
Federated Reservoir Computing Neural Networks
Davide Bacciu

Dept. of Computer Science
University of Pisa

Pisa, Italy
bacciu@di.unipi.it

Daniele Di Sarli
Dept. of Computer Science

University of Pisa
Pisa, Italy

daniele.disarli@phd.unipi.it

Pouria Faraji
Dept. of Computer Science

University of Pisa
Pisa, Italy

p.faraji@studenti.unipi.it

Claudio Gallicchio
Dept. of Computer Science

University of Pisa
Pisa, Italy

gallicch@di.unipi.it

Alessio Micheli
Dept. of Computer Science

University of Pisa
Pisa, Italy

micheli@di.unipi.it

Abstract—A critical aspect in Federated Learning is the aggre-
gation strategy for the combination of multiple models, trained on
the edge, into a single model that incorporates all the knowledge
in the federation. Common Federated Learning approaches for
Recurrent Neural Networks (RNNs) do not provide guarantees
on the predictive performance of the aggregated model. In this
paper we show how the use of Echo State Networks (ESNs),
which are efficient state-of-the-art RNN models for time-series
processing, enables a form of federation that is optimal in the
sense that it produces models mathematically equivalent to the
corresponding centralized model. Furthermore, the proposed
method is compliant with privacy constraints. The proposed
method, which we denote as Incremental Federated Learning,
is experimentally evaluated against an averaging strategy on two
datasets for human state and activity recognition.

I. INTRODUCTION

In a centralized setting, a Machine Learning algorithm can
make use of all the available training data to produce a predic-
tive model that best generalizes to unseen data. Unfortunately,
a centralized setting is not always feasible. When the data
comes from multiple independent devices, constraints such
as network connectivity, bandwidth, and privacy preservation
can make it impossible to aggregate the training data within a
centralized location.

In a typical Federated Learning scenario [1], the aforemen-
tioned problem is tackled by letting each client produce a
local Machine Learning (ML) model trained on just the locally
available data. Then, instead of the raw data, it is the models
that are transferred to a centralized location such as a server.
In the server, the models must be aggregated by some kind
of strategy (e.g., averaging the weights) and then sent back to
the clients if they need it for inference or further training. The
critical point for an effective federation lies in the aggregation
strategy, which ideally should produce a single compact model
that incorporates all the knowledge from each client. However,
due to the notorious difficulty in the interpretation of the
weights of a neural network, it is not easy to give guarantees
about the outcome of the aggregation.

Due to the relevance of Federated Learning in the case
of clients collecting sensor data, in this paper we focus on

federation techniques for Recurrent Neural Networks (RNNs),
which are ML models especially suited for time-series pro-
cessing. While there is a vast amount of literature regarding
federated RNNs [2]–[6], here we focus on the paradigm
of Reservoir Computing, which allows to produce highly
resource-efficient RNNs with a long-proven effectiveness in
applications with sensor gathered information such as human
activity recognition [7], ambient assisted living [8], medical
diagnosis [9], meteorological forecasting [10], [11], industrial
applications (for blast furnace off-gas) [12], [13], and more
[14]. In all these cases, Reservoir Computing approaches
provide an unparalleled tool in the literature both from the
point of the achievable predictive performance, and of the
trade-off between accuracy and efficiency in learning. We will
show how the use of Echo State Networks (ESNs) [15], [16],
from the Reservoir Computing paradigm [17], [18], allows
the implementation of an optimal aggregation strategy that
produces models equivalent to the corresponding centralized
model directly trained on all the data. Nevertheless, with the
proposed approach privacy preservation constraints are still
satisfied.

This works has been developed within the context of
the H2020 project TEACHING1 [19] which is an ongoing
research endeavour targeting specifically the provisioning of
innovative methods and systems to enable the development of
the next-generation of autonomous applications leveraging a
learning system distributed [20] over a cyber-physical system
(CPS). In this context, TEACHING puts forward a human-
centric perspective on CPS intelligence based on a synergistic
collaboration between the human and the cybernetic intelli-
gence. In particular, it leverages human reactions as a driver
for continual adaptation [21] and personalization of neural
models deployed on the devices at the edge of the CPS.
This clearly depicts a federated learning scenario where such
localized neural models will be adapted across time to provide
personalized predictions to the single users, while maintaining
centralized and aggregated models on the cloud, leveraging the

1www.teaching-h2020.eu

gallicch
This is a pre-print version of the following paper

Davide Bacciu, Daniele Di Sarli, Pouria Faraji, Claudio Gallicchio, Alessio Micheli: Federated Reservoir Computing Neural Networks. Proceedings of the International Joint Conference on Neural Networks (IJCNN 2021), IEEE, Forthcoming.



u(t) y(t)

Win W

Ŵ

x(t)

Fig. 1. Architecture of an ESN. The input signal u(t) is fed to the recurrent
reservoir. Then, a state x(t) is extracted from the reservoir, from which an
output y(t) is computed.

full knowledge harvested by the personalized models. Within
such a scenario, TEACHING is planning to leverage ESNs
as the model of choice to implement the learning models
distributed at the CPS edge, using the federated learning
mechanisms described in this paper to build, maintain and
consolidate the aggregated models at the network core.

In Section II we introduce ESNs and the commonly used
aggregation technique denoted as Federated Averaging. In
Section III we propose a novel federation technique, denoted
as Incremental Federated Learning, for producing aggregated
ESN models that are equivalent to a centralized model. In
Section IV we perform an experimental comparison of the
approaches of Federated Averaging and Incremental Federated
Learning, by simulating a federated scenario over two datasets
for human state and activity recognition. Finally, in Section V
we draw the conclusions of the study.

II. BACKGROUND

A. Echo State Networks

Echo State Networks (ESNs) [15], [16] are an efficient
ML approach for temporal data. They are part of the general
framework of Recurrent Neural Networks (RNNs), but are
based on the exploitation of the network activations from the
point of view of a discrete-time dynamical system. The idea of
studying the evolution of the recurrent network as a dynamical
system is not unique to ESNs, but is shared under the hat of the
so-called Reservoir Computing paradigm [17], [18]. While in
this work we focus on ESNs, the techniques are also applicable
to other Reservoir Computing models such as Liquid State
Machines [22].

The architecture of an ESN consists in two components,
which are illustrated in Fig. 1. One is the recurrent network
that holds an internal state which evolves over the time
steps, which is called the reservoir. The other component, the
readout, is a linear layer that takes as input a state of the
reservoir and emits a prediction. Formally, let x(t) ∈ RNR

denote the state of a reservoir with NR recurrent units at a
given time step t. Then, the evolution of the state for an input
sequence of vectors u(1), . . . ,u(t) ∈ RNU in a reservoir of

leaky-integrator neurons can be described as

x(0) = 0,

x(t) = (1− a)x(t− 1)

+ a tanh
(
Winu(t) + Ŵx(t− 1)

)
.

(1)

Equation (1) is parametrized by two matrices and a scalar:
matrix Win ∈ RNR×NU is the input-to-reservoir weight
matrix, Ŵ ∈ RNR×NR is the recurrent reservoir-to-reservoir
weight matrix, and a ∈ R is the leaking rate, under the
constraint that 0 < a ≤ 1. The bias term is omitted for the
sake of conciseness.

Unlike popular RNNs in which the parameters of the whole
network are jointly trained by an interative algorithm, in ESNs
only the parameters of the readout are trained. This allows for
an extremely efficient training process. In fact, the weights in
the reservoir are initialized from a suitable random distribution
and then left fixed. For the reservoir-to-reservoir matrix Ŵ,
the initialization step also includes an important constraint on
the spectral radius ρ(Ŵ) (the largest eigenvalue in absolute
value) which is controlled in order to meet the condition for
the stability of the reservoir dynamics [15]. Moreover, Win

and Ŵ are often initialized as sparse, i.e., to have a limited
degree of connectivity between the units, to enable faster
matrix operations.

From a given state x(t), the output of the network is
computed by the readout as follows:

y(t) = Wx(t). (2)

Here, W ∈ RNY ×NR is a weight matrix. In ESNs, W is the
only matrix subject to training. As such, training proceeds as
follows:

1) the input sequences from the training dataset are fed to
the reservoir,

2) the relevant states on which the network must learn to
perform predictions are collected column-wise into a
matrix S ∈ RNR×Ntrain , where Ntrain is the number
of such states, and the associated targets are collected
into the matrix Y ∈ RNY ×Ntrain ,

3) the matrix W is obtained as the solution to a least
squares minimization problem between WS and Y.

In particular, a common algorithm for a regularized solution
to the least squares problem is ridge regression. In this case,
if β ∈ R+ is the L2 regularization factor chosen by model
selection, the readout weights are computed in closed form as
follows:

W = YST (SST + βI)−1. (3)

By avoiding the tuning of the recurrent connections, the
training process of ESNs can be particularly efficient. More-
over, by avoiding the use of gradient descent it does not run
into the optimization problems associated with the popular
algorithm of backpropagation through time [23].



client c1 . . . client cn

server

Wc1 Wcn

W

Fig. 2. Federated Averaging Scheme. Each client c sends their local matrix
Wc to the server. After the aggregation of the models is performed in the
form of a weighted average, the server sends back the same matrix W to all
clients.

B. Federated Averaging

A straightforward and standard strategy for performing
federated learning in neural networks is that of Federated
Averaging (FedAvg) [24]. In this strategy, the weights of each
locally trained model are aggregated in the central server by
an element-wise average, possibly weighted by the size of the
local datasets.

In the special case of ESNs, we can assume the scenario of
a uniform configuration of the reservoir among all clients. In
practice this means that the input-to-reservoir matrices Win

and the reservoir-to-reservoir matrices Ŵ will be identical in
all clients. In this case, since Win and Ŵ are fixed, Federated
Averaging simply amounts to the transmission and averaging
of the readout weights alone.

Formally, let Sc ∈ RNR×Ntrain,c be a matrix containing the
states collected from the reservoir, locally to client c ∈ C. The
states in Sc can be used to locally train the readout weights
Wc in closed-form as follows:

Wc = YcS
T
c (ScS

T
c + βcI)

−1, (4)

where Yc ∈ RNY ×Ntrain,c contains the label associated to
each reservoir state in Sc, βc ∈ R+ is the L2 regularization
factor and I is the identity matrix.

After the local readout weights Wc have been computed,
they can be transferred to the server. In this case, the local
readout weights are the only information which is sent to the
server, which is not aware of the content of the actual data or
states from the clients. The average weights are computed as
follows:

W =
∑
c∈C

1

Ntrain,c
Wc (5)

After the aggregated weights are computed as in (5), the
matrix W is transmitted back to the clients. Then, the clients
can substitute their readout weights with the averaged version
received from the server. A schematic view of how the
matrices are transmitted between clients and server is shown
in Fig. 2.

Let us ignore the impact of transmitting single scalar values
such as Ntrain,c. Then, with the technique of Federated
Averaging, each client needs to share with the server NYNR

client c1 . . . client cn

server

Ac1 ,
Bc1

Acn ,
Bcn

W

Fig. 3. Incremental Federated Learning Scheme. Each client sends their local
matrices Ac and Bc to the server. After the matrices are aggregated and
multiplied to compute the optimal readout weights, the server transmits W
back to all clients.

floating-point values, corresponding to the entries in Wc. On
the other hand, each client receives from the server NYNR

floating-point values for W. The transmission load is thus
symmetric.

Averaging the readout weigths is a straightforward tech-
nique that however does not give any strong guarantee about
the performance of the aggregated model. In the next section
we will propose a different aggregation strategy that guaran-
tees the optimal aggregated weights given the data and the
reservoir.

III. PROPOSED METHOD

The peculiar characteristics of ESN training allow an opti-
mal form of federated learning, in the sense that the resulting
aggregated model is equivalent to the model that would be
obtained by aggregating all the input data and using it for
the training process. In fact the proposed method, that we
denote as Incremental Federated Learning (IncFed), exploits
an algebraic decomposition of the typical readout training
equation (3).

As for the Federated Averaging technique, this method also
assumes a uniform configuration of the reservoir among all
clients. Locally, instead of computing the readout weights,
each client c computes the matrices Ac ∈ RNY ×NR and
BNR×NR

c as follows:

Ac = YcS
T
c , (6)

Bc = ScS
T
c + βcI. (7)

The matrices Ac and Bc are sent to the server, where they get
summed as in the following equations:

A =
∑
c∈C

Ac, (8)

B =
∑
c∈C

Bc. (9)

After the summed matrices are computed as in (8) and (9),
the server can compute the optimal readout weights W in
closed-form as follows:

W = AB−1 (10)



Notice how (10) is mathematically equivalent to (3) if all
data was locally available to the server. After the weights are
computed as in (10), they can be transmitted back to the clients
as in the Federated Averaging approach from Section II-B. A
schematic view of how the matrices are transmitted between
clients and server in the Incremental Federated Learning
approach is shown in Fig. 3.

The benefit of the proposed method with respect to the
Federated Averaging is that it allows a one-shot training with
virtually unlimited amount of data. The reason behind this is
that both matrices Ac ∈ RNY ×NR and Bc ∈ RNR×NR do not
depend on the number of training sequences. Whenever new
data is available, the two matrices can be iteratively updated
by the clients by simply adding the corresponding results from
the associated computations. Formally, assume that the client
c has already computed the matrices A

(t)
c ∈ RNY ×NR and

B
(t)
c ∈ RNR×NR after t iterations. As soon as new input data

is available together with the associated labels, the client can
compute the matrices Ãc and B̃c like in 6 and 7 using only
the newly available data, and then sum the matrices as in:

A(t+1)
c = A(t)

c + Ãc, (11)
B(t+1)

c = B(t)
c + B̃c. (12)

It can be easily noticed how equations (11) and (12) are
equivalent to the direct computation of Ac and Bc with all the
data. Then, the last iteration T can be selected for the matrices
Ac := A

(T )
c and Bc := B

(T )
c to be sent to the server. It is this

incremental nature of the approach that gives rise to the name
of Incremental Federated Learning.

Even though the training equation is decomposed, and even
though the server is aware of the reservoir weights that were
used to produce the final states, we point out that the server
is still unable to recover the original training data. In fact,
the striking advantage of the proposed approach is that the
training data is never transferred to other nodes and it is not
possible to recover it from the transferred matrices, but at the
same time the readout can be aggregated as if all the original
training data was available to the server. Thus, Incremental
Federated Learning enables an exact form of federation for
ESNs while guaranteeing privacy preservation.

In Incremental Federated Learning, the number of floating-
point values that get transferred from each individual client to
the server is N2

R + NRNY , while the transmission from the
server to the clients involves NRNY floating-point values. The
added transmission load with respect to Federated Averaging
(which is still constant with respect to the number of examples
used for training) is justified by a better predictive performance
of the aggregated model, as it will be demonstrated in Sec-
tion IV.

IV. EXPERIMENTAL EVALUATION

In ML applications governed by strict efficiency constraints,
such as within low-power edge devices, the training process
must be efficient. This is why the first choice in such contexts
is often represented by ESNs. The aim of our experimental

evaluation is to compare the performance of federated ESNs,
on one side using the Federated Averaging approach, and
on the other side using the proposed Incremental Federated
Learning method. Our analysis will involve two datasets for
human state and activity recognition, which are well-suited for
simulating a federated scenario.

In the following we first discuss the datasets that have been
used to evaluate the proposed Incremental Federated Learning
approach. Then, we describe our experimental setup and we
discuss the results of the experiments.

A. Datasets
To perform the experiments we have chosen two dataset

whose data is organized on a per-subject basis. This makes
the datasets suited for a comparison of federated learning
techniques by assuming a different edge device for each
subject in the datasets. In the following we briefly describe
the two datasets.

a) WESAD: WESAD [25] is a publicly available dataset
for stress and affect detection from wearable devices. The
time-series in the dataset are recorded from both a wrist-
and a chest-worn device, in a lab study comprising of 15
subjects. For our purposes we employ a subset of the data, in
particular we only consider the following signals: electrocar-
diogram, electrodermal activity, electromyogram, respiration,
body temperature, and three-axis acceleration for a total of 8
features. All considered signals are synchronized and sampled
at 700 Hz. We consider the classification problem of predicting
the state of the user from the aforementioned signals, restricted
to the following 4 classes:
• Baseline
• Stress
• Amusement
• Meditation.

b) HAR: The Heterogeneity Activity Recognition dataset
from smartphones and smartwatches sensors [26] is a dataset
collected in real-world settings that can be used for bench-
marking tasks of human activity recognition. The time-series
contained in the dataset have been produced by sensors
commonly found in smartphones, namely accelerometer, gy-
roscope, magnetometer and GPS. The data was collected
by having subjects carry smartphones or smartwatches while
performing scripted activities in no specific order. The dataset
includes the following 6 kinds of activities:
• Biking
• Sitting
• Standing
• Walking
• Stair Up
• Stair Down.

For our purposes we only consider the signals coming from
the accelerometer and the gyroscope, which are sampled at the
highest frequency that the respective device allows, which is
between 50 Hz and 200 Hz. Devices include 4 smartwatches
and 8 smartphones, which record the data of 9 different
subjects in total.



TABLE I
HYPER-PARAMETER RANGES EXPLORED FOR THE WESAD DATASET.

Units Spectral
radius

Leaking
rate

Input
scaling

Input con-
nectivity

Recurrent
connectiv-
ity

100, 250 [0.1, 0.99] [0.1, 1] [0.1, 1] [1, 60] [1, 60]

TABLE II
HYPER-PARAMETER RANGES EXPLORED FOR THE HAR DATASET.

Units Spectral
radius

Leaking
rate

Input
scaling

Input con-
nectivity

Recurrent
connectiv-
ity

100, 500 [0.1, 0.99] [0.1, 1] [0.1, 1] [1, 60] [1, 60]

B. Experimental setup

Our aim is to measure and compare the performance of
the two different federation strategies, namely Federated Av-
eraging and the proposed Incremental Federated Learning. To
evaluate the strategies in different contexts, we simulate four
different degrees of availability of the clients in the federation.
In particular, we simulate the scenarios in which only 25%,
50%, 75% or 100% of the subjects are available from each
dataset.

While the number of subjects in the training set is con-
trolled in order to simulate different numbers of clients in the
federation, we emphasize that the number of subject in the
validation and test sets remains fixed in all experiments.

The best-performing hyperparameters, which are selected by
evaluating on the validation set, are shared across all models in
the federation. Therefore, the models within all clients share
the same hyperparameters. Moreover, the models also share
the same exact initialization for the weights in the reservoir
(matrices Win and Ŵ).

We point out that the practice of using all the training data
to perform hyperparameter tuning is obviously not realistic
in practical federated learning applications. As an alternative,
one could explore how the models behave when the hyper-
parameters are chosen on the smallest fraction of the dataset.
In this study we have chosen to use the entire training set
for the hyperparameter search in order to limit the number of
variables involved in our experimental evaluation.

The two datasets are processed as follows.
a) WESAD: The 8 synchronized time series that are

considered from the WESAD dataset are split in chunks of
350 samples (roughly 0.5 seconds for each chunk) and each
chunk is associated to its target class.

For WESAD, the hyperparameter tuning is performed by
a hold-out evaluation strategy. In detail, the dataset is split
so that 3 subjects (∼ 20%) are used for the test set (used
for testing the models after aggregation) and 3 other subjects
(∼ 20%) for the validation set (used for validating the models
after aggregation). All other subjects are used for training.

In Table I we report the range of hyperparameters explored
for each model on WESAD.

TABLE III
SELECTED HYPERPARAMETERS FOR THE FEDERATED AVERAGING AND
INCREMENTAL FEDERATED LEARNING APPROACHES ON THE WESAD

DATASET.

FedAvg IncFed
Units 100 100
Spectral radius 0.9 0.99
Leaking rate 1 1
Input scaling 0.1 1
Input connectivity 50 5
Recurrent connectivity 1 50
Training Accuracy (%) 75.5 85.08
Validation Accuracy (%) 84.03 83.63

TABLE IV
SELECTED HYPERPARAMETERS FOR THE FEDERATED AVERAGING AND

INCREMENTAL FEDERATED LEARNING APPROACHES ON THE HAR
DATASET.

FedAvg IncFed
Units 500 500
Spectral radius 0.8 0.4
Leaking rate 1 1
Input scaling 0.5 1
Input connectivity 20 50
Recurrent connectivity 20 60
Training Accuracy (%) 82.17 94.53
Validation Accuracy (%) 75.74 79.99

b) HAR: From the HAR dataset we only select the time-
series associated to the accelerometer and to the gyroscope.
For each of these, the dataset specified the values for each of
the three axes (x, y, z), for a total of 6 features. Additional
features such as the mean, standard deviation, minimum and
maximum of the aforementioned 6 features are computed.
This is done by using a sliding window of size 200 with
50% overlap, as described in detail in [27]. Moreover, we
also include as additional features the magnitudes for the
accelerometer and gyroscope data. Therefore, the resulting
data used to train the models is composed by a total of 32
features.

Regarding the length of the sequences, we have chosen to
split the time-series into sequences of length 500.

The hyperparameter tuning is performed by a hold-out
evaluation strategy. In detail, the dataset is split so that 2
subjects (∼ 20%) are used for the test set (used for testing
the models after aggregation) and 2 other subjects (∼ 20%)
for the validation set (used for validating the models after
aggregation). All other subjects are used for training.

In Table II we report the range of hyperparameters explored
for each model on HAR.

C. Results

In Table III we report the best performing hyperparameters,
chosen on the validation set, for Federated Averaging and
Incremental Federated Learning on the WESAD task. The cor-
responding results for the HAR task are reported in Table IV.
As it can be observed from Table III and Table IV, the accuracy
on the validation set is similar for both approaches.



TABLE V
TRAINING AND TEST ACCURACY FOR WESAD USING FEDERATED AVERAGING AND INCREMENTAL FEDERATED LEARNING.

Training subjects Random baseline Centralized ESN FedAvg ESN IncFed ESN
Training Test Training Test Training Test Training Test

25% 25.30 24.59 93.14 ± .04 65.96 ± .08 81.55 ± .09 63.42 ± .10 93.14 ± .04 65.96 ± .08
50% 25.27 25.45 87.51 ± .06 74.89 ± .09 77.63 ± .09 71.75 ± .11 87.51 ± .06 74.89 ± .09
75% 25.09 24.32 84.45 ± .04 76.56 ± .07 76.77 ± .11 74.69 ± .09 84.45 ± .04 76.56 ± .07

100% 24.91 24.99 83.78 ± .06 77.92 ± .06 76.57 ± .12 75.81 ± .10 83.78 ± .06 77.92 ± .06

TABLE VI
TRAINING AND TEST ACCURACY FOR HAR USING FEDERATED AVERAGING AND INCREMENTAL FEDERATED LEARNING.

Training subjects Random baseline Centralized ESN FedAvg ESN IncFed ESN
Training Test Training Test Training Test Training Test

25% 16.65 15.77 92.73 ± .00 55.96 ± .01 99.17 ± .00 60.38 ± .02 92.73 ± .00 55.96 ± .01
50% 16.82 17.13 93.60 ± .01 70.28 ± .03 81.57 ± .07 66.99 ± .09 93.60 ± .01 70.28 ± .03
75% 16.53 17.54 93.84 ± .02 75.69 ± .05 78.52 ± .07 74.86 ± .06 93.84 ± .02 75.69 ± .05

100% 16.75 16.99 93.64 ± .04 80.19 ± .03 70.18 ± .07 74.84 ± .11 93.64 ± .04 80.19 ± .03

To evaluate the actual generalization performance of the two
approaches we have tested the models on the held-out test set.
The results for WESAD and HAR are reported respectively
in Table V and in Table VI, where we show the average
accuracy and standard deviation over 3 repetitions of the
experiments. The tables show the results of the experiments
with a varying number of subjects, or clients, in the federation.
In particular, the reported values on the training and test set are
measured after aggregation (where applicable). In federation
terms, the test accuracy indicates the average performance of
the aggregated model for a set of clients that join the federation
at a later time.

In the tables, the accuracies of a random baseline are
included for reference. Since the distribution of the classes
is balanced, the random model sets a baseline over which to
evaluate how much the other models are actually learning from
the data. Note that for clarity, and for numerical confirmation,
we also report the performance obtained by a centralized ESN,
which turns out to be perfectly compatible with those achieved
by the Incremental Federated Learning ESN, as it is clearly
reflected in the values. As highlighted in bold, the reader can
observe from Table I and Table II that the Incremental Fed-
erated Learning method has superior predictive performance
with respect to the Federated Averaging in all cases except
just one.

Still from Tables I and II, it is interesting to observe how
both training and test accuracies vary with the number of sub-
jects in the training set. For Federated Averaging, increasing
the number of clients can drastically decrease the training
accuracy. This can be interpreted as a form of overfitting in the
case of few subjects: in fact, for a high training accuracy we
can observe an associated poor generalization performance on
the test set. On the other hand, an increasing accuracy on the
test set for increasing numbers of subjects is to be expected
and it is clearly highlighted by our results.

V. CONCLUSIONS

Thanks to their efficient training process ESNs and, in
general, Reservoir Computing approaches, are often consid-
ered ideal for deployment on low-powered devices such as
those that can be found in the edge. In this work we have
shown that it is possible to further exploit the peculiar training
method of ESNs to improve their predictive accuracy in a
federated learning scenario. In particular, the novel Incre-
mental Federated Learning approach that we propose makes
Reservoir Computing models such as ESNs especially suited
for federated infrastructures.

The advantages of the proposed approach are manifold.
First, the long-proven characteristics of ESNs make it possible
to train predictive models very efficiently, even directly on
the edge. Second, the global model that is produced by
aggregating the local models is optimal in the sense that
no better equivalent model could have been produced by
gathering all the training data within a centralized node. Third,
privacy constraints are preserved since the potentially sensitive
training data is never transmitted over the network and remains
confined within each local node.

We point out that the proposed approach is not limited
to a specific architecture of the reservoir. While here for
simplicity we have employed an ESN with leaky-integrator
neurons, the approach can be extended without modifications
to more complex reservoirs (e.g. Deep ESNs [28]) that for their
characteristics are often better suited for modeling multiple
time-scales in the data. This makes Incremental Federated
Learning a highly versatile federation method for Reservoir
Computing models.

ACKNOWLEDGMENT

This work is supported by the EC H2020 programme under
project TEACHING (grant n. 871385).

REFERENCES

[1] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, 2020.



[2] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” CoRR, vol. abs/1811.03604, 2018.

[3] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private language models without losing accuracy,” CoRR,
vol. abs/1710.06963, 2017.

[4] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated
learning for emoji prediction in a mobile keyboard,” CoRR, vol.
abs/1906.04329, 2019.

[5] H. Wang, M. Yurochkin, Y. Sun, D. S. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in ICLR. OpenRe-
view.net, 2020.

[6] R. A. Sater and A. B. Hamza, “A federated learning approach to anomaly
detection in smart buildings,” CoRR, vol. abs/2010.10293, 2020.

[7] F. Palumbo, C. Gallicchio, R. Pucci, and A. Micheli, “Human activity
recognition using multisensor data fusion based on reservoir computing,”
J. Ambient Intell. Smart Environ., vol. 8, no. 2, pp. 87–107, 2016.

[8] D. Bacciu, C. Gallicchio, A. Micheli, S. Chessa, and P. Barsocchi,
“Predicting user movements in heterogeneous indoor environments by
reservoir computing,” in Proc. of the IJCAI Workshop on Space, Time
and Ambient Intelligence (STAMI), Barcellona, Spain. Citeseer, 2011,
pp. 1–6.

[9] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep echo state networks
for diagnosis of parkinson’s disease,” in ESANN, 2018.

[10] M. Alizamir, S. Kim, O. Kisi, and M. Zounemat-Kermani, “Deep
echo state network: a novel machine learning approach to model
dew point temperature using meteorological variables,” Hydrological
Sciences Journal, vol. 65, no. 7, pp. 1173–1190, 2020.

[11] T. Kim and B. R. King, “Time series prediction using deep echo state
networks,” Neural Computing and Applications, vol. 32, no. 23, pp.
17 769–17 787, 2020.

[12] S. Dettori, I. Matino, V. Colla, and R. Speets, “Deep echo state networks
in industrial applications,” in AIAI (2), ser. IFIP Advances in Information
and Communication Technology, vol. 584. Springer, 2020, pp. 53–63.

[13] V. Colla, I. Matino, S. Dettori, S. Cateni, and R. Matino, “Reservoir
computing approaches applied to energy management in industry,” in
EANN, ser. Communications in Computer and Information Science, vol.
1000. Springer, 2019, pp. 66–79.

[14] B. Schrauwen, D. Verstraeten, and J. M. V. Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
ESANN, 2007, pp. 471–482.

[15] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks – with an erratum note’,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, 2001.

[16] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[17] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3, pp.
127–149, 2009.

[18] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural Net-
works, vol. 20, no. 3, pp. 391–403, 2007.

[19] D. Bacciu, S. Akarmazyan, E. Armengaud, M. Bacco, G. Bravos,
C. Calandra, E. Carlini, P. Cassarà, M. Coppola, P. Dazzi, M. C.
Degennaro, D. Di Sarli, J. Dobaj, C. Gallicchio, S. Girbal, A. Gotta,
R. Groppo, G. Macher, D. Mazzei, G. Mencagli, D. Michail, A. Micheli,
F. Odierna, R. Peroglio, S. Petroni, R. Potenza, F. Pourdanesh, K. Tser-
pes, F. Tagliabò, J. Valtl, I. Varlamis, and O. Veledar, “Teaching -
trustworthy autonomous cyber-physical applications through human-
centred intelligence,” in Submitted, 2021.

[20] D. Bacciu, S. Chessa, C. Gallicchio, A. Lenzi, A. Micheli, and
S. Pelagatti, “A general purpose distributed learning model for robotic
ecologies,” IFAC Proceedings Volumes, vol. 45, no. 22, pp. 435 – 440,
2012, 10th IFAC Symposium on Robot Control.

[21] A. Cossu, A. Carta, and D. Bacciu, “Continual learning with gated
incremental memories for sequential data processing,” in Proceedings
of the 2020 IEEE World Congress on Computational Intelligence, 2020.

[22] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based on
perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560, 2002.

[23] Y. Bengio, P. Y. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Trans. Neural Networks,
vol. 5, no. 2, pp. 157–166, 1994.

[24] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, ser. Proceedings of Machine Learning Research,
vol. 54. PMLR, 2017, pp. 1273–1282.

[25] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and
K. Van Laerhoven, “Introducing WESAD, a multimodal dataset for
wearable stress and affect detection,” in Proceedings of the 20th ACM
International Conference on Multimodal Interaction, ser. ICMI ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
400–408. [Online]. Available: https://doi.org/10.1145/3242969.3242985

[26] D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco, and M. R. Luaces,
“A public domain dataset for real-life human activity recognition using
smartphone sensors,” Sensors, vol. 20, no. 8, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/8/2200

[27] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human activity
recognition using federated learning,” in 2018 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Ubiquitous
Computing & Communications, Big Data & Cloud Computing, Social
Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom). Los Alamitos, CA,
USA: IEEE Computer Society, dec 2018, pp. 1103–1111. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/BDCloud.2018.
00164

[28] C. Gallicchio, A. Micheli, and L. Pedrelli, “Design of deep echo state
networks,” Neural Networks, vol. 108, pp. 33–47, 2018.




