

μ_N Irresolvable spaces and μ_N Resolvable spaces

N.Raksha Ben^{1*}, G. Hari Siva Annam²

 ¹Research scholar, Reg.No:19212102092010,
PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. Orchid iD: 0000-0003-1208-8620
²PG and Research Department of Mathematics, Kamaraj college, Thoothukudi-628003, India. Orchid iD: 0000-0002-0561-1287

Received: 10 Apr 2021	•	Accepted: 25 May 2021	٠	Published Online: 25 Aug 2021
------------------------------	---	------------------------------	---	-------------------------------

Abstract: In this article, the idea of μ_N irresolvable, μ_N irresolvable, μ_N open hereditarily irresolvable spaces are to be introduced. Some of its characters are to be discussed. Also, the concept of μ_N hyperconnectedness are to be introduced and its properties are to be contemplated.

Key words: μ_N dense, μ_N Resolvable, μ_N Irresolvable, μ_N open hereditarily irresolvable spaces, μ_N submaximal, μ_N hyperconnected

1. Introduction

The idea of fuzzy set[16] which plays a vital role in almost all sectors of mathematics. Belatedly C.L Chang[2] brought out fuzzy topological space and after that several notions in general topology were extended and enhanced in fuzzy topological spaces. K.T Attansov[1] published his idea of intuitionistic set and some research works came into the literature. The concept of neutrosophy and neutrosophic sets were putforth by Samarandache[3],[6],[7],[8],[15] with his idea later on Salama and Albowi[12],[13],[14] introduced neutrosophic crisp sets. The concept of resolvability and irresolvability in neutrosphic topology was brought out by Dhavasee-lan et al[4]. The concept of generalized topological spaces via nutrosophic sets were introduced by N.Raksha Ben[10],[11] and some of its attributes were delineated by them. In this article the concept of μ_N irresolvable, μ_N resolvable, μ_N open hereditarily irresolvable spaces, μ_N submaximal spaces, μ_N connected, μ_N hyperconnected are to be introduced and some of their characters are to be narrated.

2. Necessities

Definition 2.1. [13] Let X be a non-empty fixed set. A Neutrosophic set [NS for short] A is an object having the form $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle > : x \in X \}$ where $\mu_A(x), \sigma_A(x)$ and $\gamma_A(x)$ which represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set A.

Remark 2.1. [13] Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neutrosophic sets having the form $A = \{ < \mu_A(x), 1 - (\mu_A(x) + \sigma_A(x)), \gamma_A(x) > : x \in X \}$. Since our main purpose is to construct the tools for developing Neutrosophic Set and Neutrosophic topology, we must introduce

[©]Asia Mathematika, DOI: 10.5281/zenodo.5253245

^{*}Correspondence: rakshaarun218@gmail.com

the neutrosophic sets 0_N and 1_N in X as follows: 0_N may be defined as follows (0_1) $0_N = \{ < x, 0, 0, 1 > : x \in X \}$ 1_N may be defined as follows (1_1) $1_N = \{ < x, 1, 0, 0 > : x \in X \}$

Definition 2.2. [13] Let $A = \{ \langle \mu_A, \sigma_A, \gamma_A \rangle \}$ be a NS on X, then the complement of the set A[C(A)] for short] may be defined as three kinds of complements :

 $(C_1) C (A) = A = \{ < x, 1 - \mu_A (x), 1 - \sigma_A (x), 1 - \gamma_A (x) > : x \in X \}$

Definition 2.3. [13] Let X be a non-empty set and neutrosophic sets A and B in the form $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle > : x \in X \}$ and $B = \{ \langle x, \mu_B(x), \sigma_B(x), \gamma_B(x) \rangle > : x \in X \}$. Then we may consider two possibilities for definitions for subsets $(A \subseteq B)$. $A \subseteq B$ may be defined as :

 $(A \subseteq B) \iff \mu_A \mathrel{(} x \mathrel{)} \leq \mu_B \mathrel{(} x \mathrel{)}, \; \sigma_A \mathrel{(} x \mathrel{)} \leq \sigma_B \mathrel{(} x \mathrel{)}, \; \gamma_A \mathrel{(} x \mathrel{)} \geq \gamma_B \mathrel{(} x \mathrel{)} \; \forall \; x \; \in \; X$

Proposition 2.1. [13] For any neutrosophic set A, the following conditions holds: $0_N \subseteq A, 0_N \subseteq 0_N$ $A \subseteq 1_N, 1_N \subseteq 1_N$

Definition 2.4. [13] Let X be a non empty set and $A = \{ \langle x, \mu_A (x), \sigma_A (x), \gamma_A (x) \rangle > : x \in X \} B = \{ \langle x, \mu_B (x), \sigma_B (x), \gamma_B (x) \rangle > : x \in X \}$ are NSs. Then $A \cap B$ may be defined as : $(I_1) A \cap B = \langle x, \mu_A (x) \rangle \wedge \mu_B (x), \sigma_A (x) \rangle \wedge \sigma_B (x), \gamma_A (x) \vee \gamma_B (x) \rangle >$ $A \cup B$ may be defined as : $(I_1) A \cup B = \langle x, \mu_A (x) \vee \mu_B (x), \sigma_A (x) \vee \sigma_B (x), \gamma_A (x) \wedge \gamma_B (x) \rangle >$

Definition 2.5. [10] A μ_N topology is a non - empty set X is a family of neutrosophic subsets in X satisfying the following axioms:

 $(\mu_{N_1})0_N \in \mu_N$ $(\mu_{N_2})G_1 \cup G_2 \in \mu_N$ for any $G_1, G_2 \in \mu_N$.

Remark 2.2. [10] The elements of μ_N are μ_N -open sets and their complement is called μ_N closed sets.

Definition 2.6. [10] Let (X, μ_N) be a μ_N TS and $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle\}$ be a neutrosophic set in X. Then the μ_N - Closure of A is the intersection of all μ_N closed sets containing A.

Definition 2.7. [10] Let (X, μ_N) be a μ_N TS and $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle\}$ be a neutrosophic set in X. Then the μ_N - Interior of A is the union of all μ_N open sets contained in A.

Definition 2.8. [4] A neutrosophic set A in NTS is called neutrosophic dense if there exists no neutrosophic closed sets B in (X,T) such that $A \subset B \subset 1_N$.

Definition 2.9. [11] The μ_N Topological spaces is said to be μ_N Baire's Space if $\mu_N Int(\bigcup_{i=1}^{\infty} G_i) = 0_N$ where G_i 's are μ_N nowhere dense set in (X, μ_N) .

Proposition 2.2. [11] Let (X, μ_N) be a μ_N TS. Then the following are equivalent.

- (i) (X, μ_N) is μ_N Baire's Space.
- (ii) $\mu_N Int(A) = 0_N$, for all μ_N first category set in (X, μ_N) .
- (iii) $\mu_N Cl(A) = 1_N$, for every μ_N Residual set in (X, μ_N) .

Theorem 2.1. [11] If A is a μ_N dense set in (X, μ_N) and also μ_N open set in (X, μ_N) then \overline{A} is a μ_N nowhere dense set in (X, μ_N) .

3. μ_N **Dense**

Theorem 3.1. If (X, μ_N) is a μ_N TS and A is μ_N dense in (X, μ_N) then for any non-empty μ_N closed subset F in such a way that $A \subseteq F$ then $F = 1_N$.

Proof. Let us guesstimate that A is μ_N dense in (X, μ_N) then for any non-empty μ_N -closed subset F in such a way that $A \subseteq F$. On account of the fact A is μ_N dense, $\mu_N Cl(A) = 1_N$. By our presumption, F is μ_N -closed and $A \subseteq F$ hereinafter we get that $1_N = \mu_N Cl(A) \subseteq \mu_N Cl(F) = F$. As a result of that we get $F = 1_N$.

Remark 3.1. The above theorem is fallacious if F is not μ_N closed.

Theorem 3.2. Let η be a subset of (X, μ_N) . If η is μ_N dense in (X, μ_N) then for any non empty μ_N open subset G in $(X, \mu_N), G \cap \eta \neq 0_N$.

Proof. Assume that η is μ_N dense in (X, μ_N) . Then for every single non-empty μ_N -closed subset F in such a way that $A \subseteq F$ then $F = 1_N$. Suppose $G \cap \eta = 0_N$ for few non-empty μ_N -open subset G of (X, μ_N) precedently we obtain that $\eta \subseteq X - G$ which is μ_N -closed because of that G is μ_N -open subset of (X, μ_N) . By the conjucture, $X - G = 1_N$. Hence $G = 0_N$ which is a contradiction to G is a non-empty μ_N -open subset in (X, μ_N) . It yields that $G \cap \eta \neq 0_N$.

Proposition 3.1. If a neutrosophic subset η is μ_N dense in (X, μ_N) and $\eta' \subseteq \eta$, the postiliminary characteristics holds.

- (1) 1_N is always μ_N dense.
- (2) 0_N is not μ_N dense in anyways.
- (3) $\eta \cup \eta'$ is μ_N dense.
- (4) $\mu_N Cl(\eta)$ is μ_N dense.
- (5) Every superset of μ_N dense set is μ_N dense.

Theorem 3.3. If (X, μ_N) be a μ_N TS and η is μ_N dense and $G \in \mu_N$ then, $G \subset \mu_N Cl(\eta \cap G)$.

Proof. Suppose $\nu \in G$ but $\nu \notin \mu_N Cl(\eta \cap G)$ then $\nu \in \overline{(\mu_N Cl(\eta \cap G))}$ $\Rightarrow \nu \in \mu_N Int \overline{((\eta \cap G))} \subseteq \overline{\eta} \cup \overline{G}$ which shows that either ν belongs to $\overline{\eta}$ or ν belongs to \overline{G} . **case** (**i**) : Assume ν belongs to $\overline{\eta} \Rightarrow G \subseteq \overline{\eta}$ that provides us that $G \cap \eta = 0_N$ which is contrary to Theorem 3.2.3. Hence $\nu \in \mu_N Cl(\eta \cap G)$.

case (**ii**): Assume ν belongs to \overline{G} , $G \subset \overline{\eta}$ which is contradiction. Hence $\nu \in \mu_N Cl(\eta \cap G)$. Thus, $G \subset \mu_N Cl(\eta \cap G)$.

Theorem 3.4. If (X, μ_N) be a μ_N TS and η is μ_N dense and μ_N open in (X, μ_N) then $\mu_N Fr(\eta) = \overline{\eta}$.

Proof. Suppose η is mu_N dense and μ_N open in (X, μ_N) , $\mu_N Cl(\eta) = 1_N$ and $\mu_N Int(\eta) = \eta$. Now $\mu_N Fr(\eta) = \mu_N Cl(\eta) - \mu_N Int(\eta) = \mu_N Cl(\overline{\eta}) = \overline{\eta}$.

Theorem 3.5. If (X, μ_N) be a μ_N TS and η is μ_N dense subset of (X, μ_N) then $\mu_N Fr(\eta) = \mu_N Cl(\overline{\eta})$.

Proof. $\mu_N Fr(\eta) = \mu_N Cl(\eta) - \mu_N Int(\eta) = \mu_N Cl(\overline{\eta}).$

Remark 3.2. The back and forth statement of above statement need not be true.

Example 3.1. Let $X = \{a\}$. We define neutrosophic sets $A = \{< 0.3, 0.4, 0.5 >\}, B = \{< 0.3, 0, 0.1 >\}, C = \{< 0.4, 0.6, 0.8 >\}, D = \{< 0.4, 0, 0.1 >\}, E = \{< 0.4, 0.4, 0.5 >\}$. Here the μ_N Dense sets are $\{B, \overline{D}, 1_N\}$. Now $\mu_N Fr(A) = \mu_N Cl(\overline{A})$. But A is not μ_N dense subset of (X, μ_N) .

Theorem 3.6. If a neutrosophic subset η is μ_N dense in (X, μ_N) if and only if $\mu_N Ext(\eta) = 0_N$.

Proof. Suppose η is μ_N dense, $\mu_N Cl(\eta) = 1_N$. Now, $\mu_N Ext(\eta) = \mu_N Int(\overline{\eta}) = \overline{(\mu_N Cl(\eta))} = 0_N$. Conversely assume $\mu_N Ext(\eta) = 0_N$ then $\mu_N Cl(\eta) = \overline{(\mu_N Int(\overline{\eta}))} = 1_N$.

4. μ_N Irresolvable and μ_N Resolvable

Definition 4.1. A neutrosophic set A in μ_N TS (X, μ_N) is called μ_N Resolvable if there exists a μ_N dense set A in (X, μ_N) such that $\mu_N Cl(\overline{A}) = 1_N$. Otherwise, it is μ_N Irresolvable.

Example 4.1. Let $X = \{a\}$. We define neutrosophic sets A, B, C, D and E as follows: $P = \{<0.3, 0.3, 0.5 > \}, Q = \{<0.1, 0.2, 0.3 >\}, R = \{<0.3, 0.2, 0.3 >\}, S = \{<0.3, 0.6, 0.2 >\}, T = \{<0.3, 0.8, 0.5 >\}$ under $\mu_N = \{0_N, P, Q, R\}$ where (X, μ_N) form a μ_N TS. Now, $\mu_N IntP = P, \mu_N IntQ = Q, \mu_N IntR = R, \mu_N IntS = O_N, \mu_N IntT = O_N, \mu_N Int1_N = C$, and $\mu_N Cl_0_N = \{<0.3, 0.8, 0.3 >\}, \mu_N Cl(P) = 1_N, \mu_N Cl(Q) = 1_N, \mu_N Cl(R) = 1_N, \mu_N Cl(S) = 1_N, \mu_N Cl(T) = \{<0.3, 0.8, 0.3 >\}, \mu_N Cl(1_N) = 1_N, \mu_N Cl(\overline{N}) = 1_N, \mu_N Cl(\overline{P}) = \{<0.3, 0.8, 0.1 >\}, \mu_N Cl(\overline{R}) = \{<0.3, 0.8, 0.3 >\}, \mu_N Cl(\overline{S}) = 1_N, \mu_N Cl(\overline{T}) = 1_N, \mu_N Cl(\overline{T}) = 1_N, \mu_N Cl(\overline{T}) = \{<0.3, 0.8, 0.3 >\}, \mu_N Cl(\overline{N}) = \{<0.3, 0.8, 0.3 >\}, \mu_N Cl(\overline{S}) = 1_N, \mu_N Cl(\overline{T}) = 1_N, \mu_N Cl(\overline{T}) = 1_N, \mu_N Cl(\overline{T}) = \{<0.3, 0.8, 0.3 >\}$. Here, P, Q, R, S, T^c are μ_N Dense sets and $\mu_N Cl(\overline{S}) = 1_N$. Hence (X, μ_N) is μ_N Resolvable.

Theorem 4.1. If (X, μ_N) is μ_N irresolvable iff $\mu_N Int(A) \neq O_N$ for all μ_N dense set A in (X, μ_N) .

Proof. Since (X, μ_N) is μ_N irresolvable space for all μ_N dense set A we get $\mu_N Cl(\overline{A}) \neq 1_N$. From this we deduce $\overline{(\mu_N Int(A))} \neq 1_N$ that yields us that $\mu_N Int(A) \neq O_N$. Conversely we assume that $\mu_N Int(A) \neq O_N$ for all μ_N dense set A in (X, μ_N) . Suppose that (X, μ_N) is μ_N resolvable then there exists a μ_N dense set A in (X, μ_N) such that $\mu_N Cl(\overline{A}) = 1_N$ which implies us that $\overline{(\mu_N Int(A))} = 1_N$. From this we get $\mu_N Int(A) = O_N$ which is a contradiction to our assumption. Hence (X, μ_N) is μ_N irresolvable.

Definition 4.2. A μ_N TS is called μ_N submaximal space if for each neutrosophic set $A \neq 1_N$ in (X, μ_N) such that $\mu_N Cl(A) = 1_N$, then $A \in \mu_N$.

Theorem 4.2. If the μ_N TS (X, μ_N) is μ_N submaximal then (X, μ_N) is μ_N irresolvable.

Proof. Let (X, μ_N) be a μ_N submaximal space. Assume that (X, μ_N) is μ_N resolvable space. Let A be a μ_N dense set in (X, μ_N) then $\mu_N Cl(\overline{A}) = 1_N$. From this we get that $\overline{(\mu_N Int(A))} = 1_N$ which implies $\mu_N Int(A) = O_N$. This concludes that $A \notin \mu_N$ which is a contradiction. Hence (X, μ_N) is μ_N irresolvable space.

Remark 4.1. The contrary statement of the above theorem need not be true. That is, if the μ_N TS (X, μ_N) is μ_N irresolvable then (X, μ_N) need not be μ_N submaximal. On assuming that (X, μ_N) is μ_N irresolvable space we obtain that there is no μ_N dense set in (X, μ_N) such that $\mu_N Cl(\overline{A}) = 1_N$. From this we cannot conclude that every μ_N dense set A in (X, μ_N) is μ_N -open in (X, μ_N) . Hence, (X, μ_N) need not be μ_N submaximal.

Definition 4.3. A μ_N TS is called μ_N maximal irresolvable space if (X, μ_N) is μ_N irresolvable and every μ_N dense set $A \neq 1_N$ of (X, μ_N) is μ_N open.

Definition 4.4. The μ_N TS (X, μ_N) is said to be μ_N open hereditarily irresolvable if $\mu_N Int(\mu_N ClA) \neq 0_N$ then $\mu_N Int(A) \neq 0_N$, for any non zero neutrosophic set A in (X, μ_N) .

Theorem 4.3. Let (X, μ_N) be a μ_N TS. If (X, μ_N) is μ_N -open hereditarily irresolvable space then (X, μ_N) is μ_N Irresolvable.

Proof. Let A be a μ_N dense set in (X, μ_N) then $\mu_N Cl(A) = 1_N$ which implies us that $\mu_N Int(\mu_N ClA) \neq 0_N$ because we have $\mu_N Int(1_N) \neq 1_N$. Since (X, μ_N) is μ_N -open hereditarily irresolvable, $\mu_N Int(A) \neq 0_N$. Now by making use of "If (X, μ_N) is μ_N Irresolvable iff $\mu_N Int(A) = 0_N$ for all μ_N dense sets A in (X, μ_N) ". Thus we conclude that (X, μ_N) is μ_N Irresolvable.

Remark 4.2. The reversal concept of the theorem need not be true. That is "Let (X, μ_N) be a μ_N TS. If (X, μ_N) is μ_N Irresolvable then (X, μ_N) need not be μ_N -open hereditarily irresolvable space". This can be explained with the help of the upcoming example.

Example 4.2. Let (X, μ_N) be a μ_N TS. We define $\mu_N = \{0_N, A, B, C, D\}$ where $A = \{<0.7, 0.3, 0.8 > < 0.5, 0.8, 0.9 > \}, B = \{<0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 > \}, C = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.8 > \}, D = \{<0.5, 0.8, 0.8 > < 0.5, 0.8, 0.7 > \}, E = \{<0.3, 0.9, 0.9 > < 0.4, 0.9, 0.9 > \}$. Here, \overline{E} is μ_N dense set but $\mu_N Cl(E) \neq 1_N$. Hence it is μ_N Irresolvable. $\mu_N Int(\mu_N ClA) = \{<0.7, 0.3, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(A) = \{<0.7, 0.3, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$, $\mu_N Int(\mu_N ClB) = \{<0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 > \} \neq 0_N$ and $\mu_N Int(\mu_N ClC) = \{<0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 > \} \neq 0_N$ and $\mu_N Int(\mu_N ClC) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 > \} \neq 0_N$ and $\mu_N Int(\mu_N ClC) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.4, 0.9, 0.9 > < 0.3, 0.9, 0.9 > \} \neq 0_N$ and $\mu_N Int(\mu_N ClC) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(B) = \{<0.5, 0.8, 0.7 > < 0.5, 0.8, 0.7 > \} \neq 0_N$ and $\mu_N Int(E) = \{<0.1, 1 > < 0, 1, 1 > \\ = 0_N$. In this example $\mu_N Int(\mu_N ClE) \neq 0_N$ but $\mu_N Int(E) = 0_N$ which implies us that "If (X, μ_N) is μ_N Irresolvable then (X, μ_N) need not be μ_N -open hereditarily irresolvable space."

Theorem 4.4. Let (X, μ_N) be a μ_N TS. If (X, μ_N) is μ_N -open hereditarily irresolvable space, then $\mu_N Cl(A) = 1_N$ for any non zero μ_N dense set A in (X, μ_N) which implies that $\mu_N Cl(\mu_N IntA) = 1_N$.

Proof. Let A be a neutrosophic set in (X, μ_N) such that $\mu_N Cl(A) = 1_N$. From this we obtain that $\overline{(\mu_N Cl(A))} = 0_N$ which gives us that $\mu_N Int(\overline{A}) = 0_N$. Since (X, μ_N) is μ_N -open hereditarily irresolvable by using above theorem we have $\mu_N Int(\overline{\mu_N ClA}) = 0_N$. Therefore $\overline{(\mu_N Cl(\mu_N IntA))} = 0_N$ that yields us that $\mu_N Cl(\mu_N IntA) = 1_N$.

Theorem 4.5. If $\mu_N Cl(\bigcap_{i=1}^{\infty} \omega_i) = 1_N$ where ω_i 's are μ_N dense sets in a μ_N -open hereditarily irresolvable space then (X, μ_N) is a μ_N Baire space.

Proof. On considering $\mu_N Cl(\bigcap_{i=1}^{\infty} \omega_i) = 1_N$ where $\mu_N Cl(\omega_i) = 1_N$ we get that $\mu_N Int(\bigcup_{i=1}^{\infty} (\overline{\omega_i})) = 0_N$, where $\mu_N Int(\overline{(\omega_i)}) = 0_N$. Let $\vartheta_i = \overline{(\omega_i)}$. Then, $\mu_N Int(\bigcup_{i=1}^{\infty} \vartheta_i) = 0_N$ where $\mu_N Int(\vartheta_i) = 0_N$. Since (X, μ_N) is a μ_N -open hereditarily irresolvable space, $\mu_N Int(\vartheta_i) = 0_N$ that yields us that $\mu_N Int(\mu_N Cl(\vartheta_i)) = 0_N$. Hence ϑ_i is μ_N nowhere dense set in (X, μ_N) . Hence, $\mu_N Int(\bigcup_{i=1}^{\infty} \vartheta_i) = 0_N$ where ϑ_i 's are μ_N nowhere dense sets in (X, μ_N) is a μ_N Baire space.

Theorem 4.6. If (X, μ_N) is a μ_N Baire irresolvable space, then $\mu_N Cl(\bigcup_{i=1}^{\infty} \sigma_i) \neq 1_N$ where σ_i 's are μ_N nowhere dense sets in (X, μ_N) .

Proof. Let σ_i be μ_N first category set in (X, μ_N) there upon $\kappa = \bigcup_{i=1}^{\infty} (\sigma_i)$, where σ_i 's are μ_N nowhere dense sets in (X, μ_N) . By the reason of (X, μ_N) is a μ_N Baire space, $\mu_N Int(\kappa) = 0_N$ thereupon we get $\overline{(\mu_N Int(\kappa))} = 1_N$ which entails us that $\mu_N Cl(\overline{\kappa}) = 1_N$. Already we have that (X, μ_N) is irresolvable space, $\mu_N Cl(\overline{\kappa}) \neq 1_N$. Hence, $\mu_N Cl(\kappa) \neq 1_N$ and so we obtain that $\mu_N Cl \bigcup_{i=1}^{\infty} (\sigma_i) \neq 1_N$ where σ_i 's are μ_N nowhere dense sets in (X, μ_N) .

Definition 4.5. A μ_N TS (X, μ_N) is said to be μ_N strongly irresolvable if $\mu_N Cl(\mu_N IntA) = 1_N$ for every dense set except 1_N in (X, μ_N) .

Theorem 4.7. A μ_N TS (X, μ_N) is μ_N submaximal space then (X, μ_N) is a μ_N Strongly irresolvable space.

Proof. Assume (X, μ_N) is μ_N submaximal space. By the definition of μ_N submaximal spaces, we obtain that every μ_N dense set except $1_N \in \mu_N$ is μ_N -open in (X, μ_N) . Now $mu_N Cl(A) = 1_N \Rightarrow \mu_N Cl(\mu_N IntA) = 1_N$. Hence, (X, μ_N) is μ_N Strongly irresolvable space.

The converse of the above theorem need not be true.

Remark 4.3. $A \ \mu_N \ TS \ (X,\mu_N)$ is a $\mu_N \ Strongly$ irresolvable space then (X,μ_N) need not be $\mu_N \ sub$ maximal. On assuming that (X,μ_N) is $\mu_N \ Strongly$ irresolvable space. We obtain that, $\mu_N Cl(A) = 1_N \Rightarrow$ $\mu_N Cl(\mu_N IntA) = 1_N \ but$ we cannot obtain that $\mu_N IntA = A$ which leads us to $\mu_N \ submaximal$ space. Hence, we conclude that (X,μ_N) is a $\mu_N \ Strongly$ irresolvable space then (X,μ_N) need not be $\mu_N \ submaximal$.

Theorem 4.8. If the μ_N TS (X, μ_N) is a μ_N strongly irresolvable Baire space and ν is a μ_N first category set in (X, μ_N) then ν is a μ_N nowhere dense set in (X, μ_N) .

Proof. Let ν be a μ_N first category set in (X, μ_N) . Then $\gamma = \bigcup_{i=1}^{\infty} \nu_i$ where ν 's are μ_N nowhere dense sets in (X, μ_N) . Since (X, μ_N) is a μ_N Baire space by theorem 2.15, $\mu_N Int(\nu) = 0_N$ in (X, μ_N) . Thereupon we get $\overline{(\mu_N Int(\nu))} = 1_N$ that entails us that $\mu_N Cl(\overline{\nu}) = 1_N$. By the cause of (X, μ_N) is a μ_N strongly irresolvable space for the μ_N dense set except $1_N \in \mu_N$ in (X, μ_N) . Hence we retrieve that $\mu_N Cl(\mu_N Int\overline{\nu}) = 1_N$. Thus we get that $\overline{(\mu_N Int(\mu_N Cl\nu))} = 1_N$ and so we get $\mu_N Int(\nu_N Cl\nu) = 0_N$. Thus we obtain ν is a μ_N nowhere dense set in (X, μ_N) .

Theorem 4.9. If the μ_N TS is a μ_N submaximal Baire space and ν is a μ_N first category set in (X, μ_N) , then ν is a μ_N nowhere dense set in (X, μ_N) .

Proof. Let ν be a μ_N first category set in (X, μ_N) . Since (X, μ_N) is μ_N submaximal Baire space by theorem 4.17 (X, μ_N) is μ_N Strongly irresolvable space. Then (X, μ_N) is μ_N Strongly irresolvable baire space. Since ν is a μ_N first category set in (X, μ_N) . By Theorem 4.19 we get that ν is a μ_N nowhere dense set in (X, μ_N) . \Box

Theorem 4.10. If $\mu_N Cl(\bigcap_{i=1}^{\infty} \delta_i) = 1_N$ where δ_i 's are μ_N dense sets in a μ_N submaximal space (X, μ_N) , then (X, μ_N) is a μ_N Baire space.

Proof. Let δ_i 's be μ_N dense sets in μ_N submaximal space. Then $\delta_i \in \mu_N$. Now $\mu_N Cl(\delta_i) = 1_N$ and $\mu_N Int(\delta_i) = \delta_i$ that entails us that $\mu_N Cl(\mu_N Int\delta_i) = 1_N$. From this we obtain that $(\overline{\mu_N Cl(\mu_N Int\delta_i)}) = 0_N \Rightarrow \mu_N Int(\mu_N Cl(\overline{\delta_i})) = 0_N$. Hence, $\overline{\delta_i}$'s are μ_N nowhere dense sets in (X, μ_N) . Now we consider that $\mu_N Cl(\bigcap_{i=1}^{\infty} \delta_i) = 1_N$ by taking complement we obtain that $\mu_N Int(\bigcup_{i=1}^{\infty} \overline{\delta_i}) = 0_N$. Now by making use of theorem 2.15 we obtain that (X, μ_N) is a μ_N Baire space.

Theorem 4.11. If $\mu_N Cl(\mu_N Int(A)) \neq 1_N$, for every neutrosophic set A in μ_N strongly irresolvable space (X, μ_N) , then $\mu_N Cl(A) \neq 1_N$ in (X, μ_N) .

Proof. Let A be a neutrosophic set in (X, μ_N) such that $\mu_N Cl(\mu_N Int(A)) \neq 1_N$. Now we are in a need to prove that $\mu_N Cl(A) \neq 1_N$ in (X, μ_N) . We are assuming that $\mu_N Cl(A) = 1_N$ in (X, μ_N) . Already its given that (X, μ_N) is μ_N strongly irresolvable space \Rightarrow if $\mu_N Cl(A) = 1_N$ then $\mu_N Cl(\mu_N Int(A)) = 1_N$ which is a contradiction. Henceforth we obtain $\mu_N Cl(A) \neq 1_N$ in (X, μ_N) .

Theorem 4.12. If A is a neutrosophic set in a μ_N strongly irresolvable space (X, μ_N) such that $\mu_N Int(\mu_N ClA) \neq 0_N$, then $\mu_N Int(A) \neq 0_N$ in (X, μ_N) .

Proof. Let A be a neutrosophic set in (X, μ_N) such that $\mu_N Int(\mu_N ClA) \neq 0_N$ in (X, μ_N) . Now we have to obtain that $\mu_N Int(A) \neq 0_N$. Suppose that $\mu_N Int(A) = 0_N$ in (X, μ_N) . Then $\mu_N Cl(\overline{A}) = \overline{(\mu_N Int(A))} = 1_N$. We have that (X, μ_N) is μ_N strongly irresolvable space, $\mu_N Cl(A) = 1_N$ yields us $\mu_N Cl(\mu_N IntA) = 1_N$. Thus, we get $\overline{(\mu_N Int(\mu_N ClA))} = 1_N \Rightarrow \mu_N Int(\mu_N ClA) = 0_N$ in (X, μ_N) which is a contradiction. Thus we obtain $\mu_N Int(A) \neq 0_N$ in (X, μ_N) .

Theorem 4.13. $\eta_i \subseteq \overline{\eta_j}, i \neq j$ where η_i 's are μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) , then η_j is a μ_N nowhere dense set in (X, μ_N) .

Proof. Let η_i and η_j , $i \neq j$ be neutrosophic sets in (X, μ_N) such that $\eta_i \subseteq \overline{(\eta_j)}$ and $\mu_N Cl(\eta_i) = 1_N$ in (X, μ_N) . Since, (X, μ_N) is μ_N strongly irresolvable space, for the μ_N dense sets η_i , $\mu_N Cl(\mu_N Int\eta_i) = 1_N$ in (X, μ_N) . We have that $\eta_i \subseteq \overline{(\eta_j)}$ that implies us that $\mu_N Cl(\mu_N Int\eta_i) \subseteq \mu_N Cl(\mu_N Int\overline{(\eta_j)})$ thereupon we obtain $1_N \subseteq \mu_N Cl(\mu_N Int\overline{(\eta_j)}) \Rightarrow \mu_N Cl(\mu_N Int\overline{(\eta_j)}) = 1_N$. Thus we get $\overline{(\mu_N Int(\mu_N Cl\eta_j))} = 1_N$. Henceforth, we obtain that $\mu_N Int(\mu_N Cl\eta_j) = 0_N \Rightarrow \eta_j$ is a μ_N nowhere dense set in (X, μ_N) .

Theorem 4.14. If each μ_N dense sets η is a μ_N first category set in a μ_N strongly irresolvable space (X, μ_N) , then $\mu_N Int(\mu_N Cl(\bigcap_{i=1}^{\infty} \overline{(\eta_i)})) = 0_N$, where η_i 's are μ_N nowhere dense sets in (X, μ_N) .

Proof. Let η be μ_N dense set in (X, μ_N) . Since (X, μ_N) is μ_N strongly irresolvable space, $\mu_N Cl(\eta) = 1_N$ that entails us that $\mu_N Cl(\mu_N Int\eta) = 1_N$ in (X, μ_N) . Suppose that η is a μ_N first category set in (X, mu_N) . Then $\eta = \bigcup_{i=1}^{\infty} \eta_i$, where η_i 's are μ_N nowhere dense sets in (X, μ_N) . Thus we obtain that $\mu_N Cl(\mu_N Int\eta) = 1_N \Rightarrow \mu_N Cl(\mu_N Int \bigcup_{i=1}^{\infty} \eta_i) = 1_N$ in (X, μ_N) . From this we retrieve that $\overline{(\mu_N Cl(\mu_N Int \bigcup_{i=1}^{\infty} \eta_i))} = 0_N$. Hence $\mu_N Int(\mu_N Cl(\bigcap_{i=1}^{\infty} (\overline{(\eta_i)}))) = 0_N$, where η_i 's are μ_N nowhere dense sets in (X, μ_N) .

Theorem 4.15. If $\eta \subseteq \nu$, where ν is a neutrosophic set and ν is a μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) , then $\overline{\nu}$ is a μ_N nowhere dense sets in (X, μ_N) .

Proof. Let ν be a μ_N dense set in (X, μ_N) such that $\nu \subseteq \nu$. Since (X, μ_N) is a μ_N strongly irresolvable space (X, μ_N) , for the μ_N dense sets $\mu_N Cl(\mu_N Int\eta) = 1_N$ in (X, μ_N) . Now $\eta \subseteq \nu$ implies us that $\mu_N Cl(\mu_N Int\eta) \subseteq \mu_N Cl(\mu_N Int\nu)$. Henceforth $1_N \subseteq \mu_N Cl(\mu_N Int\nu)$ which leads us into $\mu_N Cl(\mu_N Int\nu) = 1_N$ in (X, μ_N) . From this we deduce that $\overline{(\mu_N Cl(\mu_N Int\nu))} = 0_N$ that yields us that $\mu_N Int(\mu_N Cl(\overline{\nu})) = 0_N$ in (X, μ_N) . Thus we obtain that $\overline{\nu}$ is a μ_N nowhere dense sets in (X, μ_N) .

Theorem 4.16. If $\eta \subseteq \nu$, where ν is a neutrosophic set and η is a μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) , then $\overline{\nu}$ is not a ν_N open set in (X, μ_N) .

Proof. Let η be a μ_N dense set in (X, μ_N) in a manner that $\eta \subseteq \nu$. Since (X, μ_N) is a μ_N strongly irresolvable space, By theorem 4.25 we obtain that $\overline{\nu}$ is a μ_N nowhere dense sets in (X, μ_N) . Thereupon $\mu_N Int(\mu_N Cl(\overline{\nu})) = 0_N$. But we know that $\mu_N Int(\overline{\nu}) \subseteq \mu_N Int(\mu_N Cl(\overline{\nu})) \Rightarrow \mu_N Int(\overline{\nu}) \subseteq 0_N$ that leads us into that $\mu_N Int(\overline{\nu}) = 0_N$. Henceforth $\overline{\nu}$ is not a μ_N -open set in (X, μ_N) .

Theorem 4.17. If $\eta \subseteq \nu$, where ν is a neutrosophic set and η is a μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) , then $\overline{\nu}$ is a μ_N Rare set in (X, μ_N) .

Proof. Let η be a μ_N dense set in (X, μ_N) in a manner that $\eta \subseteq \nu$. Since (X, μ_N) is a μ_N strongly irresolvable space, By theorem 4.26 we obtain that $\overline{\nu}$ is a μ_N nowhere dense sets in (X, μ_N) . Thereupon $\mu_N Int(\mu_N Cl(\overline{\nu})) = 0_N$. But we know that $\mu_N Int(\overline{\nu}) \subseteq \mu_N Int(\mu_N Cl(\overline{\nu})) \Rightarrow \mu_N Int(\overline{\nu}) \subseteq 0_N$ that leads us into that $\mu_N Int(\overline{\nu}) = 0_N$. Henceforth $\overline{\nu}$ is a μ_N Rare set in (X, μ_N)

Theorem 4.18. If η is a μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) , then $1_N - \eta$ is a μ_N nowhere dense set and μ_N -semi closed in (X, μ_N) .

Proof. Let eta be a μ_N -dense sets in (X, μ_N) . Since (X, μ_N) is μ_N strongly irresolvable space, for the μ_N dense sets η , $\mu_N Cl(\mu_N Int\eta) = 1_N$ in (X, μ_N) . Thereupon $\overline{(\mu_N Cl(\mu_N Int\eta))} = 0_N$. From this we retrieve that $\mu_N Int(\mu_N Cl(\overline{\eta})) = 0_N$ that leads us into $\overline{\eta}$ is a μ_N nowhere dense set in (X, μ_N) . On considering $\mu_N Int(\mu_N Cl(\overline{\eta})) \subseteq \overline{\eta}$. This clearly shows that $\overline{\eta}$ is μ_N -semi closed in (X, μ_N) . Henceforth $\overline{\eta}$ is a μ_N nowhere dense set and μ_N -semi closed in (X, μ_N) .

Theorem 4.19. If $\eta = \bigcap_{i=1}^{\infty} \eta_i$ is a μ_N dense sets, where η_i is are neutrosophic sets in μ_N strongly irresolvable space (X, μ_N) , then $\overline{\eta}$ is a μ_N first category set in (X, μ_N) .

Proof. Let $\eta = \bigcap_{i=1}^{\infty} \eta_i$ is a μ_N dense set in (X, μ_N) . Thereupon we get $\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i) = 1_N$. At the same time we know that $\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i) \subseteq \bigcap_{i=1}^{\infty} \mu_N Cl(\eta_i)$ in (X, μ_N) . Thus we obtain that $1_N \subseteq \bigcap_{i=1}^{\infty} \mu_N Cl(\eta_i)$. That is, $\bigcap_{i=1}^{\infty} \mu_N Cl(\eta_i) = 1_N$. So, $\mu_N Cl(\eta_i) = 1_N$ in (X, μ_N) . Since (X, μ_N) is a μ_N strongly irresolvable space, by theorem 4.28, $\overline{\eta}_i$'s are μ_N nowhere dense sets in (X, μ_N) . Now $\eta = \bigcap_{i=1}^{\infty} \eta_i$ implies us that $\overline{\eta} = \overline{(\bigcap_{i=1}^{\infty} \eta_i)} = \bigcup_{i=1}^{\infty} (\overline{(\eta_i)})$. Thus we obtain $\overline{\eta} = \bigcup_{i=1}^{\infty} (\overline{(\eta_i)})$ that implies us that $\overline{\eta}$ is a μ_N nowhere dense set in (X, μ_N) .

Theorem 4.20. If each μ_N dense set η is a μ_N -open set in a μ_N -topological space (X, μ_N) , then (X, μ_N) is a μ_N strongly irresolvable space.

Proof. let η be a μ_N dense set in (X, μ_N) in a manner that $\mu_N Int(\eta) = \eta$. Thereupon by the theorem 2.16, $\overline{\eta}$ is a μ_N nowhere dense set in (X, μ_N) . Thus we obtain that $\mu_N Int(\mu_N Cl\overline{\eta}) = 0_N$. Hence we get that $\overline{(\mu_N Cl(\mu_N Int\eta)))} = 0_N$ from this we deduce that $\mu_N Cl(\mu_N Int\eta) = 1_N$ in (X, μ_N) . Hence for the μ_N dense set η in (X, μ_N) , $\mu_N Cl(\mu_N Int\eta) = 1_N$ in (X, μ_N) . Therefore, (X, μ_N) is a μ_N strongly irresolvable space. \Box

Theorem 4.21. If $\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i) = 1_N$, where η_i 's are μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) , then (X, μ_N) is a μ_N Baire space.

Proof. Let η_i 's be μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) in a manner that $\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i) = 1_N$. Since (X, μ_N) is a μ_N strongly irresolvable space, $\mu_N Cl(\mu_N Int\eta_i) = 1_N$ in (X, μ_N) . Then, $\overline{(\mu_N Cl(\mu_N Int\eta_i))} = 0_N$ in (X, μ_N) . Hence we retrieve that $\mu_N Int(\mu_N Cl(\overline{(\eta_i)})) = 0_N$ in (X, μ_N) . From this we clearly get that $\overline{\eta}$'s are μ_N nowhere dense sets in (X, μ_N) . Now, $\mu_N Cl(cap_{i=1}^{\infty} \eta_i) = 1_N \Rightarrow \overline{(\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i))} = 0_N \Rightarrow \mu_N Int(\bigcup_{i=1}^{\infty} \overline{\eta_i}) = 0_N$. Thus we deduce that $\mu_N Int(cup_{i=1}^{\infty} (\overline{eta_i})) = 0_N$ where $\overline{\eta}$'s are μ_N nowhere dense sets in (X, μ_N) . Henceforth, (X, μ_N) is a μ_N Baire space.

Theorem 4.22. If η_i 's where *i* ranges from 1 to ∞ are μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) and μ_N Baire space then $\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i) = 1_N$ in (X, μ_N) .

Proof. Let η_i 's are μ_N dense sets in a μ_N strongly irresolvable space (X, μ_N) then we obtain that for the μ_N dense sets, $\mu_N Cl(\mu_N Int\eta_i) = 1_N$ in (X, μ_N) . From this we obtain that $\overline{(\mu_N Cl(\mu_N Int\eta_i))} = 0_N \Rightarrow \mu_N Int((\mu_N Cl\overline{\eta})) = 0_N$. From this we clearly get that $\overline{\eta}$'s are μ_N nowhere dense sets in (X, μ_N) . Since (X, μ_N) is a μ_N Baire space, $\mu_N Int(\bigcup_{i=1}^{\infty} (\overline{\eta_i})) = 0_N \Rightarrow \mu_N Int(\overline{(\bigcap_{i=1}^{\infty} \eta_i)}) = 0_N \Rightarrow \overline{(\mu_N Cl(cap_{i=1}^{\infty} \eta_i))} = 0_N$. Henceforth $\mu_N Cl(\bigcap_{i=1}^{\infty} \eta_i) = 1_N$ in (X, μ_N) .

5. μ_N Connectedness & μ_N Disconnectedness

Definition 5.1. A μ_N -topological spaces (X, μ_N) is said to be μ_N disconnected if there exists μ_N -open sets $A \neq 0_N, B \neq 0_N$ in (X, μ_N) such that $A \vee B = 1_N$ and $A \wedge B = 0_N$.

If (X, μ_N) is not μ_N disconnected then it is μ_N connected.

Example 5.1. Let $X = \{a\}$ define neutrosophic sets $0_N = \{<0,1,1>\}, \delta_1 = \{<0.3,0.3,0.5>\}, \delta_2 = \{<0.1,0.2,0.3>\}, \delta_3 = \{<0.3,0.2,0.3>\}, \delta_4 = \{<0.3,0.6,0.2>\}, \delta_5 = \{<0.3,0.8,0.5>\}, 1_N = \{<1,0,0>\}$ and we define a μ_N TS $\mu_N = \{0_N, \delta_1, \delta_2, \delta_3\}$. Here $\delta_1 \neq 0_N, \delta_2 \neq 0_N, \delta_1 \lor \delta_2 = \{<0.3,0.2,0.3>\} \neq 1_N$ and $\delta_1 \land \delta_2 = \{<0.1,0.3,0.5>\}$. Hence (X, μ_N) is μ_N connected.

Example 5.2. Let $X = \{a, b\}$ define neutrosophic sets $0_N = \{<0, 1, 1 >< 0, 1, 1 >\}, \alpha_1 = \{<1, 0, 0 >< 0, 0, 1 >\}, \alpha_2 = \{<0, 1, 1 >< 1, 1, 0 >\}, \alpha_3 = \{<1, 0, 0 >< 1, 1, 1 >\}$ and we define a μ_N TS as $\{0_N, \alpha_1, \alpha_2, \alpha_3\}$. Here, $\alpha_1 \neq 0_N, \alpha_2 \neq 0_N, \alpha_1 \lor \alpha_2 = \{<1, 0, 0 >< 1, 0, 0 >\} = 1_N, \alpha_1 \land \alpha_2 = \{<0, 1, 1 >< 0, 1, 1 >\} = 0_N$. Hence (X, μ_N) is μ_N disconnected.

Definition 5.2. Let (X, μ_N) be a μ_N -topological spaces. If there exists μ_N -open sets A and B in X satisfying the following properties, then N is said to be $\mu_N C_n$ disconnected.

- (a) $\mu_N C_1 : N \leq A \lor B, A \land B \leq N^c, N \land A \neq 0_N, N \land B \neq 0_N$
- (b) $\mu_N C_2 : N \leq A \lor B, N \land A \land B = 0_N, N \land A \neq 0_N, N \land B \neq 0_N$
- (c) $\mu_N C_3 : N \leq A \lor B, A \land B \leq N^c, A \not< N^c, B \not< N^c$
- (d) $\mu_N C_4 : N \leq A \lor B, N \land A \land B = 0_N, A \not< N^c, B \not< N^c$

N is said to be $\mu_N C_n$ connected (n = 1, 2, 3, 4) if N is not $\mu_N C_n$ disconnected.

Remark 5.1. Clearly, we obtain the following implications between the four types of $\mu_N C_n$ connected (n = 1, 2, 3, 4).

- (a) Every $\mu_N C_1$ connected implies $\mu_N C_2$ connected.
- (b) Every $\mu_N C_1$ connected implies $\mu_N C_3$ connected.
- (c) Every $\mu_N C_3$ connected implies $\mu_N C_4$ connected.
- (d) Every $\mu_N C_2$ connected implies $\mu_N C_4$ connected.

The following examples shows us that the converse implications need not be true

Example 5.3. Let $X = \{a, b\}, \mu_N = \{0_N, A, B, C\}$ where $A = \{< 0.4, 0.6, 0.6 > < 0.1, 0.9, 0.9 >\}, B = \{< 0.5, 0.5, 0.5 > < 0.3, 0.9, 0.7 >\}, C = \{< 0.3, 0.7, 0.7 > < 0.1, 0.9, 0.9 >\}$. Here, C is $\mu_N C_2$ connected, $\mu_N C_3$ connected, $\mu_N C_4$ connected but $\mu_N C_1$ disconnected.

Example 5.4. Let $X = \{a, b\}, \mu_N = \{0_N, P, Q, R, S\}$ where $P = \{<0.2, 0.6, 0.6 > < 0.8, 0.2, 0.2 >\}, Q = \{<0.8, 0.2, 0.2 > < 0.6, 0.2, 0.2 >\}, R = \{<0.8, 0.2, 0.2 > < 0.8, 0.2, 0.2 >\}, S = \{<0.1, 0.9, 0.9 > < 0.1, 0.9, 0.9 >\}$. Here, S is $\mu_N C_4$ connected but $\mu_N C_3$ disconnected.

Definition 5.3. A μ_N -topological spaces (X, μ_N) is said to be $\mu_N C_5$ disconnected if there exists μ_N subset A in X which is both μ_N -closed and μ_N -open in (X, μ_N) such that $A \neq 0_N, A \neq 1_N$. If X is not $\mu_N C_5$ disconnected then it is said to be $\mu_N C_5$ connected.

Example 5.5. Let $X = \{a, b\}, \mu_N = \{0_N, A_1, A_2\}$ where $A_1 = \{< 0.3, 0.5, 0.9 > < 0.6, 0.5, 0.4 >\}, A_2 = \{< 0.9, 0.5, 0.3 > < 0.4, 0.5, 0.6 >\}$. Here, $A_1 \neq 0_N, A_1 \neq 1_N$ is both μ_N -closed and μ_N -open in (X, μ_N) . Thus (X, μ_N) is $\mu_N C_5$ disconnected.

Theorem 5.1. μ_N disconnectedness implies $\mu_N C_5$ disconnected. Equivalently, $\mu_N C_5$ connectedness implies μ_N connectedness.

Proof. Suppose there exists a non-empty μ_N -open sets A and B such that $A \vee B = 1_N$ and $A \wedge B = 0_N$. Then $\mu_A \vee \mu_B = 1_N, \sigma_A \wedge \sigma_B = 0_N, \gamma_A \wedge \gamma_B = 0_N$ and $\mu_A \vee \mu_B = 0_N, \sigma_A \wedge \sigma_B = 1_N, \gamma_A \wedge \gamma_B = 1_N$. In other words, $B^c = A$. Hence, A is $\mu_N clopen$ which yields us that X is $\mu_N C_5$ disconnected.

But the reversal statement of the above theorem need not be true.

Example 5.6. Let $X = \{a, b\}, \mu_N = \{0_N, A_1, A_2\}$ where $A_1 = \{< 0.3, 0.5, 0.9 >< 0.6, 0.5, 0.4 >\}, A_2 = \{< 0.9, 0.5, 0.3 >< 0.4, 0.5, 0.6 >\}$. Here, $A_1 \neq 0_N, A_1 \neq 1_N$ is both μ_N -closed and μ_N -open in (X, μ_N) . Thus (X, μ_N) is $\mu_N C_5$ disconnected but not μ_N disconnected.

Theorem 5.2. A μ_N -topological spaces (X, μ_N) is $\mu_N C_5$ connected if and only if there exists no non-empty μ_N -open sets U and V in (X, μ_N) such that $U = V^c$.

Proof. Assume (X, μ_N) is $\mu_N C_5$ connected. Suppose U and V are μ_N -open sets in (X, μ_N) such that $U \neq 0_N, V \neq 0_N$ and $U = V^c$. Since $U = V^c, V^c$ is μ_N -open in (X, μ_N) which implies that V is μ_N -closed in (X, μ_N) and $U \neq 0_N$ implies $V \neq 1_N$. Hence, V is both μ_N -open and μ_N -closed in (X, μ_N) such that $V \neq 0_N$ and $V \neq 1_N$ that implies us that V is $\mu_N C_5$ disconnected which is a contradiction to (X, mu_N) is $\mu_N C_5$ connected. Hence there is no non empty μ_N -open sets U and V in (X, μ_N) such that $U = V^c$.

Conversely we assume that there is no non empty μ_N -open sets U and V in (X, μ_N) such that $U = V^c$. Let V be μ_N -closed in (X, μ_N) and U be both μ_N -open and μ_N -closed in (X, μ_N) such that $U \neq 0_N, U \neq 1_N$. Now take $U^c = V$ is a μ_N -open set and $V \neq 1_N$ which implies us that that $U^c = V \neq 0_N$. Hence we get $V \neq 1_N$ which is a contradiction to our assumption. Hence (X, μ_N) is $\mu_N C_5$ connected.

Theorem 5.3. A μ_N -topological spaces (X, μ_N) is μ_N connected space if and only if there exists no non-empty μ_N -open sets U and V in (X, μ_N) such that $U = V^c$.

Proof. Assume (X, μ_N) is μ_N connected. Suppose U and V are μ_N -open sets in (X, μ_N) such that $U \neq 0_N, V \neq 0_N$ and $U = V^c$. Since $U = V^c, V^c$ is μ_N -open in (X, μ_N) which implies that V is μ_N -closed in (X, μ_N) and $U \neq 0_N$ implies $V^c \neq 1_N$. Hence, V is a proper μ_N subset which is both μ_N -open and μ_N -closed in (X, μ_N) that implies us that X is μ_N disconnected which is a contradiction to (X, μ_N) is μ_N connected. Hence there is no non zero μ_N -open sets U and V in (X, μ_N) such that $U = V^c$.

Conversely we assume that there is no non zero μ_N -open sets U and V in (X, μ_N) such that $U = V^c$. Let V be μ_N -closed in (X, μ_N) and U be both μ_N -open and μ_N -closed in (X, μ_N) such that $U \neq 0_N, U \neq 1_N$. Now take $U^c = V$ is a μ_N -open set and $V \neq 1_N$ which implies us that that $U^c = V \neq 0_N$. Hence we get that there is non-empty μ_N -open sets U and V such that $U = V^c$ which is a contradiction to our assumption. Hence (X, μ_N) is μ_N connected. **Theorem 5.4.** A μ_N -topological spaces (X, μ_N) is μ_N connected space if and only if there exist no non-zero μ_N subsets U and V in (X, μ_N) such that $U = V^c, V = (\mu_N ClU)^c$ and $U = (\mu_N ClV)^c$.

Proof. Let U and V be two μ_N subsets in (X, μ_N) such that $U \neq 0_N, V \neq 0_N$ and $U = V^c, V = (\mu_N ClU)^c$ and $U = (\mu_N ClV)^c$. Since, $(\mu_N ClU)^c$ and $(\mu_N ClV)^c$ are μ_N -open sets in X. U and V are μ_N -open sets in X. This implies X is not μ_N connected which is a contradiction. Therefore there exists no μ_N -open sets in X such that $U = V^c, V = (\mu_N ClU)^c$ and $U = (\mu_N ClV)^c$.

Sufficiency:Let U be both μ_N -open and μ_N -closed sets in X such that $U \neq 0_N$, $U \neq 1_N$. By taking $V = U^c$ which is a contradiction to our hypothesis. Hence, (X, μ_N) is μ_N connected.

6. μ_N Hyperconnected

Definition 6.1. A μ_N TS is said to be μ_N hyperconnected if every non-empty μ_N -open subset of (X, μ_N) is μ_N dense in (X, μ_N) .

Example 6.1. Let $X = \{a\}$ define neutrosophic sets $0_N = \{<0,1,1>\}, \delta_1 = \{<0.3,0.3,0.5>\}, \delta_2 = \{<0.1,0.2,0.3>\}, \delta_3 = \{<0.3,0.2,0.3>\}, \delta_4 = \{<0.3,0.6,0.2>\}, \delta_5 = \{<0.3,0.8,0.5>\}, 1_N = \{<1,0,0>\}$ and we define a μ_N TS $\mu_N = \{0_N, \delta_1, \delta_2, \delta_3\}$. Here $\delta_1, \delta_2, \delta_3, \overline{\delta_4}, \overline{\delta_5}, 1_N$ are μ_N dense sets in (X, μ_N) . Here every μ_N -open subset of (X, μ_N) is mu_N dense in (X, μ_N) . Thus, (X, μ_N) is μ_N hyperconnected.

Theorem 6.1. Every μ_N hyperconnected is μ_N connected.

Proof. Assume that (X, μ_N) is not μ_N connected that entails us that there exists two non-empty proper sets $A \in \mu_N$ and $B \in \mu_N$ such that $A \cap B = 0_N$ and $A \cup B = 1_N$ from this we deduce $A \cup B \in \mu_N$ and $\mu_N Cl(A \cup B) = \mu_N Cl(1_N) \neq 1_N$. Here we obtained that $A \cup B$ is μ_N -open but not μ_N dense which is a contradiction. Henceforth (X, μ_N) is μ_N connected.

Remark 6.1. The contrary statement of the above theorem need not be true.

Example 6.2. Let $X = \{a\}$ define neutrosophic sets $0_N = \{<0,1,1>\}, \vartheta_1 = \{<0.7,0.8,0.9>\}, \vartheta_2 = \{<0.3,0.4,0.6>\}, \vartheta_3 = \{<0.9,0.7,0.6>\}, 1_N = \{<1,0,0>\}$ and we define a μ_N TS $\mu_N = \{0_N,\vartheta_1,\vartheta_3\}$. Here, ϑ_1 and ϑ_3 are μ_N -open sets in (X,μ_N) but they are not μ_N dense in (X,μ_N) . Hence (X,μ_N) is not μ_N hyperconnected. But (X,μ_N) is μ_N connected.

Theorem 6.2. (X, μ_N) is μ_N hyperconnected if and only if every μ_N subset of (X, μ_N) is either μ_N dense or μ_N nowhere dense.

Proof. Let (X, μ_N) be a μ_N hyperconnected space. Let A be any μ_N subsets such that $A \subseteq 1_N$. Suppose A is not μ_N nowhere dense. Then $\mu_N Cl(X - \mu_N ClA) = X - \mu_N Int(\mu_N ClA) \neq 1_N$. Since $\mu_N Int(\mu_N ClA) \neq 1_N$. By our assumption we get A is μ_N dense.

Conversely, Let A be non-empty μ_N -open in X. Now for any non-empty μ_N -open set we have $A \subseteq \mu_N Int(\mu_N ClA)$ which implies that A is not μ_N nowhere dense but by hypothesis we have A is μ_N dense. Hence the theorem.

References

- [1] Atanassov.K.T, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986; 20, 87–96.
- [2] Chang.C.L, Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 1968; 24, 183–190.
- [3] Al-Omeri, W.; Smarandache, F. New Neutrosophic Sets via Neutrosophic Topological Spaces. In Neutrosophic Operational Research; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2017; I, 189–209
- [4] Dhavaseelan.R and Jafari, Generalized Neutrosophic closed sets, New trends in Neutrosophic theory and applications, 2018; 2, 261–273.
- [5] Dogan Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems, 1997; 88, 81–89
- [6] FloretinSmarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA, 2002.
- [7] Floretin Smarandache, NeutrosophicSet:- A Generalization of Intuitionistic Fuzzy set, Journal of DefenseResourses Management, 2010; 1, 107–116.
- [8] Floretin Smarandache, A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic Probability. Ameican Research Press, Rehoboth, NM,1999.
- [9] Iswarya .P, K.Bageerathi, A Study on neutrosophic Frontier and neutrosophic semi frontier in Neutrosophic topological spaces, Neutrosophic sets and systems, 2017; 16, 6–15.
- [10] Raksha Ben .N, Hari Siva Annam.G, Generalized Topological Spaces via Neutrosophic Sets, J.Math.Comput.Sci., 2021; 11,
- [11] Raksha Ben .N, Hari Siva Annam.G, μ_N Dense sets and its Nature [submitted]
- [12] Salama A.A and Alblowi S.A, Neutrosophic set and Neutrosophic topological space, ISOR J. Mathematics, 2012; 3(4), 31–35.
- [13] Salama.A.A and Alblowi.S.A, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, Journal computer Sci. Engineering, 2012; 2(7), 12–23.
- [14] SalamaA.A, Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed set and Neutrosophic Continuous Function, Neutrosophic Sets and Systems, 2014; 4, 4–8.
- [15] Wadel Faris Al-omeri and Florentin Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces, New Trends in Neutrosophic Theory and Applications, 2016; 2.
- [16] Zadeh.L.A, Fuzzy set, Inform and Control, 1965; 8, 338–353.
- [17] O.Nethaji, R.Asokan and I.Rajasekaran, Novel concept of Ideal Nano Topological Space, Asia mathematica, 2019; 3(3), 5–15
- [18] G.Helan Rajapushpam, P.Sivagami and G.Hari Sive Annam, $\mu_I g$ -Dense Sets and $\mu_I g$ -Baire spaces in GITS, 2021; 5(1), 158–167.