and (A.14) are clear. Let

e ≡ e . . . en denote paths from some leaf to the root of P , i.e., (ei)i∈,n denote

edges such that e is incident with a leaf and en is incident with the root of

P . Let (dei , S
e
i )i∈,n be a sequence of pairs of natural numbers defined by

(de , S
e
) :≡ (d , S) and let

(dei , S
e
i ) :≡


(dei− + qs , qs · Sei− + 1) , if L(ei) = MP

(dei− + 1 , Sei− + 1) , if L(ei) ∈ QR

(dei− , S
e
i−) , otherwise

.

with i ∈ 1, n. Using (A.8) it follows that maxe d
e
n and maxe S

e
n are upper

bounds on d, S respectively. Inequalities (A.11) and (A.12) follow now im-

mediately26.2

Remark A.33 Let us suppose that only unary (i.e., with n = 1) ER0 is al-

lowed in the verifying proof. The n-ary ER0 can be obtained from unary ER0

with a proof of depth proportional with n. It follows that we can upper bound

the depths of proofs of lemmas used in verifying MP and QR with quantities pro-

portional with qs. In consequence, (A.15) becomes EILω+ `∂+k·(qs+∂) {] t , A [} .

A.2.3 Bounds for realizing terms for

EILω++AC+IP∀+MK axioms

Remark A.34 Recall that the formal proofs below are by default in EILω.

26At (A.12) an intermediate upper bound is (S + ∂QR − k0) · qs (∂MP−k)
 +

∑(∂MP−k0)−1
i=0 qs i .



206 A complexity analysis of functional interpretations

Proposition A.35 There exists k ∈ IN constant such that for any instance

A of CT∨, WK∨, WK∧, PM∨, PM∧, SYL, EPN, EFQ, TND0, MK, IP∀, AC, there exists

a realizing tuple t for AD such that :

d(t) ≤ k (A.15)

S(t) ≤ k (A.16)

mdg(t) ≤ k + vdg(A) + id(A) (A.17)

mar(t) ≤ k + var(A) + qs(A) · (id(A)− k0 + 2) (A.18)

EILω `k {] t , A [}

Proof: Let below {a} ≡ Vf(the corresp. axiom instance). We first treat SYL,

because it is the most complex among the above listed axioms. We have:

((A→ B) ∧ (B → C)→ (A→ C))D ≡ ∃X, V , U ′, H, Y ′, G′ ∀y, u, v′, g, x′, h′

 AD(X(y, u, v′, g, x′, h′); y(X(y, u, v′, g, x′, h′), V (y, u, v′, g, x′, h′)))

→
BD(u(X(y, u, v′, g, x′, h′));V (y, u, v′, g, x′, h′))


∧ BD(U

′(y, u, v′, g, x′, h′); v′(U ′(y, u, v′, g, x′, h′), H(y, u, v′, g, x′, h′)))

→
CD(g(U ′(y, u, v′, g, x′, h′));H(y, u, v′, g, x′, h′))


−→ AD(x

′;Y ′(y, u, v′, g)(x′, h′))

→
CD(G

′(y, u, v′, g)(x′);h′)




from

((A→ B) ∧ (B → C))D ≡ ∃Y , U, V ′, G ∀x, v, u′, h

((AD(x;Y (x, v))→ BD(U(x); v)) ∧ (BD(u
′;V ′(u′, h))→ CD(G(u′);h)))

from

(A→ B)D ≡ ∃Y , U ∀x, v (AD(x;Y (x, v))→ BD(U(x); v))

(B → C)D ≡ ∃V ′, G∀u′, h (BD(u
′;V ′(u′, h))→ CD(G(u′);h))

(A→ C)D ≡ ∃Y ′, G′ ∀x′, h′ (AD(x
′;Y ′(x′, h′))→ CD(G

′(x′);h′))



A.2. A quantitative analysis of functional interpretation 207

and we can take (below {a} = Vf((A→ B) ∧ (B → C)→ (A→ C)))

tX :≡ Π = λa, y, u, v′, g, x′, h′. x′

tH :≡ Π = λa, y, u, v′, g, x′, h′. h′

tU ′ :≡ P Σ = λa, y, u, v′, g, x′, h′. u(x′)

tV :≡ P Σ = λa, y, u, v′, g, x′. v′(u(x′))

tY ′ :≡ P (ΣΣ) = λa, y, u, v′, g, x′, h′. y(x′, v′(u(x′), h′))

tG′ :≡ P Σ = λa, y, u, v′, g, x′. g(u(x′))

The proofs of (A.15) and (A.16) are immediate, for (A.17) and (A.18) we use

the results in Proposition A.9 plus (A.7), respectively (A.6, A.8) and for (A.19)

we use AxΣ, AxP , AxΠ, AxD and (A.1). We now treat the other axioms:

CT∨ : By definition,

(A ∨ A→ A)D ≡ ∃Y , Y ′, X ′′ ∀z, x, x′, y′′

 z = 0→ AD(x;Y (z, x, x′, y′′))

∧
z 6= 0→ AD(x

′;Y ′(z, x, x′, y′′))


−→

AD(X
′′(z, x, x′); y′′)



and we can take

{
tY :≡ tY ′ :≡Π = λa, z, x, x′, y′′. y′′

tX′′ :≡ Π D = λa.D

WK∨ : By definition,

(A→ A ∨B)D ≡ ∃Y , Z,X ′, U ∀x, y′, v
AD(x;Y (x, y′, v))

−→ Z(x) = 0→ AD(X
′(x); y′)

∧
Z(x) 6= 0→ BD(U(x); v)





and we can take


tY :≡ Π = λa, x, y′, v. y′

tZ :≡ O = λa, x. 0

tX′ :≡ Π = λa, x. x

tU :≡ O



208 A complexity analysis of functional interpretations

WK∧ : By definition,

(A ∧B → A)D ≡ ∃Y , V ,X ′ ∀x, u, y′ AD(x;Y (x, u, y′)) ∧BD(u;V (x, u, y′))

−→
AD(X

′(x, u); y′)



and we can take


tY :≡ Π = λa, x, u, y′. y′

tV :≡ O

tX′ :≡ Π = λa, x, u. x

PM∨ : By definition,

(A ∨B → B ∨ A)D ≡ ∃Y , V , Z ′, U ′, X ′ ∀z, x, u, v′, y′

 z = 0→ AD(x;Y (z, x, u, v′, y′))

∧
z 6= 0→ BD(u;V (z, x, u, v′, y′))


−→ Z ′(z, x, u) = 0→ BD(U

′(z, x, u); v′)

∧
Z ′(z, x, u) 6= 0→ AD(X

′(z, x, u); y′)





and we can take



tY :≡ Π = λa, z, x, u, v′, y′. y′

tV :≡ Π = λa, z, x, u, v′, y′. v′

tZ′ :≡ Σ (Σ (Π I)Π) (Π 1) = λa, z, x, u. (I z 1)

tU ′ :≡ Π = λa, z, x, u. u

tX′ :≡ Π = λa, z, x, u. x

PM∧ : By definition,

(A ∧B → B ∧ A)D ≡ ∃Y , V , U ′, X ′ ∀x, u, y′, v′ AD(x;Y (x, u, y′, v′)) ∧BD(u;V (x, u, y′, v′))

→
BD(U

′(x, u); v′) ∧ AD(X
′(x, u); y′)





A.2. A quantitative analysis of functional interpretation 209

and we can take


tY :≡ Π = λa, x, u, y′, v′. y′

tV :≡ Π = λa, x, u, y′, v′. v′

tU ′ :≡ Π = λa, x, u. u

tX′ :≡ Π = λa, x, u. x

EFQ : By definition,

(1 = 0→ A)D ≡ ∃x ∀y (1 = 0→ AD(x; y))

and we can take tx :≡ O.

EPN : By definition,

(A→ B)D ≡ ∃Y , U ∀x, v (AD(x;Y (x, v))→ BD(U(x); v))

(C ∨ A)D ≡ ∃z, g, x∀h, y ((z = 0→ CD(g;h)) ∧ (z 6= 0→ AD(x; y)))

(C ∨B)D ≡ ∃z′, g′, u∀h′, v ((z′ = 0→ CD(g
′;h′)) ∧ (z′ 6= 0→ BD(u; v)))

hence

(C ∨ A→ C ∨B)D ≡ ∃H, Y , Z ′, G′, U ′ ∀z, g, x, h′, v

 z = 0→ CD(g;H(z, g, x, h′, v))

∧
z 6= 0→ AD(x;Y (z, g, x, h′, v))


−→ Z ′(z, g, x) = 0→ CD(G

′(z, g, x);h′)

∧
Z ′(z, g, x) 6= 0→ BD(U

′(z, g, x); v)







210 A complexity analysis of functional interpretations

and further

((A→ B)→ (C ∨ A→ C ∨B))D ≡ ∃X, V ,H, Y , Z ′, G′, U ′ ∀y, u, z, g, x, h′, v

 AD(X(y, u, z, g, x, h′, v); y(X(y, u, z, g, x, h′, v), V (y, u, z, g, x, h′, v)))

→
BD(u(X(y, u, z, g, x, h′, v));V (y, u, z, g, x, h′, v))


−→ z = 0→ CD(g;H(y, u)(z, g, x, h′, v))

∧
z 6= 0→ AD(x;Y (y, u)(z, g, x, h′, v))


−→ Z ′(y, u)(z, g, x) = 0→ CD(G

′(y, u)(z, g, x);h′)

∧
Z ′(y, u)(z, g, x) 6= 0→ BD(U

′(y, u)(z, g, x); v)





and we can take



tX :≡ Π = λa, y, u, z, g, x, h′, v. x

tV :≡ Π = λa, y, u, z, g, x, h′, v. v

tH :≡ Π = λa, y, u, z, g, x, h′, v. h′

tZ′ :≡ Π = λa, y, u, z, g, x. z

tY :≡ P Σ = λa, y, u, z, g, x, h′. y(x)

tG′ :≡ Π = λa, y, u, z, g, x, h′, v. g

tU ′ :≡ Π = λa, y, u, z, g. u

TND0 : By definition,

[x = 0 ∨ ¬(x = 0) ]D ≡ ∃z [ (z = 0→ x = 0) ∧ (Iz1 = 0→ ¬(x = 0)) ]

and we can take tz :≡λx. x.

The remaining axioms are of shape A→ B such that AD ≡ BD and therefore

are immediately seen to be realized with projectors Π. For the reader’s conve-

nience we nevertheless give below the full details.

MK: We have [¬¬∃xA0(x) ]D ≡ ∃x¬¬A0(x) hence

[¬¬∃xA0(x) → ∃x¬¬A0(x) ]D ≡ ∃X ∀x [¬¬A0(x) → ¬¬A0(X(x)) ]

and we can take tX :≡Π = λa, x. x.



A.2. A quantitative analysis of functional interpretation 211

IP∀: We have

[ ∀xA0(x) → ∃y B(y) ]D ≡ ∃X, y, u∀v [A0(X(v)) → BD(u; v; y) ]

(∃y [ ∀xA0(x) → B(y) ] )D ≡ ∃y,X, u∀v [A0(X(v)) → BD(u; v; y) ]

hence ( [∀xA0(x) → ∃y B(y) ] → ∃y [∀xA0(x) → B(y) ] )D is

∃V, Y,X, U ∀x, y, u, v A0(x(V (x, y, u, v))) → BD(u;V (x, y, u, v); y)

−→
A0(X(x, y, u, v)) → BD(U(x, y, u); v;Y (x, y, u))



and we can take


tV :≡ Π = λa, x, y, u, v. v

tY :≡ Π = λa, x, y, u. y

tX :≡ Π = λa, x, y, u. x

tU :≡ Π = λa, x, y, u. u

AC: We have

[∀x∃y B(x, y) ]D ≡ ∃Y, U ∀x, v BD(U(x); v;x, Y (x)) ≡ [∃Y ∀xB(x, Y (x)) ]D

hence [ ∀x ∃y B(x, y) → ∃Y ∀xB(x, Y (x)) ]D is

∃X, V, Y, U ∀y, u, x, v BD(u(X(y, u, x, v));V (y, u, x, v);X(y, u, x, v), y(X(y, u, x, v)))

−→
BD(U(y, u, x); v;x, Y (y, u, x))



and we can take


tX :≡ Π = λa, y, u, x, v. x

tV :≡ Π = λa, y, u, x, v. v

tY :≡ Π = λa, y, u. y

tU :≡ Π = λa, y, u. u

2

Proposition A.10 gives us an algorithm for associating terms tAD
to formulas

A such that ` AD ↔ tAD
= 0 . Since V(tAD

) = Vf(AD) these tAD
are generally not

closed, whereas we want to produce closed realizing terms for contractions

A→ A ∧ A . We could certainly close these tAD
via the λ-abstraction algorithm

of Definition A.12 . However this would force us to count in our complexity



212 A complexity analysis of functional interpretations

analysis the full size of the quantifier axioms terms and of the terms t1, t2 which

appear in prime formulas t1 = t2 of contractions A→ A ∧ A . This is exactly

what we want to avoid, remember the comment at the end of Section A.0.1 ,

Definition A.20 and its preceding comment. We therefore give an association

of closed terms to all EILω+ formulas such that ·̃ constants are used instead

of the original building terms.

Proposition A.36 (Association of closed terms to all EILω+ formulas)

There exists k ∈ IN constant and an association of terms to EILω+ formulas

A 7→ tDA such that for all A (here {a} = Vf(A) and the ·̃ constants in (A.23)

are only those corresponding to terms occurring in A.)

d(tDA) ≤ k · ld(A) (A.19)

S(tDA) ≤ k · ls(A) (A.20)

mdg(tDA) ≤ k + vdg(A) + id(A) (A.21)

mar(tDA) ≤ k + var(A) + qs(A) · (id(A)− k0 + 2) (A.22)

EILωv `k·ld(A) AD(x; y; a) ↔ tDA(x, y, a) = 0 (A.23)

Proof: Induction on the structure of A. For prime formulas just take tD⊥ :≡ 1

and (below {a1} = V(t1), {a2} = V(t2) and {a} = Vf(t1 = t2))

tDt1=t2 :≡ Σ E t̃1 t̃2 = λa. E t̃1(a1) t̃2(a2)

and otherwise define (below {ã} = {a} ∪ {a′}):

tDA∧B :≡ Σ ν tDA t
D
B = λx, u, y, v, ã. ν tDA(x, y, a) tDB(u, v, a′)

tD∃zA(a,z) :≡ P tDA(a,z) = λz, x, y, a. tDA(a,z)(x, y, a, z)

tD∀zA(a,z) :≡ Σ tDA(a,z) = λX, z, y, a. tDA(a,z)(X(z), y, a, z)

tDA→B :≡ ΣΣ I tDA t
D
B = λY , U, x, v, ã. I tDA(x, Y (x, v), a) tDB(U(x), v, a′)

tDA∨B :≡ ΣΣ ν I tDA t
D
B I 1 =

= λz, x, u, y, v, ã. ν (I z tDA(x, y, a)) (I (I z 1) tDB(u, v, a′))

The inequalities (A.19) and (A.20) are immediate, (A.21) and (A.22) follow

from (A.7), respectively (A.6, A.8) and (A.23) follows using the axioms AxΣ,

AxI, Axν, AxE . 2

Proposition A.37 There exists k ∈ IN constant such that for any instance

A of CT∧ there exists a realizing tuple t for AD such that (below the ·̃ constants



A.2. A quantitative analysis of functional interpretation 213

in (A.24) are only those corresponding to terms occurring in A)

d(t) ≤ k · ld(A)

S(t) ≤ k · ls(A)

mdg(t) ≤ k + vdg(A) + id(A)

mar(t) ≤ k + var(A) + qs(A) · (id(A)− k0 + 3)

EILωv `k·ld(A) {] t , A [} (A.24)

Proof: We have

(A ≡ B → B ∧B)D ≡ ∃Y ,X ′, X ′′ ∀x, y′, y′′

[ BD(x;Y (x, y′, y′′)) → BD(X
′(x); y′) ∧ BD(X

′′(x); y′′) ]

and we can take ( here {a} = Vf(A) = Vf(B) )

tX′ :≡ tX′′ :≡Π = λa, x. x

tY :≡ ΣD tDB = λa, x, y′, y′′.D(tDB(x, y′, a), y′′, y′)

We first prove (A.24). By AxD , there exists k ∈ IN constant such that for all

B, {
`k tDB(x, y′, a) = 0 → D(tDB(x, y′, a), y′′, y′) = y′′

`k I tDB(x, y′, a) 1 = 0 → D(tDB(x, y′, a), y′′, y′) = y′

and by using ER0 , there exists k ∈ IN constant such that for all B ,{
`k tDB(x, y′, a) = 0 → BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′′)

`k I tDB(x, y′, a) 1 = 0 → BD(x;D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) .

By TND0 and AxI , there exists k ∈ IN constant such that for all B ,

`k tDB(x, y′, a) = 0 ∨ I tDB(x, y′, a) 1 = 0 .

From (A.23) , there exists k ∈ IN constant such that for all B ,

EILωv `k·ld(B) BD(x; y′) ↔ tDB(x, y′, a) = 0 ,

hence there exists k ∈ IN constant such that for all B ,{
EILωv `k·ld(B) BD(x; y′)→ BD(x;D(tDB(x, y′, a), y′′, y′))→ BD(x; y′′)

EILωv `k·ld(B) ¬BD(x; y′)→ BD(x;D(tDB(x, y′, a), y′′, y′))→ BD(x; y′) .



214 A complexity analysis of functional interpretations

Since there exists k ∈ IN constant such that for all A, B and C ,

A ∨ ¬A , A→ B → C , ¬A→ B → A ` k B → A ∧ C ,

we finally obtain that there exists k ∈ IN constant such that for all B ,

EILωv `k·ld(B) BD(x;D(tDB(x, y′, a), y′′, y′))→ BD(x; y′) ∧BD(x; y′′) .

Since there exists k ∈ IN constant such that for all B ,

`k tY (a, x, y′, y′′) = D(tDB(x, y′, a), y′′, y′)

`k tX′(a, x) = x

`k tX′′(a, x) = x ,

we obtain from (A.1) that there exists k ∈ IN constant such that

EILωv `k·ld(B) BD(x; tY (a, x, y′, y′′))→ BD(tX′(a, x); y′′) ∧BD(tX′′(a, x); y′) .

This gives (A.24) . The other inequalities follow directly from Proposition

A.36 . 2

Proposition A.38 There exists k ∈ IN constant such that for every instance

A(s) of QA∀ or QA∃ there exists a realizing tuple t for AD such that (below the

·̃ constants in (A.29) are only those corresponding to terms occurring in A)

d(t) ≤ k + fd(A), when A(s) ∈ QA∀ and (A.25)

d(t) ≤ k, when A(s) ∈ QA∃

S(t) ≤ k + fd(A), when A(s) ∈ QA∀ and (A.26)

S(t) ≤ k, when A(s) ∈ QA∃

mdg(t) ≤ k + vdg(A) + id(A) (A.27)

mar(t) ≤ k + var(A) + qs(A) · (id(A)− k0 + 2) (A.28)

EILωv `k {] t , A [}

Proof: Let A(s) ≡ ∀zB(z, a′′)→ B(s, a′′) be an instance of QA∀ , s free for

z in B . Let a′ :≡V(s) and a :≡ a′, a′′ = Vf(A(s)) . Also s ≡ s1, . . . , sn and let

ai :≡V(si) for i ∈ 1, n . We have that (∀zB(z)→ B(s))D is given by

∃Z, Y ,X ∀x, y [ BD(x(Z(x, y));Y (x, y);Z(x, y)) → BD(X(x); y; s) ]



A.2. A quantitative analysis of functional interpretation 215

and we can take (recall from Definition A.25 that s̃i(ai) = si

tZi :≡ Σ ′ s̃i = [λui, a, x, y. ui(ai)]s̃i = λa, x, y. s̃i(ai)

tY :≡ Π = λa, x, y. y

tX :≡ P Σ s̃ = [λu, a, x. x(u1(a1), . . . , un(an))] s̃

= λa, x. x(s̃1(a1), . . . , s̃n(an))

From Proposition A.9 , typ(ui) = typ(s̃i) and (A.8) it immediately follows that

dg(Σ ′) ≤ 2 +max{dg(a, x, y) , dg(si)}
ar(Σ ′) ≤ 1 + |a, x, y|+ ar(si)

dg(Π) ≤ 1 + dg(a, x, y)

ar(Π) ≤ |a, x, y|+ ar(y)

dg(P ) ≤ 1 + dg(Σ) ≤ 3 +max{dg(a, x) , dg(s)}
ar(P ) ≤ 1 + ar(Σ) ≤ 2 + |a, x|+ |s|+ ar(x)

and (A.27), (A.28) now follow immediately from (A.7), respectively (A.6, A.8),

also using that |z| = |s| and typ(zi) = typ(si) . The inequalities (A.25) and

(A.26) are immediate from |s| ≤ fd(A) . The proof of (A.29) uses the fact

(which follows from (A.1)) that there exists k ∈ IN constant such that for all

A(s) ,

`k BD(x(s̃1(a1)...s̃n(an)) ; y; s̃1(a1)...s̃n(an) )→ BD(x(s̃1(a1)...s̃n(an)) ; y; s ) .

Let A(s) ≡ B(s, a′′)→ ∃zB(z, a′′) be an instance of QA∃ , s free for z in B .

The tuples a′ , a and ai below are defined like in the QA∀ case above. We have

(B(s)→ ∃zB(z))D ≡ ∃Y , Z,X ∀x, y [BD(x;Y (x, y); s) → BD(X(x); y;Z(x)) ]

and we can take (recall from Definition A.25 that s̃i(ai) = si)

tY :≡ Π = λa, x, y. y

tZi :≡ Σ s̃i = (λui, a, x. ui(ai))s̃i = λa, x. s̃i(ai)

tX :≡ Π = λa, x. x

The inequalities (A.25) and (A.26) are trivial, (A.27), (A.28) follow with an

argument similar to the one in the QA∀ case. For (A.29) we use the fact (which

follows from (A.1)) that there exists k ∈ IN constant such that for all A(s) ,

`k BD(x ; y ; s1, . . . , sn )→ BD(x ; y ; s̃1( a1), . . . , s̃n(an) ) .

2



216 A complexity analysis of functional interpretations

Notation. We will denote by qs(P) :≡ max{2 , qs(Lv(P))} and

vdg(P) :≡ vdg(Lv(P)) var(P) :≡ var(Lv(P))

fd(P) :≡ fd(QA∀ ∩ Lv(P)) id(P) :≡ id(Lv(P))

ld(P) :≡ ld(CT∧ ∩ Lv(P)) ls(P) :≡ ls(CT∧ ∩ Lv(P))

fid(P) :≡ fid(Vt(P)) ls(P) :≡ ls(Lv(P))

We will omit P when this will be clear from the context .

Theorem A.39 There exists k ∈ IN constant such that for any proof P in

EILω++AC+IP∀+MK and any non-realizer-free A ∈ Lv(P) there exists tA such

that tA Dr A and the following hold :

if A is not an instance of (CT∧, QA∀) then

d(tA) ≤ k

S(tA) ≤ k

mdg(tA) ≤ k + vdg + id

mar(tA) ≤ k + var + qs · id
EILωv `k {] tA , A [}


ifA is an instance of CT∧, (A.29) holds except that EILωv `k·ld {] tA , A [} ,

d(tA) ≤ k · ld and S(tA) ≤ k · ls ;

if A is an instance of QA∀, (A.29) holds except that d(tA) ≤ k + fd and

S(tA) ≤ k + fd .

The ·̃ constants of EILωv above27 are only those required by the terms tA and

hence are limited to those corresponding to terms occurring in A .

Proof: Follows immediately from Propositions A.35, A.37, A.38 and k0 ≥ 10 .

2

Theorem A.40 There exists k ∈ IN constant and an algorithm which does

the following. Given as input a proof P of a formula A in EILω++AC+IP∀+MK

27See also Definition A.25 and Remark A.26 .



A.2. A quantitative analysis of functional interpretation 217

it produces as output t such that t Dr A and, with the notations 2 and ab-

breviations28 ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P) and ∂ :≡ ∂(P), the following hold:

d(t) ≤ k · ld + ∂QR + qs · ∂MP (A.29)

S(t) ≤ (k · ls + ∂QR) · qs ∂MP (A.30)

mdg(t) ≤ k + vdg + id (A.31)

mar(t) ≤ k + var + qs · id (A.32)

EILωv `k·(ld+∂) {] t , A [}

The ·̃ constants of EILωv in (A.33) are among those corresponding to terms

occurring in the leaves of P .

Proof: Just a synthesis of the results in Theorems A.32 and A.39 . For

(A.29) and (A.30) we use that fd ≤ qs and k0 ≥ 10 , hence

max{k · ld , k + fd}+ ∂QR + qs · (∂MP − k0) ≤ k · ld + ∂QR + qs · ∂MP
(max{k · ls , k + fd}+ qs + ∂QR − k0 + 1) · qs (∂MP−k)

 ≤ (k · ls + ∂QR) · qs ∂MP

2

Notation. We will denote by

wd(P) :≡ max{wd(CT∧ ∩ Lv(P)) , td(QA ∩ Lv(P))}
ws(P) :≡ max{ws(CT∧ ∩ Lv(P)) , ts(QA ∩ Lv(P))}
cdg(P) :≡ cdg((CT∧ ∪ QA) ∩ Lv(P))

car(P) :≡ car((CT∧ ∪ QA) ∩ Lv(P))

We will omit P when this will be clear from the context.

Remark A.41 Theorem A.40 holds also when the terms t1, t2 which build

prime formulas t1 = t2 of contractions CT∧ and the quantifier axioms terms s

are counted as components of the global realizer (instead of just taking the

associated constants t̃1, t̃2, s̃). We only need to use wd, ws instead of ld, ls
and (A.31), (A.32) must be replaced with

mdg(t) ≤ max{k + vdg + id , cdg}
mar(t) ≤ max{k + var + qs · id , car}

28See Footnote 25 for the meaning of ∂MP(P) , ∂QR(P) and ∂(P) .



218 A complexity analysis of functional interpretations

Corollary A.42 There exists k′ ∈ IN constant and an algorithm which does

the following. Given as input a proof P of a formula A ≡ ∀x∃y B(x, y) with

{x, y} = Vf(B) in EILω++AC+IP∀+MK it produces as output tY such that

EILωv +AC+IP∀+MK `k′·max{ld+∂ , ld(B)} ∀x B(x, tY (x))

Proof: In this case we have AD ≡ ∃Y , U ∀x, v BD(U(x); v;x, Y (x)) , hence by

Theorem A.40 we get EILωv `k·(ld+∂) ∀v BD(tU(x); v;x, tY (x)) and further

EILωv `k·(ld+∂) ∃u∀v BD(u; v;x, tY (x)) [ ≡ BD(x, tY (x)) ]

It can be easily proved by induction on ld(B) that there exists k′′ ∈ IN such

that for all formulas B ,

EILω+AC+IP∀+MK `k′′· ld(B) B ↔ BD

The conclusion now follows immediately by combining (A.33) and (A.33) . 2

Remark A.43 If λ-abstraction were treated as primitive and Σ, P, Π were

defined in terms of it then (A.30) would still hold. Indeed, let Σ be defined

by

λx, y, z. x(z0, y1(z
1), z1, . . . , ym(zm), zm) .

We would have S(Σ) ≤ 2 · |x, y, z| 2 and on the other hand |x, y, z| ≤ qs for

all Σ which appear in t . Similarly (A.30) would still hold if only Schönfinkel Σ

and Π were allowed29. This follows from the λ-abstraction Definition A.12 .

There exists k ∈ IN constant such that at most k · |x, y, z| 2 ≤ k · qs2 tuple-

Schönfinkel Σ and Π are needed to simulate our Σ and any of these tuple-

Schönfinkel Σ and Π can be defined30 in terms of at most k · |x, y, z| ≤ k · qs
usual Schönfinkel Σ and Π .

Remark A.44 If we allowed only unary (see Remark A.33) ER0 in the veri-

fying proof then (A.33) would become EILωv `k·(ld+qs+∂) {] t , A [} .

29See Definition A.4 for the notions of “tuple-Schönfinkel” and “Schönfinkel” combinators

Σ . Also for “Schönfinkel” projectors Π .
30For Σ the proof is by induction on |z| of Definition A.4 . We have Σ xy z z′ =

x z z′ (y z z′) = Σ′ (xz) (yz) z′ hence Σ = λx, y, z.Σ′ (xz) (yz) . For Π we can use the it-

erated λ-abstraction λz1. (. . . λzn. zi) .



A.2. A quantitative analysis of functional interpretation 219

Remark A.45 The algorithm of Theorem A.40 can be applied to complete

proofs P in EILω++AC+IP∀+MK after a preprocessing phase to Ptr via the

procedure of Definition A.23 . Since IELω ` A↔ AD for any realizer-free as-

sumption A produced by the realizer-free-elimination procedure, the verifying

proof can use the same assumptions as Ptr . A complete verifying proof in

EILωv can be produced by (re)including the parts of P which were eliminated

in the preprocessing phase.

A.2.4 Better bounds on the size of extracted terms

Smaller terms can be extracted if we use a simplification provided by the

definitional equation of Σ . The size of the extracted terms becomes linear

in the size of the proof at input. Nevertheless the use of extra Σ’s brings an

increase in type complexity. This can be avoided by using a more economical

representation of the realizing tuples by means of pointers to parts which are

shared by all members of a tuple. In such a setting all inequalities of Theorem

A.40 remain valid. The simplification is based on the observation that all

terms t4 produced by MP (see Lemma A.29) contain a common part. Namely

t1, O , which is somehow redundant to count for all t4 in t4 - and this is what

we have done so far. We give below a small example. Consider the following

proof of C from A, A→ B and B → C : {{A , A→ B} ` B , B → C} ` C .
Let t1 Dr A, (t2, t3) Dr (A→ B) and (t5, t6) Dr (B → C) . The algorithm in

Lemma A.29 first produces t4 Dr B defined as t4 ≡ Σ(t3, t1, O) and then pro-

duces the realizing tuple for C, namely t7 Dr C defined as

t7 ≡ Σ(t6, t4, O
′)

≡ Σ(t6, Σ(t13, t1, O), . . . , Σ(t
|t3|
3 , t1, O), O′)

We immediately notice that the tuple t1, O is common to all terms t4 ∈ t4 and

is multiply included in t7 . We describe below how it is possible to extract

realizing terms such that the common parts which were previously multiply

included are now counted only once for all the terms of a tuple.

Definition A.46 For a proof P we define three size measures, denoted Si(P),

Sc(P) and Sm(P), which are to be used in the semi-intuitionistic (i.e., what we

have already described), the classical and in the monotone case respectively

(the last two cases will be treated in Section A.3 below). The measure Sm(P)

will be used also for the time upper bounds (see Section A.2.5) in all cases.

All three size measures are obtained by adding the following to the sum of



220 A complexity analysis of functional interpretations

qs(A→ B) for all MP-right-premises A→ B plus the sum of qs(C) for all QR-

conclusions qs(C) (below A are non-realizer-free leaves) :

Si(P): the sum of qs(A) for non-CT∧ A plus the sum of ls(A) for CT∧ A ;

Sc(P): the sum of ls(A) for all non-realizer-free leaves A ;

Sm(P): the sum of qs(A) for all non-realizer-free leaves A .

It is immediate that Sm(P) ≤ Si(P) ≤ Sc(P) , which reflects the fact that the

monotone functional interpretation gives a simpler treatment of contraction

than Gödel’s functional interpretation and that the pre-processing negative

translation brings an increase in complexity for Gödel’s functional interpreta-

tion (but not for the monotone functional interpretation – see Theorem A.74) .

Definition A.47 For the tuples t ≡ t1, . . . , tn extracted by the algorithm of

Theorem A.40 we define a size measure, denoted Sz′(t) in the following way.

There exists m ≥ 0 and a tuple t′ such that each ti ∈ t is either of shape

ti ≡ P i
1(. . . P

i
m(ti)) or of shape ti ≡ P i

1(. . . P
i
m(ti(t′))) where {P i

j}mj=1 and ti are

characteristic to ti and t′ is common to all ti in the corresponding subset of

t . It is possible that m = 0 and/or the aforementioned subset is ∅ . We define

Sz′(t) :≡ m · |t| + Σt′∈t′ S(t′) + Σn
i=1 S(ti) .

Lemma A.48 There exists k ∈ IN constant s.t. for every term P1(P2 x) with

P1 and P2 permutations there exists a permutation P3 s.t. `k P1(P2 x) = P3 x .

Proof: By AxP for P1 we obtain (P1(P2 x))(zp) = P2(x, z) . We can now

apply AxP for P2 and we distinguish two cases :

z ≡ up
′
, v and P2(x, u

p′) = x(u) hence P2(x, z) = x(u, v) ≡ x(zp
′′
) and

the last term is equal to P3(x, z
p) via a definitional equation for P3 .

z, y ≡ up
′

and P2(x, u
p′) = x(u) hence (P1(P2 x))(zp, y) = x(u) and the

last term is equal to P3(x, z
p, y) via a definitional equation for P3 .

2

Lemma A.49 There exists k ∈ IN constant such that for any term

P1(. . . (Pm x)) with P1, . . . , Pm permutations there exists a permutation P0

such that `k·m P1(. . . (Pm x)) = P0 x .



A.2. A quantitative analysis of functional interpretation 221

Proof: Repeated applications of Lemma A.48 and transitivity of equality.

2

Theorem A.50 There exists k ∈ IN constant and an algorithm which does

the following. Given as input a proof P of a formula A in EILω++AC+IP∀+MK

it produces as output t such that t Dr A with (A.33) and (below #MP denotes

the number of MP instances in P)

Sz′(t) ≤ k · Si(P) (A.33)

3 #MP ≤ d(t) (A.34)

∂MP − k0 ≤ mdg(t) (A.35)

3 #MP ≤ mar(t)

Proof: The proof of (A.33) is by structural induction on P . For axioms A

we use the same realizing terms as before. When A is not an instance of CT∧
or QA∀ , (A.33) follows from |t| ≤ qs(A) . If A ≡ B → B ∧B then we notice

that tDB of Proposition A.37 is common to all realizing tY , hence using (A.6)

and (A.20) ,

Sz′(tX′ , tX′′ , tY ) ≤ k′ · |Y ,X ′, X ′′|+ S(tDB) ≤ k′ · qs(A) + k′′ · ls(A) ≤ k · ls(A)

If A ≡ ∀zB(z, a′′)→ B(s, a′′) then the tuple s̃ of Proposition A.38 is common

to all realizing tX , hence Sz′(tZ , tY , tX) ≤ k′ · |Z, Y ,X|+ |s̃| ≤ k · qs(A) .

There is nothing to prove for instances of EXP and IMP, see Lemma A.31.

For QR instances the proof is trivial using Lemma A.30. For instances of MP

we use Lemma A.29 and further improve the result by applying a number of

Σ definitional equations. The algorithm in Lemma A.29 is presented with the

tuples t3 and t1 , represented 31 as

t3 ≡ P ′1(. . . P
′
m′(t0(t

′))) = P ′(t0(t
′))

ti1 ≡ P i
1(. . . P

i
m(ti(t))) = Pi(t

i(t))

}
Using Lemma A.49

31In the case when t3 or t1 comes from a (sub)proof which involved CT∧ or QA∀ and no

MP then we have an exception in the sense that only a part of the terms in the tuple share

a common tuple, see also Definition A.47 . The reason should be obvious from the above

treatment of CT∧ and QA∀ . The final shape of the term t4 in (A.36) below is nevertheless

not affected by this technical exception. After an MP all terms of the realizing tuple share

a common tuple.



222 A complexity analysis of functional interpretations

and it produces (we assumed without loss of generality that 1 ≤ m′,m)

t4 ≡ Σ1(P
′(t0(t

′)), P1(t
1(t)), . . . , Pn(tn(t)), O) =

= Σ2(Σ1, P
′, P1, . . . , Pn, t0(t

′), t1(t), . . . , tn(t), O) =

= Σ3(Σ2, t0, t
1, . . . , tn, t′, t, P ′, P1, . . . , Pn, Σ1, O) =

= P (Σ3, Σ2, P
′, t0, t

1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O)

hence we can actually take

t4 ≡ (P Σ3Σ2 P
′ t0)(t

1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O)

where t1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O is common to all t4 ∈ t4 . Hence

Sz′(t4) ≤ |P,Σ3, Σ2| · |t4|+ |Σ1, O|+ Sz′(t3) + Sz′(t1)

≤ 3 · qs(A→ B) + Sz′(t3) + Sz′(t1) ,

where for the last inequality we used that |t4|+max{1 , |O|} ≤ qs(A→ B) .

In order to prove the remaining inequalities it is useful to denote by cp(t) the

common tuple in the canonical representation of the tuple t (i.e., t′) . We have

|cp(t1)|+ |cp(t3)|+ 1 ≤ |cp(t4)| because at least the constant Σ1 appears new

at each MP application. It follows that for the final extracted tuple t we have

#MP ≤ |cp(t)| . Now (A.34) and (A.36) are immediate because |cp(t)| ≤ d(t)

and |cp(t)| ≤ mar(t) . Also (A.35) is immediate once we notice that dg(cp(t))

increases by at least 1 at each MP application; this is due to the fact that ti

enters cp(t4) and dg(ti) ≥ dg(t) + 1 .

The proof that (A.33) still holds is by straightforward computations. 2

We notice that the price to pay for having smaller realizing terms is an

increase in type complexity. This is unavoidable with the actual representation

of terms. The maximal degree of the realizing term increases by at least 1 at

each MP application. This is due to the fact that subterms from the private

part, which have degree greater by at least 1 than the maximal degree of a

subterm from the common part now enter the new common part. We can avoid

the increase in type complexity only by modifying the term representation such

that the terms in the common part are multiply pointed from each member of

the realizing tuple. In this way Σ3 is no longer needed for feeding the common

part to each member of the realizing tuple. The increase in degree was due

exactly to these Σ3’s. We can now state the following theorem, where Sz is

defined in the new pointer setting similarly to Sz′, i.e., by counting common

parts only once.



A.2. A quantitative analysis of functional interpretation 223

Theorem A.51 There exists k ∈ IN constant and an algorithm which does

the following. Given as input a proof P of a formula A in EILω++AC+IP∀+MK it

produces as output t such that t Dr A , Sz(t) ≤ k · Si(P) and the inequalities

of Theorem A.40 all hold.

Remark A.52 The following inequalities are immediate:

S(t) ≤ Sz(t)

Si(P) ≤ (ls(P) + qs(P)) · 2∂(P) ≤ 3 · ls(P) · qs(P)∂(P) .

They just express the fact that the new bounds on size are indeed better.

Remark A.53 We will tacitly assume in the sequel that terms are repre-

sented with pointers in the manner described above.

A.2.5 Space and time complexity of the

functional interpretation algorithm

In a real-world implementation of the algorithm of Theorem A.40 we ought

to count also the size of types associated to the EILω-constants as part of the

size of the realizing terms. This real-size of the extracted terms actually gives

also the time complexity of the algorithm32 since what this does is only writing

down the extracted terms.

In order to compute the real-size we need to decide upon some representation

of types. It turns out that the most efficient is to use dags 33. We choose

dags instead of normal binary trees34 because dags allow the reuse of existent

types via pointers. Hence given the input proof P we start with the types

of all variables and constants which appear in P and build the types of con-

stants which are produced by functional interpretation. We therefore need to

count for the real-size only the number of new type-nodes which are created

in order to represent the type of a newly created constant c . By straight-

forward computations it follows that there exists k′ ∈ IN constant such that

for any formula C, the number of new type-nodes required by Vb(CD) is at

most k′ · qs(C)2 · ls(C) . Hence the number of new type-nodes required by the

32The space complexity follows immediately by the principle that the space overhead of

an algorithm is always less than its time overhead.
33Here “dag” is the usual acronym for “directed acyclic graph”.
34The representation with binary trees is in fact equivalent to the usual parenthesized-

strings representation.



224 A complexity analysis of functional interpretations

new variables created in the interpretation of the leaves, right MP–premises

and QR–conclusions of P is at most k′ · qs · ls · Sm(P) . Then we can im-

mediately see that whenever a new constant c of type στ is created by the

algorithm of Theorem A.40 , the types σ, τ are immediately available from the

existent terms or variables created by the functional interpretation. There

exists k′′ ∈ IN constant such that for any such new constant c created at a

leaf C , instance of MP–right–premise C or instance of QR–conclusion C of P ,
at most k′′ · |σ|2 ≤ k′′ · qs(C)2 new type-nodes are necessary to represent the

type of c . Hence overall we have at most k′′ · qs · ls · Sm(P) newly created

type-nodes in this category. We can now state the following theorem.

Theorem A.54 There exists k ∈ IN constant such that the time overhead

of the algorithm in Theorem A.51 is upper bounded by k · qs · ls · Sm(P) .

A.3 Immediate extensions of the

quantitative analysis

A.3.1 Treatment of classical EILω. The system ECLω++AC0

So far we have considered only semi-intuitionistic systems. We describe in

the sequel how our complexity analysis can easily be adapted to classical logic

(and theories) as well by applying it to the image of the classical system un-

der a suitable negative translation. The so-called negative or double–negation

translations have all in common the fact that the image of a formula is (intu-

itionistically equivalent to) a negative formula 35. Negative translations were

initially produced by Gödel [43], Gentzen, Kolmogorov, Glivenko. We use

below a variant due to Kuroda of Gödel’s translation which we further adapt

in order to handle blocks of universal quantifiers.

Definition A.55 (Kuroda’s N-translation, adapted) To a formulaA one

associates AN ≡ ¬¬A∗ , where A∗ is so defined by structural induction on A :

A∗ :≡ A , if A is a prime formula

35By definition, a formula is called negative, respectively existential-free if it is built

up from negated prime, respectively prime formulas by means of ⊥, ∧, → and ∀
only. In our system negative formulas are trivially existential-free. On the other hand,

EILω ` s =o t↔ ¬¬(s =o t) for any prime formula s =o t and hence also every existential-

free formula is equivalent to a negative formula.



A.3. Immediate extensions of the quantitative analysis 225

(A2B)∗ :≡ A∗2B∗ , where 2 ∈ {∧,∨,→}

(∃xA(x))∗ :≡ ∃x(A(x))∗

(∀xA(x))∗ :≡ ∀x¬¬(A(x))∗ , where A(x) 6≡ ∀yB(y, x)

Remark A.56 AN is realizer-free iff A is realizer-free .

N-translation followed by functional interpretation gives a proof interpretation

for theories based on classical logic 36. Remark A.56 implies that given a

(complete) proof P in some classical system the following are equivalent :

carry out the composed37 interpretation to Ptr ;

first do the N-translation of P , then apply the realizer-free-elimination

algorithm of Definition A.23 and finally carry out the functional inter-

pretation of (PN)tr .

The former approach is obviously more efficient: one does not carry out the

N-translation of parts which subsequently get eliminated.

Let ECLω, ECLω+ be the classical versions38 of EILω, EILω+ respectively, ob-

tained by replacing TND0 with the full tertium-non-datur schema A ∨ ¬A . Let

AC0 : ∀x∃y A0(x, y) → ∃Y ∀xA0(x, Y (x))

be the quantifier-free axiom-of-choice (with x and y of arbitrary types).

Remark A.57 The proof-size measure Sc is introduced in Definition A.46 .

Proposition A.58 There exists k ∈ IN constant and an algorithm which

does the following. Given as input a proof P of a formula A in ECLω++AC0 it

produces as output a proof PN of AN in EILω++AC0+MK and the following hold :

1. ∂(PN) ≤ k · ∂(P) and Si(PN) ≤ k · Sc(P) ;

2.

{ qs(PN) ≤ qs(Vt(PN)) ≤ k · qs(Vt(P))
(A.8)
= k · qs(P)

ld(PN) ≤ ls(PN) ≤ ls(Vt(PN)) ≤ k · ls(Vt(P))
(A.8)
= k · ls(P)

36Details of the use of negative translation in combination with functional interpretation

may be found, e.g., in [4, 62, 89].
37In fact parts which are produced by N-translation also need to be transformed.
38Below EILω+-based systems will appear for verifying the functional interpretation of

proofs in ECLω+-based systems. In virtue of Remark A.56 it should be obvious that A is a

realizer-free axiom from Thrf of ECLω+ (see Definition A.25) if and only if AN is a realizer-free

axiom from Thrf of EILω+ .



226 A complexity analysis of functional interpretations

3. id(PN) ≤ k · fid(P) ; we must use fid(P) because in the N-translation

a ∀ brings two ¬, hence in fact two → due to our treatment of negation ;

4. no new variable or constant appears in PN, hence (using (A.9))

vdg(Vt(PN)) ≤ vdg(Vt(P)) = vdg(Lv(P))

var(Vt(PN)) ≤ var(Vt(P)) = var(Lv(P))

cdg(Vt(PN)) ≤ cdg(Vt(P)) = cdg(Lv(P))

car(Vt(PN)) ≤ car(Vt(P)) = car(Lv(P))

Proof: The algorithm proceeds by recursion on the structure of P , see [62]

for details. The proof of its correctness makes use of the following schemata

of intuitionistic logic :

¬¬(A→ B)↔ (A→ ¬¬B)↔ (¬¬A→ ¬¬B) (A.36)

¬¬∀x¬¬A(x)↔ ∀x¬¬A(x) (A.37)

A→ ¬¬A

These schemata have proofs in which the axiom instances and intermediate

formulas have size (depth) at most linear in the size (depth) of the formula to

be proved. We only need to further notice that there exists k′ ∈ IN constant

such that the following hold :

the N-translation of any non-realizer-free axiom scheme B of ECLω++AC0

is a theorem in EILω++AC0+MK whose proof P ′ has the same structure

for all instances of B, in particular the same depth ; all formulas which

appear in P ′ have size (depth) upper bounded by k′ times the maximal

size (depth) of B ;

any rule A1 [, A2] ` B of ECLω++AC0 is interpreted under N-translation

to a proof P ′ of BN from AN
1 [, AN

2] ; P ′ has the same structure for all

instances of the rule, in particular the same depth ; all formulas which

appear in P ′ have size (depth) upper bounded by k′ times the maximal

size (depth) of A1 [, A2] .

As an example we prove the above claim for AC0 and QR∀ . The other axioms

and rules are even easier.

Case AC0: We prove that there exists k′ ∈ IN constant such that for all A0 ,

EILω++AC0+MK `k′ [∀x ∃y A0(x, y)→ ∃Y ∀xA0(x, Y (x)) ]N



A.3. Immediate extensions of the quantitative analysis 227

By (A.38), the conclusion of (A.38) is implied by

∀x¬¬∃y A0(x, y) → ∃Y ∀x¬¬A0(x, Y (x)) .

This follows from MK and AC0 with a IELω–proof of constant depth.

Case QR∀: B → A ` B → ∀zA . By induction hypothesis we have a proof

of ¬¬(B∗ → A∗) . Then we use (A.36) and MP to get B∗ → ¬¬A∗ and by

QR∀ , B∗ → ∀z¬¬A∗ . If A 6≡ ∀yC then ∀z¬¬A∗ ≡ (∀zA)∗. If A ≡ ∀xA′ with

A′ 6≡ ∀yC then A∗ ≡ ∀x¬¬A′∗ and using (A.37) we obtain B∗ → ∀z, x¬¬A′∗

with ∀z, x¬¬A′∗ ≡ (∀zA)∗ . In any case we obtain ¬¬(B → ∀zA)∗ (also us-

ing (A.38)). Hence overall the deduction of (B → ∀zA)N from (B → A)N has

constant depth. 2

Remark A.59 The new quantifier axioms of PN are of shape ∀zB(z)→ B(z)

and these can be realized with simple projectors Π instead of the terms tZ of

Proposition A.38 .

Remark A.60 Except for those triggered by (A→ A ∧ A)N , the contractions

CT∧ of PN are required by the N-translations of A ∨ ¬A , QA∀ and QR∃ . In the

last two cases the verifying CT∧ is brought by the critical implication

(¬¬A → ¬¬B) → ¬¬(A → B)

of (A.36). The use of (A.38) can be avoided in the case of IMP, EXP by using

axiom versions of these rules39, the non-critical converse of (A.38) and MP .

Remark A.61 The following holds: ((Ptr)N)tr = (PN)tr .

We are now able to describe an efficient algorithm for extracting realizing

terms from (complete) proofs P in ECLω++AC0 . First P is transformed to Ptr

and then to (Ptr)N via the algorithm of Proposition A.58 . In a second phase

(Ptr)N is transformed40 to ((Ptr)N)tr and the algorithm of Theorem A.40 is

applied to it. Using Proposition A.58 , Theorems A.51 and A.54 , Notation 2

and the abbreviations ∂ :≡ ∂(P) , Sc :≡ Sc(P) and Sm :≡ Sm(P) we can state

the following theorem.

39The axiom versions of IMP and EXP are simply realized with projectors Π . This follows

immediately from the fact that (A→ (B → C) )D ≡ (A ∧B → C )D . See also Lemma A.31 .
40Here only the parts produced by N-translation need to be transformed.



228 A complexity analysis of functional interpretations

Theorem A.62 There exists k ∈ IN constant and an algorithm which does

the following. Given as input a proof P of a formula A in ECLω++AC0 it

produces as output t such that t Dr AN and the following hold :

d(t) ≤ k · (ls + qs · ∂) (A.38)

S(t) ≤ Sz(t) ≤ k · Sc ≤ k · (ls + ∂) · (k · qs)k·∂ (A.39)

mdg(t) ≤ vdg + k · fid (A.40)

mar(t) ≤ var + k · qs · fid (A.41)

EILωv `k·(ls+∂) {] t , AN [} .

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm .

The ·̃ constants of EILωv in (A.42) are among those corresponding to terms

occurring in the leaves of PN.

Remark A.63 In the above theorem we use the more general quantity ∂

instead of the more detailed ones ∂QR and ∂MP which appear in Theorem A.40 .

We do so because the N-translations of QR∀, QR∃, EXP and IMP trigger new MP

instances needed for their verification in PN . Hence ∂MP(PN) ≥ ∂(P) already.

Corollary A.64 Let A ≡ ∀x ∃y A0(x, y) with Vf(A0) = {x, y} and, as usual,

A0 quantifier-free. The theorem above holds also with A instead of AN, i.e.,

t Dr A with (A.38), (A.39), (A.40), (A.41) and EILωv `k·(ls+∂) ∀xA0(x, t(x)) .

Proof: There exists k′ ∈ IN constant such that, using (A.37) and (A.4),

EILω++MK `k′· ld(A0) (∀x∃yA0(x, y))N → ∀x∃yA0(x, y) .

From (A.8) it follows that the quantity ld(A0) gets absorbed into ls . 2

A.3.2 A quantitative analysis of the

monotone Dialectica

The second author realized in [67] that a much simpler extraction proce-

dure applies if the goal is to extract majorizing functionals t∗ for the realizing

terms t of AD , i.e., terms t∗ such that

M : ∃x [ t∗ maj x ∧ ∀a, y AD(x(a), y, a)] .

Here y maj x :≡ ∧ (y maj x) and maj is W.A. Howard’s majorization rela-

tion (see [57]). This is of significance since t∗ suffices for many (if not most)



A.3. Immediate extensions of the quantitative analysis 229

applications of functional interpretation. These range from conservation re-

sults (e.g., for weak König’s lemma [63]) to the proof mining of concrete proofs

[80]. We noticed in Section A.2 that the contraction A→ A ∧ A is by far the

most complicated axiom in the usual functional interpretation. Monotone

functional interpretation features a very simple treatment of A→ A ∧ A and

therefore the extraction process for t∗ becomes much simpler than the one for

t .

Definition A.65 Let EILωM be an extension of EILω with the following :

An inequality relation ≥o for type-o-objects with the usual axioms plus

1 ≥o Ixo yo, 1 ≥o ν xo yo and 1 ≥o Exo yo. Inequality for higher types is

defined extensionally by

x ≥σo y :≡ ∀zσ (x z ≥o x z) .

The majorization relation is defined by

x∗ maj σo x :≡ ∀zσ, yσ (z maj σ y → x∗ z maj o x y) ,

where z maj σ y is an abbreviation for ∧σ∈σ(z maj σ y) and maj o :≡ ≥o .

A maximum constant Mo of type ooo defined by the axioms

AxM : Mo x y ≥o x Mo x y ≥o y Mo maj Mo .

Maximum constants for higher types are defined by

Mσo :≡ ΣMo = λxσo, yσo, zσ.Mo (x z) (y z) .

A schema of explicit definability for arbitrary quantifier-free formulas:

ED[A0] : ∃Y ∀a [ (1 ≥o Y (a)) ∧ (A0(a)↔ Y (a) =o 0) ] .

Axioms S maj S and O maj O .

Remark A.66 In the presence of a minimal amount of arithmetic S maj S

and O maj O are immediately provable. Also the constants ≥o, ν, I, E and

Mo can be defined such that the remaining axioms of Definition A.65 become

provable (see also Remark A.5) .

Remark A.67 The formulas Σ maj Σ, Π maj Π and P maj P hold in EILωM
with proofs of depths proportional with the arities of Σ, Π and P respec-

tively. Then Mρ maj Mρ holds for arbitrary ρ with a formal proof of depth

proportional with ar(ρ) + 1 .



230 A complexity analysis of functional interpretations

Lemma A.68 There exists k ∈ IN constant such that for any tuple of terms

s of EILωM (with V(s) = {x}) there exist corresponding terms s∗ of EILωM (with

V(s∗) = {x∗}) such that

EILωM ` x∗ maj x → s∗ maj s .

Proof: The constants O and S trivially majorize themselves by the last clause

of Definition A.65. On the other hand, ΣM = λz, x, x′.Mx x′ majorizes D
and Π1 = λxo, yo. 1 majorizes I, ν and E . Using Remark A.67 we have that

Σ, Π, P andM majorize themselves. The conclusion follows immediately by

induction on d(s) . 2

Corollary A.69 Let s̃, s̃∗ be constants associated to terms s, s∗ like in

Definition A.25. From (A.42) it immediately follows that

` s̃∗ maj s̃

Definition A.70 We denote by EILωM,+ the system (EILωM )+ where “+” in-

cludes all formulas s̃∗ maj s̃ as axioms. We take them as axioms because

we consider that the (formal) proof in (A.42) is not created by monotone

functional interpretation. Also let EILωM,v be the corresponding (EILωM )v .

In [67] realizing terms are presented for the monotone functional interpre-

tation of all axioms of EILωM +AC+IP∀+MK . They are the same as for the usual

functional interpretation, except that

A→ A ∧ A is realized by terms ΣM = λa, x, y′, y′′.M y′ y′′ and

Π = λa, x. x ; compare this with the results of Proposition A.37 ;

A ∨ A→ A is realized by ΣM = λa, z, x, x′.Mx x′ and Π ;

A ∨B → B ∨ A is realized by terms Π and Π 1 ;

the schema ED itself is trivially realized by Π 1 = λa. 1 ;

∀zA(z)→ A(s) is realized by terms obtained from the realizing terms

of the usual functional interpretation by replacing the constants s̃ with

the corresponding s̃∗ where s∗ are given by Lemma A.68 .

Using Remark A.67 it follows that there exists k ∈ IN constant such that

the verifying proof for some axiom A of EILωM +AC+IP∀+MK has depth upper

bounded by k · qs(A) . The verifying proof for CT∧ makes use of ED .



A.3. Immediate extensions of the quantitative analysis 231

Remark A.71 The proof-size measure Sm is introduced in Definition A.46 .

The proof-depth measures ∂MP, ∂QR and ∂ are introduced in Section A.0.2 .

In the following theorem we will abbreviate by ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P),

∂ :≡ ∂(P) and Sm :≡ Sm(P) .

Since monotone functional interpretation uses the same algorithm as the

usual functional interpretation for producing realizing terms for conclusions

given the realizing terms for premises, the following analogue of Theorem A.51

holds.

Theorem A.72 There exists k ∈ IN constant and an algorithm which does

the following. Given as input a proof P of A in EILωM,++AC+IP∀+MK it pro-

duces as output t∗ such that, with the notations 2, the following hold :

d(t) ≤ k + ∂QR + qs · ∂MP
S(t) ≤ Sz(t) ≤ min{k · Sm , k · ∂QR · qs ∂MP } ≤ k · qs ∂ (A.42)

mdg(t) ≤ k + vdg + id

mar(t) ≤ k + var + qs · id
EILωM,v `k·(qs+∂) ∃x

(
t∗ maj x ∧ ∀a, y AD(x(a), y, a)

)
The time overhead of the algorithm is upper bounded by k · qs · ls · Sm .

The ·̃ constants of EILωM,v in (A.43) are among those corresponding to terms

occurring in the leaves of P .

Proof: The rightmost inequality of (A.42) follows from a suitable adaptation

of Remark A.52 to the monotone case. We now only need to comment on

(A.43). In order to build the verifying proof for MP we need to use the following

lemma :

(y1 maj x1) ∧ (y3 maj x3) → ∧ [Σ(y3, y1, O) maj Σ(x3, x1, O) ]

Using Remark A.67 it follows that there exists k′ ∈ IN such that for all its

instances, lemma (A.43) has a proof of depth at most k′ · |y3, y1, O| . When used

for verifying MP, we have |y3, y1, O| ≤ qs , hence (A.43) follows immediately.

2

Remark A.73 If (A.43) were taken as axiom, the depth of verifying MP would

be upper bounded by a constant, just like in the case of usual functional

interpretation. On the other hand (A.43), Σ maj Σ, Π maj Π, P maj P and



232 A complexity analysis of functional interpretations

M maj M would have constant-depth proofs in EILωM if the underlying logical

system handled tuples of conjunctions more smoothly. In such a case (A.43)

could be replaced with

EILωM,v `k·∂ ∃x
(
t∗ maj x ∧ ∀a, y AD(x(a), y, a)

)
.

Hence the bound on verifying proof depth would be better than in the usual

functional interpretation case, see (A.33). The smoother treatment of tuples

of conjunctions would actually be normal in our context with free use of tuples

in both quantifier axioms/rules and the extensionality rule ER0 .

Let ECLωM,+ be the classical variant of EILωM,+ . Combined with N-translation,

monotone functional interpretation carries over to ECLωM,++AC0 and the upper

bounds on size and proof depth are smaller than in the functional interpreta-

tion case. The following analogue of Theorem A.62 + Corollary A.64 holds.

Theorem A.74 There exists k ∈ IN constant and an algorithm which does

the following. Given as input a proof P of A in ECLωM,++AC0 , it produces as

output t∗ such that, with the notations 2 and the abbreviations ∂ :≡ ∂(P) and

Sm :≡ Sm(P) the following hold :

d(t∗) ≤ k · qs · ∂

S(t∗) ≤ Sz(t∗) ≤ k · Sm ≤ (k · qs)k·∂

mdg(t∗) ≤ vdg + k · fid
mar(t∗) ≤ var + k · qs · fid
EILωM,v `k·(qs+∂) ∃x [ t∗ maj x ∧ ∀a, y (AN)D(x(a), y, a) ]

For A ≡ ∀x∃y A0(x, y) with A0 quantifier-free and {x, y} = Vf(A0) , (A.43)

can be replaced with

EILωM,v `k·(ld(A0)+qs+∂) ∃Y [ t∗ maj Y ∧ ∀xA0(x, Y (x)) ]

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm . The

·̃ constants of EILωM,v in (A.43, A.43) are among those corresponding to terms

occurring in the leaves of PN .

In concrete applications of monotone functional interpretation, EILωM will

be extended by certain arithmetical (and even analytical) principles (see Sec-

tion A.4 below).



A.4. Extensions to Arithmetic and fragments of Analysis 233

In the presence of a modest amount of arithmetic we can make use of t∗

extracted by monotone functional interpretation in the following way. Let

x, y be of type o . Then (A.43) implies ∀x∃y ≤ t∗(x)A0(x, y) and therefore,

using bounded search applied to t∗ and a characteristic term tA0 for A0 one

easily constructs t such that ∀xA0(x, t(x)) . This also works for x of type 1

using the construction xM(i) :≡maxj≤i x(j) since xM maj x . Moreover, for sen-

tences of the form ∀x1 ∀z ≤1 s∃yoA0(x, z, y) with s closed term one can easily

obtain a type-2-term t̂ from t∗ such that ` ∀x1 ∀z ≤1 s ∃y ≤o t̂(x)A0(x, z, y)

by taking t̂(x) :≡ t∗(xM, s∗) where s∗ is a majorizing term for s . The term t̂

provides a uniform bound on y which is independent from z . See [63] for

more details. This feature of monotone functional interpretation is of cru-

cial importance in applications to numerical analysis [80] where {z | z ≤1 s} is

used to represent compact Polish spaces. Since A0(x, z, y) is monotone (i.e.,

A0(x, z, y1) ∧ y2 ≥ y1 → A0(x, z, y2)) in most applications, the term t̂ will not

be only a bound but actually a realizer for ∃y . Hence in this context monotone

functional interpretation even provides a realizer which is independent from

z and of simpler structure than realizers produced by the usual functional

interpretation (see [67] for more on this).

A.4 Extensions to Arithmetic and

fragments of Analysis

Both Gödel’s functional interpretation and the monotone functional in-

terpretation apply to intuitionistic and, via the negative translation, also

classical arithmetic [44, 68, 122] (even in finite types) and fragments thereof

[21, 68, 102].

A.4.1 Treatment of Primitive Recursive Arithmetic PRAω

Let us first consider Feferman’s system [27] PRAω (and its intuitionistic

variant PRAωi ) of primitive recursive arithmetic in all finite types, where only

quantifier-free induction and ordinary Kleene-primitive recursive functionals

are included.

Definition A.75 Let PRAωi be an extension of EILω with the following:

Kleene recursor41 constants R̂ρ with axioms

41For all ρ the recursor R̂ρ can be defined from R̂o using λ-abstraction and hence the EILω



234 A complexity analysis of functional interpretations

AxR̂ :

{
R̂ρ(0, y, z, v) =o z(v)

R̂ρ(Sx, y, z, v) =o y(R̂ρ(x, y, z, v), x, v)
.

Axioms (the usual primitive recursive +, ∗, sg, | · | are defined by R̂o)

x =o y ↔ |x− y| =o 0

x =o 0 ∧ y =o 0↔ x+ y =o 0

x =o 0 ∨ y =o 0↔ x ∗ y =o 0

(x =o 0→ y =o 0)↔ sg(x) ∗ y =o 0

x 6=o 0↔ sg(x) =o 0


(A.43)

An axiom of quantifier-free-induction (below “y < x” is the usual prim-

itive recursively definable strict order relation on natural numbers)

IA′0 : ∀f 1, xo(f(0) =o 0 ∧ ∀y < x(f(y) =o 0→ f(Sy) =o 0)→ f(x) =o 0) .

The EILω-constants ν, I and E are immediately definable in PRAωi from

(A.43). Also the (here primitive-recursive) closed terms associated to quantifier-

free-formulas A0 (which here may also contain ∨) like in Proposition A.36 are

immediately provided in PRAωi with PRAωi ` tA0(a) =o 0↔ A0(a). Because of

this, IA′0 implies the following schema of quantifier-free-induction (below A0

are quantifier-free-formulas which here may contain ∨):

IA0 : A0(0) ∧ ∀x(A0(x)→ A0(Sx))→ ∀xA0(x) .

The EILω-axiom TND0 : x =o 0 ∨ x 6=o 0 can be immediately derived from IA0.

The EILω-constant D can now easily be defined from R̂ in PRAωi .

The axioms AxR̂ and (A.43) are realizer-free except for the implication

x · y =o 0 → (x =o 0 ∨ y =o 0 )

whose functional interpretation is realized by Π = λx, y. x. It follows that

functional interpretation is immediately available for PRAωi once realizing terms

are provided for IA′0. Such terms of constant size can be built using Kleene

recursors R̂ and are equivalent to

λf, x.min y<x t[ f(0)=0∧ ( f(y)=0→ f(Sy)=0 )→ f(x)=0 ](f, x, y) .

Since ≥ and M are PRAωi -definable as well, the axioms added to EILω

in Definition A.65 become derivable in PRAωi . It follows that also monotone

combinators in view of Definition A.12. This property no longer holds for Gödel recursor

Rρ to be introduced in Section A.4.3. See also Footnote 10 of [4].



A.4. Extensions to Arithmetic and fragments of Analysis 235

functional interpretation is available for PRAωi . In this case IA′0 is much simpler

realized by projectors Π = λf, x. x (no recursors are needed).

Theorem A.76 All the quantitative results proved above in Theorems A.40,

A.72 and Theorems A.62, A.74 carry on to PRAωi , respectively PRAω in the

obvious way.

A.4.2 Extension to the analytical system PRAω+AC0+WKL.

The analogue of Theorem A.76 for the classical system PRAω+AC0 holds as

well. The system PRAω+AC0 allows to derive the schemas of Σ01-induction and

∆01-comprehension (see [63]) and therefore contains the system RCA0 known

from reverse mathematics (see [117]).

Let us denote by WKL the binary König’s lemma. This important42 ana-

lytical principle simply asserts that every infinite binary tree has an infinite

path. The second author has proved in [63] by means of a combination of

functional interpretation and majorizability (a precursor of monotone functio-

nal interpretation) that PRAω+AC0+WKL (which contains Friedman’s system43

WKL0 of [34, 117]) is Π02-conservative over PRAωi . Moreover, a witnessing term

can be provided. We give below a quantitative version of this result. We

follow closely the proof in Section 7 of [4] which is a simplification of the more

general method of [63].

Let PRAω be formulated over ECLωM . We use the following convenient for-

mulations of the binary König’s lemma:

WKL : ∀f [∀k ¬Bnd(BTr(f), k) → ∃b ∀ k (InSeg(Bin(b), k) ∈ BTr(f)) ]

WKL′ : ∀f ∃b∀ k [¬Bnd(BTr(f), k) → InSeg(Bin(b), k) ∈ BTr(f) ]

where (see Section 7 of [4] for full details)

Bin and BTr are primitive recursive functionals which transform their

argument to a binary function, respectively a binary tree ;

InSeg is a primitive recursive functional which produces the length k

initial segment of the binary function Bin(b) ;

42A comprehensive discussion of the vast mathematical applicability of WKL is in[117].
43Theorem I.10.3 of [117] gives a summary of important mathematical statements which

are theorems of WKL0. We only mention here the Heine-Borel covering lemma, the maximum

principle, the separable Hahn-Banach theorem and Brouwer’s fixed point theorem.



236 A complexity analysis of functional interpretations

Bnd is a primitive recursive predicate which expresses that the given

binary tree BTr(f) has depth at most k .

Remark A.77 BelowA0 is quantifier-free, x, y are type o and {x, y} = Vf(A0) .

The following theorem expresses the fact that the WKL–elimination and term

extraction procedure from WKL–based proofs as developed in [63] is feasible

both w.r.t. the size of the extracted terms and the depth of the verifying WKL–

free proof. Although the feasibility of WKL–elimination was already proved

(independently) in [46] and [2] for fragments of second-order arithmetic, the

techniques employed there do not provide any term extraction procedure.

Theorem A.78 There exists k ∈ IN constant and an algorithm based on

Gödel’s functional interpretation which does the following. Given as input a

proof

P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

it produces at output realizing terms t such that Sz(t) ≤ k · Sc(P) and

PRAωi `k·(ls+∂) ∀xA0(x, t(x)) .

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm(P) .

Proof: The first step is to transform

P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

to

PN : PRAωi +AC0+MK `k′·(ld(A0)+∂) WKL′ → ∀x ∃y A0(x, y)

such that all statements on PN in Proposition A.58 hold. Here PN is ob-

tained by a slight transformation within PRAωi +MK of the output from the

N-translation algorithm carried on P . There exist fixed proofs (hence with

constant complexity) in PRAωi of WKL′ → WKL and WKL→ WKLN . See also Lem-

mas 7.3.1 and 7.3.3 of [4] .

The second step is to transform PN to the proof in (A.44) via a technique

based on functional interpretation and majorization. This technique is de-

scribed in Lemmas 7.4.1 and 7.4.2 of [4] and is an adaptation of the more

general technique of [63] . The elimination of WKL′ is achieved by weakening

WKL′ to a formula which is provable in PRAωi . Since we are here interested also

in the realizing term for ∃y and not only in the WKL–conservation, we use

a tuple-extended variant of Lemma 7.4.1 from [4] where a realizer for ∃y is

provided as well. 2



A.4. Extensions to Arithmetic and fragments of Analysis 237

Corollary A.79 (quantitative WKL-conservation) There exists an algo-

rithm which transforms proofs

P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

into proofs

P ′ : PRAωi `k·(ls+∂) ∀x ∃y A0(x, y) .

Remark A.80 We could alternatively use a monotone functional interpreta-

tion version of Lemma 7.4.1 from [4] in the lines of our Theorem A.74 . Then

we would first obtain a majorizing tuple t∗ for ∃y and we could produce a real-

izer by bounded search up to t∗(x) along the predicate tA0(x, y) = 0 . Theorem

A.78 would now hold with (A.44) replaced by

PRAωi `k·(ld(A0)+qs+∂) ∀xA0(x, t(x)) .

In many cases A0 is monotone in y and therefore bounded search is actu-

ally not needed – see also the remarks following Theorem A.74 . In such a

case we would obtain terms t with Sz(t) ≤ k · Sm(P) , time overhead at most

k · fid · qs · Sm(P) and

PRAωi `k·(qs+∂) ∀xA0(x, t(x))

hence a full better performance than the algorithm of Theorem A.78 .

Remark A.81 There are three ways to produce a variant of Theorem A.78

where the input proof is P : PRAω+AC0+WKL `∂ ∀x ∃y A0(x, y) . One way to

overcome the failure of the deduction theorem for weakly extensional PRAω is

via the elimination-of-extensionality procedure from [89] . This applies when

P contains only44 variables of type 0 or 1 . In fact this is the case in most

applications. We conjecture that the aforementioned procedure is feasible

and hence the overall term extraction and WKL-conservation is still a feasible

process. However if we are interested in the term extraction more than in

the WKL-conservation we can state a variant of Theorem A.78 based on the

monotone functional interpretation with the verifying proof in PRAωi +̃WKL and

of the same depth as (A.44), where

W̃KL : ∃B ∀f ∀ k [¬Bnd(BTr(f), k) → InSeg(Bin(B(f)), k) ∈ BTr(f) ]

44Under this type restriction we can allow the use of (full) extensionality axiom EA, see

also Remark A.6 . Hence in this setting we work with the fully extensional PRAω which

features the deduction theorem.



238 A complexity analysis of functional interpretations

is a strengthening of WKL′ . If we are satisfied with a partial WKL-conservation

then we can use the fact that premises of ER0 are realizer-free and hence any

WKL instance used in the proof of such a ER0-premise gets discarded in the

preprocessing phase of the (monotone) functional interpretation algorithm.

We can thus consider that the input proof is in PRAω+AC0⊕WKL (see [63], p.

1246 for the meaning of ⊕ in this context). For this system the deduction

theorem holds w.r.t. ⊕ and we obtain (A.44) with PRAωi extended with the

N-translations of conclusions of those ER0 instances in P whose sub-proof-trees

use WKL . See also Remark A.45 .

Remark A.82 Even though the term extraction procedure of Theorem A.78

is extremely feasible, the normalization of the extracted terms into ordinary

primitive recursive functions and the verification in (plain) primitive recursive

arithmetic would however trigger a non-elementary-recursive complexity .

A.4.3 The case of Peano Arithmetic PAω and PAω+AC0+WKL

Already Gödel showed that the functional interpretation of full induction can

be realized by his impredicative recursors R for (simultaneous45) primitive re-

cursion in finite types, where (below i ∈ 1, |σ| with |σ| the length of σ)

AxR :

{
Ri
σ(x, y, 0) =σi xi

Ri
σ(x, y, Sz) =σi yi(R1

σ(x, y, z), . . . ,R
|σ|
σ (x, y, z), z)

.

Gödel’s objective was to reduce the consistency of Peano arithmetic PA to that

of a quantifier-free calculus (called T) based on these R. In order to achieve

this he had to give a verifying proof for the functional interpretation of in-

duction which used only quantifier-free induction. For the applied purpose

of program extraction this is not required. We may use full induction in the

verifying proof as well. This simplifies matters substantially as was already

observed in [122](3.5.5.(iii)). Things are particularly simple if induction is

formulated as a rule

IR :
A(0) , A(z)→ A(Sz)

A(z)

which nevertheless allows to derive the axiom schema of induction

IA : A(0) ∧ ∀z (A(z)→ A(Sz) ) → ∀zA(z) .

45Simultaneous primitive recursion even in higher types can be reduced to ordinary prim-

itive recursion in higher types. This is particularly simple in the presence of ER0, see [122].



A.4. Extensions to Arithmetic and fragments of Analysis 239

The treatment of IR under functional interpretation is fairly similar to that of

modus ponens MP. Recursors R have to be used in addition to Σ. Given that

t1 Dr A(z, a) and (t2, t3) Dr (A(z, a)→ A(Sz, a)) one can prove46 in a con-

stant number of steps that t4 Dr ∀zA(z, a). Here t4 ≡ Σ R t1 (P t13) . . . (P t
|t3|
3 ) .

The monotone functional interpretation of IR is much the same as the usual

one if we use recursors R∗ which can easily be defined from R by a minor

modification (see also [57] for similar R+ recursors). Negative translation ap-

plies to IR just as it did for MP. Let Peano arithmetic in all finite types PAω be

formulated over ECLω plus IR and recursors R. The remarks above imply that

we can state the following consequence of (Corollary A.64) of Theorem A.62.

Theorem A.83 There exists k ∈ IN constant and a functional-interpretation-

based algorithm which does the following. Given as input a proof

P : PAω+AC0 `∂ ∀x∃y A0(x, y)

it produces a realizing tuple t such that

PAωi `k·(ls+∂) ∀xA0(x, t(x))

and Sz(t) ≤ k · Sc(P). The time overhead of the algorithm is upper bounded

by k · qs · ls · Sm(P).

In contrast to IR, the treatment of IA under usual functional interpreta-

tion results in complexity issues similar to those of CT∧ in Proposition A.37.

This is hinted by the fact that the derivation of IA from IR apparently needs

contraction A→ A ∧ A. Let A be the induction formula; in order to realize

IA we need bounded search along the predicate tAD
(x, y) =o 0. Here tAD

is a

characteristic term for AD, see [102]. The monotone functional interpretation

of IA avoids this altogether (like before in the case of A→ A ∧ A). Now only

a majorizing term for µy ≤ z [ tAD
(x, y) =o 0 ] needs to be constructed and we

can simply use t∗ :≡Π = λx, z. z. Let PAω be formulated over ECLωM plus IA

and the recursors R. The remarks above imply that we can state the following

result.

Theorem A.84 All the quantitative results of Theorem A.78 and the subse-

quent considerations carry on to the corresponding PAω-based systems in the

obvious way.

46Obviously using IR.



240 A complexity analysis of functional interpretations

Association of Definitions, Notations or (Sub)Sections to Symbols

Name Defined in Name Defined in Name Defined in

`n Section A.0.2 {] · , · [} Definition A.20 | · | Section A.0.2

·̃ Definition A.25 ≥σ Definition A.65 =σ , 6= Section A.1.2

ar(·) Definition A.1

+ Section A.1.2
car(·) Section A.1.2 car(·) Notation 3

cdg(·) Section A.1.2 cdg(·) Notation 3 C(·) Section A.1.2

d(·) Section A.1.2 dS(·) Section A.1.2S meta-var. dg(·) Definition A.1

+ Section A.1.2

D Section A.1.3 ·D , · D Definition A.16 · Dr · Definition A.20

∂(·) Section A.0.2 ∂L(·) Section A.0.2

L meta-var.
E Section A.1.3

fd(·) Section A.1.2 fd(·) Notation 2 fid(·) Section A.1.2

id(·) Section A.1.2 id(·) Notation 2 I Section A.1.3

k0 Section A.0.2 λx. t Definition A.12 L(·) Section A.0.2

ld(·) Section A.1.2 ld(·) Notation 2 ls(·) Section A.1.2

ls(·) Notation 2 ls(·) Notation 2 Lv(·) Section A.0.2

mdg(·) Section A.1.2 mar(·) Section A.1.2 · maj σ · Definition A.65

Mσ · · Definition A.65 · N Definition A.55 Oρ Section A.1.3

Σ , Π
Definition A.4

+ Section A.1.3
P Section A.1.3 PR[·] Definition A.20

qs(·) Section A.1.2 qs(·) Notation 2 RR[·] Definition A.20

RTS [·] Definition A.20 S(·) Section A.1.2 S Section A.1.3

Si(·) Definition A.46 Sc(·) Definition A.46 Sm(·) Definition A.46

Sz(·) Theorem A.51 Sz′(·) Definition A.47 typ(·) Section A.1.2

td(·) Section A.1.2 ts(·) Section A.1.2 ν Section A.1.3

var(·) Section A.1.2 var(·) Notation 2 vdg(·) Section A.1.2

vdg(·) Notation 2 V(·) Section A.1.2 Vb(·) Section A.1.2

Vf(·) Section A.1.2 Vt(·) Section A.0.2 wd(·) Section A.1.2

wd(·) Notation 3 ws(·) Section A.1.2 ws(·) Notation 3

Distribution of Definitions and Notations in (Sub)Sections

Def.
Not. Section Def.

Not. Section Def.
Not. Section Def.

Not. Section

A.1 A.1 A.4 A.1.3 A.12 A.1.3 A.16 A.2

A.20 A.2 A.25 A.2.1 2 A.2.3 3 A.2.3

A.46 A.2.4 A.47 A.2.4 A.51 A.2.4 A.65 A.3.2


	Introduction
	Outline of the following sections

	Arithmetical systems for Gödel functionals
	Languages, types, terms and formulas
	Logical axioms and rules and Boolean axioms
	Stability, Case Distinction, Decidability and Disjunction Introduction/Elimination

	Weakly extensional Intuitionistic Arithmetics WeZ, WeZ, WeZnc and WeZ,nc
	The ``no-undischarged-assumptions'' Induction Rule
	The rules of Equality for all simple types
	Equality axioms induced by the Conversion Relation -3mu
	The definition of systems WeZ, WeZ, WeZnc and WeZ,nc
	Equivalence between three formulations of Induction

	Immediate extension of systems WeZnc and WeZ,nc
	The monotonic intuitionistic Arithmetics WeZm and WeZ,nc+m
	The classical (monotonic) Arithmetics WeZnc,c+ and WeZ,nc,c+m
	Discussion

	The light (monotone) functional Dialectica interpretation
	The light Gödel functional ``Dialectica'' interpretation
	The light monotone functional ``Dialectica'' interpretation
	Extensions of the light (monotone) Dialectica interpretation toextractions from fully classical proofs
	Light Monotone Dialectica extractions from classical analytical proofs by elimination-of-extensionality and -arithmetization
	Discussion

	Feasible systems of Arithmetic and Analysis
	A poly-time Arithmetic/Analysis due to Oliva, Cook-Urquhart and Ferrreira
	A polynomial bounded Arithmetic/Analysis due to Kohlenbach
	Elimination of the non-standard analytical axiom F-
	Verification in the full set-theoretic type structure

	Our proposal for a feasible Arithmetic/Analysis system
	Discussion

	Comparison with other techniques for extraction of exact realizers from non-intuitionistic proofs. Case Studies
	The BBS refined A-translation
	Theoretical comparison with the BBS technique

	Berger's hsh example
	MinLog source code for Berger's hsh example

	The (semi-)classical Fibonacci proof
	Motivation for treatment of Fibonacci in MinLog
	The semi-classical Fibonacci proof in MinLog
	The light functional ``Dialectica'' interpretation
	A comparison of the three extraction techniques

	Conclusions and future work
	The integer square root example
	Discussion

	Synthesis of moduli of uniform continuity by the LMD-interpretation in the proof-system MinLog
	The minimal arithmetic HeExtEq proof in the computer-system MinLog
	The MinLog machine majorant extraction
	Machine results for the HeExtEq case-study
	Discussion

	Conclusions
	Bibliography
	Index of Chapters 1 and 2
	A complexity analysis of functional interpretations
	Outline of the main results
	Notational conventions

	The weak base system EIL
	The type structure FT
	Intuitionistic Equality Logic over FT (IEL)
	Extended Intuitionistic Equality Logic over FT (EIL)

	A quantitative analysis of functional interpretation
	Axiom extensions of EIL.The system EIL++AC+IP+MK
	The treatment of EIL rules
	Bounds for realizing terms forEIL++AC+IP+MK axioms
	Better bounds on the size of extracted terms
	Space and time complexity of theterm extraction algorithm

	Immediate extensions of the quantitative analysis
	Treatment of classical EIL. The system ECL++AC0
	A quantitative analysis of themonotone functional interpretation

	Extensions to Arithmetic and fragments of Analysis
	Treatment of Primitive Recursive Arithmetic PRA
	Extension to the analytical system PRA+AC0+WKL.
	The case of Peano Arithmetic PA and PA+AC0+WKL

	Index of Notations


