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Utility of Feedback Has a
Greater Impact on Learning
than Ease of Decoding
Chelsea Dainton1 , Naomi Winstone2, Peter Klaver1,3, and Bertram Opitz1,4

ABSTRACT— While feedback is a key facilitator of learn-
ing, researchers have yet to determine the ideal feedback
process for optimal performance in learners. The current
study investigates the combined effects of ease of decoding,
and utility of feedback during learning. Accuracy and rate
of learning were recorded alongside changes to the feedback
related negativity (FRN), an event-related potential (ERP)
elicited by feedback stimuli. This study investigates the FRN
within the context of future-focused directive feedback (DF),
in addition to past-focused evaluative feedback (EF) typi-
cally seen in the neuroscience literature. Results indicate a
main effect of utility together with an interaction with ease
of decoding on the accuracy data, but only the main effect of
utility on learning rate. DF produced an FRN, like EF, which
was then larger during high-utility feedback, specifically fol-
lowing negative EF or when hard-to-decode. Implications
and future research directions are discussed.

Feedback is a crucial facilitator of leaning which is consid-
ered one of the principal means for an individual to effect
learning gains (Hattie & Timperley, 2007). By closing the
gap between current and desired performance, feedback
serves to reduce the uncertainty a learner may experience
regarding their proficiency (Shute, 2008). The effectivity
of feedback depends upon students’ ability to understand
(decode) the message conveyed and apply (utilize) it in
future work (Jonsson & Panadero, 2018). Studies have found
that feedback which is easy-to-decode, or provides highly
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applicable information, improves performance (Butler, God-
bole, & Marsh, 2013; Evans, 2013), facilitates engagement
(Winstone, Nash, Parker, & Rowntree, 2016; Winstone,
Nash, Rowntree, & Parker, 2017) and is favored by students
(Winstone, Nash, Rowntree, & Menezes, 2016).

In contrast, feedback messages that are difficult to
understand can lead to frustration and are perceived to be
less effective in facilitating learning (e.g. Jonsson, 2013).
This frustration can induce a state of learned helplessness
(Teodorescu & Erev, 2014), whereby students become
disenfranchised with their feedback due to its perceived
difficulty. As well as adding to cognitive load, feedback that
is hard-to-decode makes a limited contribution to reducing
learners uncertainty (Shute, 2008).

In terms of feedback utility, cognitive models also inform
our understanding of the likely effectiveness of different
types of feedback. Kulhavy and Stock (1989) distinguished
between the functions of verification and elaboration in
feedback. Verification feedback informs the learner whether
their response was incorrect or correct, without further
explanation. In contrast, elaborated feedback provides guid-
ance, for example indicating why a particular response was
correct, or providing recommendations to improve perfor-
mance. In a comprehensive review of formative feedback lit-
erature, Shute (2008) concludes that verification feedback in
isolation has limited utility for learning, whereas elaborative
feedback supports learners to self-correct and advance their
understanding. Different types of elaborative feedback exist
on a spectrum from lower to higher utility, depending on the
degree of explanation and direction it provides.

Extending this cognitive perspective, there is robust
literature on the outcome measures of feedback, partic-
ularly in neural responses to feedback processing. The
feedback related negativity (FRN) signal; an event-related
potential (ERP) elicited 200–400 ms after receiving feed-
back (Nieuwenhuis, Holroyd, Mol, & Coles, 2004) shows
sensitivity to multiple aspects of feedback processing,
including feedback valence (Holroyd & Coles, 2002;
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Nieuwenhuis et al., 2004), magnitude (Holroyd, Larsen,
& Cohen, 2004; San Martín, Manes, Hurtado, Isla, & Ibañez,
2010), probability (Holroyd & Coles, 2002; Nieuwenhuis
et al., 2004), and informative value (Du, Cao, He, & Li, 2018).

However, the FRN has only been recorded using feed-
back regarding past performance, termed evaluative feed-
back (EF) in educational sciences. EF is similar in function to
verification feedback. In contrast, directive feedback (DF), a
form of elaborative feedback, focuses on future performance,
which can vary in ease of decoding and utility, but typi-
cally provides greater utility than EF (Carless, 2006; Hattie
& Timperley, 2007). The FRN is typically regarded as mea-
suring the amount, or complexity of, feedback information
(Du et al., 2018). Therefore, how easy feedback is to decode,
and how easy it is to utilize, are expected to influence this
signal, with both hard-to-decode and high-utility feedback
engaging more cognitive processes than their counterparts.

The present study aims to test whether utility and ease of
decoding of DF affected learning and neural mechanisms of
feedback processing. We hypothesized that:

1 Easy-to-decode feedback better facilitates learning than
hard-to-decode feedback;

2 High-utility feedback better facilitates learning than
low-utility feedback;

3 DF will elicit an FRN signal like EF;
4 The peak-to-peak FRN will be larger for high-utility,

and hard-to-decode feedback, due to greater cognitive
demands.

5 Valence of EF will influence the FRN produced by subse-
quent DF due to differential levels of informative value.

METHODS

Participants
Data were collected from 27 volunteers recruited through
social media snowballing and through a participant recruit-
ment system (SONA). One participant’s data were excluded
because of chance performance in the learning tasks.
The final sample consisted of 26 students (20 female,
aged 18–26, M= 20.65 years), who reported normal or
corrected-to-normal vision, no contraindications of EEG,
and no color-blindness. Participants gave written informed
consent before the experiment. Undergraduate psychology
students (N = 21) received a course incentive in exchange
for participation, while other participants received no
compensation.

Materials
The task was an adaptation of a category learning task
(Knowlton, Squire, & Gluck, 1994). Participants aimed to
ascertain which flavor ice cream various potato head figures

(henceforth called “the character”) preferred. This setup
allowed for the variation of three different features (hat, eyes
or shoes), with three variations each (e.g., black, white or
blue shoes) that were systematically varied to create the 27
character images used in this experiment. The different vari-
ations of a single feature dictated which flavor ice cream
(vanilla, chocolate, or strawberry) the character would pre-
fer. For example, when the shoe color indicated preferred fla-
vor, each color shoe directly mapped onto one ice cream fla-
vor. Participants were asked to firstly deduce which feature,
and then which variation of said feature, predicted the pre-
ferred ice cream flavor based on the EF and DF they received.

EF consisted of a stylized frowning red face for incor-
rect responses, a green stylized smiling face for correct
responses, and the words “No response” if the participant
did not respond within the time given.

DF consisted of a cartoon hat, eyes and shoes on a white
background (see Figure 1). Colored bars were used to con-
struct the various forms of DF. High-utility screens con-
tained a green bar behind the feature relevant for flavor
preference, while low-utility screens contained a red bar
behind an irrelevant feature. The easy-to-decode screens
included just a singular green or red colored bar, while the
hard-to-decode screens included two other colored bars to
increase perceptual load (Lavie, Hirst, De Fockert, & Vid-
ing, 2004). Therefore, the easy-to-decode with high-utility
(EH) condition, contained a single green bar, whereas the
easy-to-decode with low-utility (EL) condition contained a
single red bar. The hard-to-decode with high-utility (HH)
condition contained purple and pink bars alongside the
green bar, while the hard-to-decode with low-utility (HL)
condition displayed a red bar among a yellow and blue bar.
The noninformative bar colors were chosen to match the
informative bar in terms of brightness and intensity, while
being distinct from red or green.

Procedure
Trials began with a crosshair for 500 ms followed by the
character stimulus for the following 2,500 ms. Participants
were asked to respond during this 2,500 ms, after which
they were presented with the EF screen for 500 ms, and
finally the DF screen for 2,000 ms. Instructions required par-
ticipants to respond with “1,” “2” or “3” on the number
pad of keyboard to designate the preferred ice cream fla-
vor. The correct response key was counterbalanced across
participants. On-screen instructions informed participants
that they would receive two feedback screens; one inform-
ing them whether their choice was correct (EF), and one that
would help them uncover the relevant feature for that block
(DF). Instructions noted that green feedback bars indicated a
relevant feature, while red bars highlighted an irrelevant fea-
ture, but there could be other, noninformative, colors present
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Fig. 1. A sample trial where the hat is the relevant feature, displaying positive evaluative feedback and the hard to decode with high
utility directive feedback screen.

alongside these cues. After finishing these instructions par-
ticipants were shown a diagram of a trial (Figure 1) including
EH DF to familiarize them with the stimuli.

The experiment was presented using E-Prime 2.0 software
(Psychology Software Tools, Pittsburgh, PA) and consisted
of three runs of four blocks, one per DF conditions (EH, EL,
HH, HL), with a self-directed break after each block. Each
block contained 27 trials, each presenting a different charac-
ter. Each flavor was correct in nine trials per block, resulting
in a 33% probability of guessing. The first run was presented
in a fixed order of supposedly increasing difficulty: EH, EL,
HH, HL, but then proceeded in a pseudorandom manner,
with each condition presented once before the first condi-
tion was repeated. The experimental task took an average
of 30 min to complete and the whole study, including EEG
set up and debriefing, was not longer than 2 hr. Participant
accuracy was recorded for each trial to comprise the behav-
ioral data in the analysis. Learning curves were created after
the study using a rolling three-point average. These values
were then fitted by an exponential rise to maximum model
to estimate rate of learning. See Supporting Information for
model formulae.

EEG Recording and Preprocessing
EEG data were recorded from 30 Ag/AgCl electrodes
mounted on an elastic cap (Easycap) and positioned accord-
ing to the extended international 10–20 system, with online
reference at FCz and ground at FPz. Data were amplified
from DC to 70 Hz at a sampling rate of 500 Hz using a
BrainAmp MR (Brain Products GmbH, Germany). To con-
trol for eye movements, the EOG was recorded from the
suborbital ridge of the left eye. Impedance of all electrodes
was kept below 10 kΩ. Data were processed offline using
Brain Vision Analyser. After, data were referenced to linked
mastoids so that FCz could be analyzed, a band pass filter
of 0.5 Hz to 30 Hz was applied. Artifacts resulting from eye
blinks were removed using an automatic ocular correction

independent components analysis (Jung et al., 2000) and
remaining artifacts were automatically excluded from fur-
ther analyses using a 50 μV/ms gradient and a 100 μV/200 ms
maximal amplitude change criterion. Data were segmented
from 100 before to 700 ms after feedback (EF and DF) onset.
All segments were baseline corrected from −100 to 0 ms
before averaging. FRN was quantified for each participant
as peak-to-peak amplitude by calculating the difference
between the most negative amplitude from 230 to 330 ms
post feedback presentation and the amplitude of the pre-
ceding positive peak in a time window from 170 to 230 ms
(Ferdinand, 2019; Holroyd et al., 2004; Nieuwenhuis et al.,
2004). Each dataset was manually checked for accuracy of
peak detection before data were extracted for all feedback
conditions separately. For all conditions and participants
the peaks were accurately detected in the respective time
windows. After artifact extraction an average of 37.80 (SD
3.10) trials remained in each condition, an appropriate
number for FRN analysis (Marco-Pallares, Cucurell, Münte,
Strien, & Rodriguez-Fornells, 2011).

RESULTS

Behavioral Results
Overall accuracy and learning rates are depicted in Table 1.
Accuracy was significantly above chance level for each con-
dition (EH t(26) = 26.60, p< .001; EL t(26) = 10.09, p< .001;
HH t(26) = 16.34, p< .001; HL t(26) = 11.89, p< .001),
indicating that participants were able to deduce the fea-
ture required to select the correct response across each
condition. A 2× 2 repeated-measures analysis of variance
(ANOVA) was used to investigate the effects of decoding and
utility on accuracy. Utility yielded a significant main effect
(F(1, 25) = 35.00, p< .001, η2

p = .59), but not decoding (F(1,
25) = 2.06, p = .16, η2

p = .08), with participants performing
more accurately on high-utility blocks. The decoding by
utility interaction was significant (F(1, 25) = 22.52, p< .001,
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Table 1
Descriptive Statistics of the Overall Accuracy Data, Accuracy for Final Eight Blocks, and Learning Rate (Gradient of Learning Curve) for
Each Directive Feedback Condition

Easy decode
(high utility)

Easy decode
(low utility)

Hard decode
(high utility)

Hard decode
(low utility)

Mean overall accuracy (%) 81.77 63.85 78.08 73.41
Standard deviation 0.10 0.16 0.14 0.18
Mean final eight blocks accuracy (%) 85.96 70.37 83.25 75.98
Standard deviation 0.08 0.18 0.14 0.19
Mean learning rate .36 .18 .35 .23
Standard deviation 0.21 0.12 0.14 0.13

Fig. 2. The average percentage of correct responses on each trial
separated by directive feedback condition.

η2
p = .47). Post hoc t-tests revealed a significant difference

between the EL and EH conditions (p< .001, d = 1.33), but
not between the HL and HH conditions (p = .11, d = 0.29).

Next, learning curves were analyzed to assess
within-block learning (see Table 1 and Figure 2). A 2× 2
repeated measures ANOVA revealed a significant effect of
utility on learning rate (F(1, 25) = 26.98, p< .001, η2

p = .52),
with high-utility feedback eliciting steeper learning curves.
Neither an effect of decoding (F(1, 25) = .24, p = .63,
η2

p = .01), nor an interaction between the two factors (F(1,
25) = .56, p = .46, η2

p = .02) were observed.
Finally, the first run was presented in a fixed order, while

the remaining eight blocks were presented in a pseudo-
randomized order. To accommodate for these effects the
accuracy data were re-analyzed after excluding the first run.
Utility (F(1, 25) = 31.59, p< .001, η2

p = .56) and the interac-
tion between utility and decoding (F(1, 25) = 8.09, p = .009,
η2

p = .24) remained significant, while decoding remained
nonsignificant (F(1, 25) = 0.57, p = .46, η2

p = 0.02). Hence,
the effects of utility and the interaction of both factors on
accuracy were independent of order effects as the direction
of the effect persisted even when the first four blocks were
removed.

Fig. 3. (a) Feedback-related negativity signal (260-280 ms) to pos-
itive (dashed) and negative (solid) evaluative feedback recorded at
the FCz electrode. (b) Topography for the Feedback-related nega-
tivity signal baseline corrected to the peak of the P2, for positive
(left) and negative (right) evaluative feedback.

EEG Results
EF was analyzed to replicate standard findings within the
literature and ensure we had a valid comparison for the
FRN elicited by DF. The peak-to-peak FRN amplitude at
FCz for negative EF (M = 3.50, SD = 2.07; see Figure 3) was
larger than the FRN to positive EF (M = 2.15, SD = 1.59), as
confirmed by a two-way repeated measures ANOVA (F(1,
24) = 27.94, p< .001, η2

p =.40).
Within the DF condition an FRN signal was found at

FCz between 200 and 400 ms after stimuli onset with a
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Fig. 4. (a) Feedback-related negativity signal (240–290 ms) to four
directive feedback conditions at the FCz electrode: easy to decode
with high utility (EH), easy to decode with low utility (EL), hard
to decode with high utility (HH), and hard to decode with low
utility (HL). (b) Topography of Feedback-related negativity signal,
baseline corrected to the peak of the P2, for the EH (top left), EL
(top right), HH (bottom left), and HL conditions (bottom right).

mid-frontal distribution in all four DF conditions (See
Figure 4). All conditions were compared to investigate the
effect of utility and ease of decoding on the FRN. Further-
more, the valence of preceding EF was included to inspect
whether this also influences the FRN elicited by DF (see
Table 2 for descriptives). A 2× 2× 2 repeated-measures
ANOVA revealed a significant main effect of valence (F(1,
24) = 22.35, p< .001, η2

p = .48), and utility (F(1, 24) = 11.52,
p = .002, η2

p = .32), with higher utility and negative valence
eliciting larger amplitudes, while the effect of decoding was
not significant (F(1, 24) = .94, p = .34, η2

p = .04). Significant
interactions were found between valence and utility (F(1,
24) = 12.28, p = .002, η2

p = .34), and decoding and utility

(F(1, 24) = 5.45, p = .028, η2
p = .19), but not between valence

and decoding (F(1, 24) = 0.08, p = .78, η2
p = .003), nor for a

three way interaction (F(1, 24) = 0.07, p = .79, η2
p = .003).

Follow-up Wilcoxon tests revealed that there was a sig-
nificant effect of utility on hard-to-decode trials (z = 2.46,
p = .014, r = .35), and those following negative feedback
(z = 3.00, p = .003, r = .42), but not those that were
easy-to-decode (z = 0.23, p = .82, r = .03) or following
positive feedback (z = 1.39, p = .17, r= .20). Peak-to-peak
difference scores were higher for high-utility feedback in
both significant comparisons.

DISCUSSION

The current study aimed to investigate how the utility
and ease of decoding of DF affected learning and neural
mechanisms of feedback processing. In agreement with
previous findings (Butler et al., 2013), high-utility feed-
back consistently enhanced the overall accuracy and the
speed of learning. However, contrary to our predictions,
ease of decoding did not. Nonetheless, both factors did
interact within the accuracy data, but not in the learning
rate data. This suggests that there is a large utility effect
for easy-to-decode information, but when information is
hard-to-decode, utility is less pertinent to learning. This
interaction indicates that decoding could act as a “gatekeep-
er” for the effects of utility, rather than exert an influence
on learning on its own grounds. These findings could be
interpreted in line with the attentional load theory (Lavie
et al., 2004). According to this theory high perceptual load
in the hard-to-decode conditions would limit the attentional
processing of irrelevant information, consequently reducing
fixation on low-utility information.

Therefore, our findings support calls for feedback to
be both easy-to-understand, and highly applicable (Shute,
2008; Winstone, Nash, Parker, & Rowntree, 2016; Winstone,
Nash, Rowntree, & Menezes, 2016), as this seems to be
the optimum combination for learning speed and outcome.
Hard-to-decode feedback reduced differentiation between
high and low utility feedback on learning outcome, Such
feedback could be associated with an increase in learned
helplessness (Teodorescu & Erev, 2014), and a barrier to
engagement (Jonsson, 2013; Winstone et al., 2017). By con-
trast, easy-to-decode with low-utility feedback yielded low
accuracy and learning rate, suggesting that with clear but
noninformative meaning, students may disengage as they are
unsure of how to improve in future.

The present study also examined the electrophysiological
correlates of processing DF contingent on EF. Replicat-
ing previous findings (Holroyd & Coles, 2002; Nieuwenhuis
et al., 2004), negative EF elicited a larger amplitude FRN than
positive EF. Furthermore, larger FRN to DF and especially to
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Table 2
Mean and Standard Deviation of Peak-to-Peak Difference of the Feedback Related Negativity Signal at FCz Across all Directive Feedback
Conditions Following Either Positive of Negative Evaluative Feedback

Easy decode (high utility) Easy decode (low utility) Hard decode (high utility) Hard decode (low utility)

Positive feedback 3.31 (2.74) 3.41 (2.32) 3.96 (2.82) 3.26 (2.40)
Negative feedback 4.83 (2.40) 3.85 (2.56) 5.66 (3.35) 3.70 (2.37)

high utility feedback after negative compared to positive EF
suggests that DF is more informative after an unexpected
and unsatisfying result. It also suggests that participants
approach the current task in a two staged process in a hierar-
chical way. Participants first determined the relevant feature
using the DF, before matching the variations of that feature
to the ice cream preference. In case of negative EF partici-
pants seem to engage more with DF to reassure they picked
the correct feature for their decision. Thus, high utility DF
elicited a FRN signal, which indicates that reinforcement
of the relevant feature is a mandatory first step to solve the
task. Thus, the information view of the current results is in
line with a recent hierarchical reinforcement learning the-
ory (Holroyd & Yeung, 2012) stating that the FRN reflects
the reinforcement of higher-level behavioral plans and
the sequences of specific behaviors directed toward these
plans.

One potential limitation of the methodology is whether
the perceptual load (Lavie et al., 2004) used in the current
study to simulate the level of decoding difficulty is compa-
rable to the difficulty of decoding complex academic terms
in educational settings. If the current operationalization was
not an accurate proxy for decoding complex feedback, it
could explain why previous reviews indicate that this fac-
tor affects learning (Jonsson & Panadero, 2018). Alterna-
tively, the effects of decoding on learning may have been con-
founded in previous studies by the utility present in the feed-
back provided. Further studies, comparing different types
of feedback, such as common feedback terms or phrases,
would address this question. Despite a significant interaction
of decoding and utility, the effect size of the main effect of
decoding is rather small. Therefore, a replication is required
to examine whether decoding has no individual impact upon
learning measures.

Finally, future studies should test whether cognitive fac-
tors known to influence the FRN elicited by EF, such as
perceived fairness (Riepl, Mussel, Osinsky, & Hewig, 2016),
have similar effects upon the FRN elicited by DF in this
study. Similarly, more in-depth analysis of the neural signa-
ture could reveal further similarities or differences between
processes underlying EF and DF. We also did not analyze
any ERP’s beyond the FRN. Future research should con-
sider the P300, a signal also sensitive to various aspects
of feedback (San Martín, 2012), such as the expectancy of

feedback (Ferdinand, Becker, Kray, & Gehring, 2016). The
current study was unable to investigate this aspect as all DF
conditions were identical in terms of probability.

In conclusion, the present study demonstrated that while
utility produced a significant main effect on both learning
and FRN amplitude, decoding acted as a “gatekeeper” for the
effect of utility for accuracy, while both valence and decoding
of feedback acted as “gatekeeper” for the effect of utility on
the FRN amplitude. To our knowledge, this has been the first
experimental study to disentangle the simultaneous effects
of ease of decoding, and utility of feedback on learning,
alongside uncovering the neural signals associated with DF,
and providing a means for future studies to consider the
nuances of DF.
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