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Abstract: In this article, the idea of µN irresolvable, µN irresolvable, µN open hereditarily irresolvable spaces are

to be introduced. Some of its characters are to be discussed. Also, the concept of µN hyperconnectedness are to be

introduced and its properties are to be contemplated.
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1. Introduction

The idea of fuzzy set[16] which plays a vital role in almost all sectors of mathematics. Belatedly C.L Chang[2]

brought out fuzzy topological space and after that several notions in general topology were extended and

enhanced in fuzzy topological spaces. K.T Attansov[1] published his idea of intuitionistic set and some re-

search works came into the literature. The concept of neutrosophy and neutrosophic sets were putforth by

Samarandache[3],[6],[7],[8],[15] with his idea later on Salama and Albowi[12],[13],[14] introduced neutrosophic

crisp sets. The concept of resolvability and irresolvablility in neutrosphic topology was brought out by Dhavasee-

lan et al[4]. The concept of generalized topological spaces via nutrosophic sets were introduced by N.Raksha

Ben[10],[11] and some of its attributes were delineated by them. In this article the concept of µN irresolv-

able, µN resolvable, µN open hereditarily irresolvable spaces, µN submaximal spaces, µN connected, µN

hyperconnected are to be introduced and some of their characters are to be narrated.

2. Necessities

Definition 2.1. [13] Let X be a non-empty fixed set. A Neutrosophic set [ NS for short ] A is an object

having the form A = {< x, µA ( x ), σA ( x ), γA ( x ) > : x ∈ X} where µA ( x ), σA ( x ) and

γA ( x ) which represents the degree of membership function, the degree of indeterminacy and the degree of

non-membership function respectively of each element x ∈ X to the set A .

Remark 2.1. [13] Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neutrosophic sets

having the form A = {< µA ( x ), 1 − (µA ( x ) + σA ( x )), γA ( x ) > : x ∈ X} . Since our main

purpose is to construct the tools for developing Neutrosophic Set and Neutrosophic topology, we must introduce
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the neutrosophic sets 0N and 1N in X as follows: 0N may be defined as follows

( 01 ) 0N = {< x, 0, 0, 1 > : x ∈ X

1N may be defined as follows

( 11 ) 1N = {< x, 1, 0, 0 > : x ∈ X

Definition 2.2. [13] Let A = {< µA, σA, γA >} be a NS on X , then the complement of the set A [C ( A )

for short] may be defined as three kinds of complements :

( C1 ) C ( A ) = A = {< x, 1− µA ( x ), 1− σA ( x ), 1− γA ( x ) > : x ∈ X}

Definition 2.3. [13] Let X be a non-empty set and neutrosophic sets A and B in the form A = {< x, µA ( x ),

σA ( x ), γA ( x ) > : x ∈ X} and B = {< x, µB ( x ), σB ( x ), γB ( x ) > : x ∈ X} . Then we may

consider two possibilities for definitions for subsets ( A ⊆ B ).

A ⊆ B may be defined as :

(A ⊆ B) ⇐⇒ µA ( x ) ≤ µB ( x ), σA ( x ) ≤ σB ( x ), γA ( x ) ≥ γB ( x ) ∀ x ∈ X

Proposition 2.1. [13] For any neutrosophic set A , the following conditions holds:

0N ⊆ A, 0N ⊆ 0N

A ⊆ 1N , 1N ⊆ 1N

Definition 2.4. [13] Let X be a non empty set and A = {< x, µA ( x ), σA ( x ),

γA ( x ) > : x ∈ X} B = {< x, µB ( x ), σB ( x ), γB ( x ) > : x ∈ X} are NSs. Then

A ∩ B may be defined as :

( I1 ) A ∩ B = < x, µA ( x ) ∧ µB ( x ), σA ( x ) ∧ σB ( x ), γA ( x ) ∨ γB ( x ) >

A ∪ B may be defined as :

( I1 ) A ∪ B = < x, µA ( x ) ∨ µB ( x ), σA ( x ) ∨ σB ( x ), γA ( x ) ∧ γB ( x ) >

Definition 2.5. [10] A µN topology is a non - empty set X is a family of neutrosophic subsets in X satisfying

the following axioms:

(µN1)0N ∈ µN

(µN2)G1 ∪G2 ∈ µN for any G1, G2 ∈ µN .

Remark 2.2. [10] The elements of µN are µN -open sets and their complement is called µN closed sets.

Definition 2.6. [10] Let (X,µN ) be a µN TS and A = {< x, µA(x), σA(x), γA(x) >} be a neutrosophic set in

X . Then the µN - Closure of A is the intersection of all µN closed sets containing A .

Definition 2.7. [10] Let (X,µN ) be a µN TS and A = {< x, µA(x), σA(x), γA(x) >} be a neutrosophic set in

X . Then the µN - Interior of A is the union of all µN open sets contained in A .

Definition 2.8. [4] A neutrosophic set A in NTS is called neutrosophic dense if there exists no neutrosophic

closed sets B in (X,T ) such that A ⊂ B ⊂ 1N .

Definition 2.9. [11] The µN Topological spaces is said to be µN Baire’s Space if µNInt(

∪∞i=1 Gi) = 0N where Gi ’s are µN nowhere dense set in (X,µN ).
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Proposition 2.2. [11] Let (X,µN ) be a µN TS. Then the following are equivalent.

(i) (X,µN ) is µN Baire’s Space.

(ii) µNInt(A) = 0N , for all µN first category set in (X,µN ) .

(iii) µNCl(A) = 1N , for every µN Residual set in (X,µN ) .

Theorem 2.1. [11] If A is a µN dense set in (X,µN ) and also µN open set in (X,µN ) then A is a µN

nowhere dense set in (X,µN ) .

3. µN Dense

Theorem 3.1. If (X,µN ) is a µN TS and A is µN dense in (X,µN ) then for any non-empty µN closed

subset F in such a way that A ⊆ F then F = 1N .

Proof. Let us guesstimate that A is µN dense in (X,µN ) then for any non-empty µN -closed subset F in

such a way that A ⊆ F . On account of the fact A is µN dense, µNCl(A) = 1N . By our presumption, F is

µN -closed and A ⊆ F hereinafter we get that 1N = µNCl(A) ⊆ µNCl(F ) = F . As a result of that we get

F = 1N .

Remark 3.1. The above theorem is fallacious if F is not µN closed.

Theorem 3.2. Let η be a subset of (X,µN ) . If η is µN dense in (X,µN ) then for any non empty µN open

subset G in (X,µN ) ,G ∩ η 6= 0N .

Proof. Assume that η is µN dense in (X,µN ). Then for every single non-empty µN -closed subset F in such

a way that A ⊆ F then F = 1N . Suppose G ∩ η = 0N for few non-empty µN -open subset G of (X,µN )

precedently we obtain that η ⊆ X − G which is µN -closed because of that G is µN -open subset of (X,µN ).

By the conjucture, X −G = 1N . Hence G = 0N which is a contradiction to G is a non-empty µN -open subset

in (X,µN ). It yields that G ∩ η 6= 0N .

Proposition 3.1. If a neutrosophic subset η is µN dense in (X,µN ) and η
′ ⊆ η , the postiliminary charac-

teristics holds.

(1) 1N is always µN dense.

(2) 0N is not µN dense in anyways.

(3) η ∪ η′
is µN dense.

(4) µNCl(η) is µN dense.

(5) Every superset of µN dense set is µN dense.

Theorem 3.3. If (X,µN ) be a µN TS and η is µN dense and G ∈ µN then, G ⊂ µNCl(η ∩G) .

Proof. Suppose ν ∈ G but ν /∈ µN Cl (η ∩ G ) then ν ∈ ( µN Cl ( η ∩ G ) )

⇒ ν ∈ µN Int ( ( η ∩ G ) ) ⊆ η ∪ G which shows that either ν belongs to η or ν belongs to

G .
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case ( i ) : Assume ν belongs to η ⇒ G ⊆ η that provides us that G ∩ η = 0N which is contrary to

Theorem 3.2.3. Hence ν ∈ µN Cl ( η ∩ G).

case ( ii ) : Assume ν belongs to G , G ⊂ η which is contradiction. Hence ν ∈ µN Cl ( η ∩ G ). Thus,

G ⊂ µN Cl ( η ∩ G).

Theorem 3.4. If (X,µN ) be a µN TS and η is µN dense and µN open in (X,µN ) then µNFr(η) = η .

Proof. Suppose η is muN dense and µN open in (X,µN ), µNCl(η) = 1N and µNInt(η) = η . Now

µNFr(η) = µNCl(η)− µNInt(η) = µNCl(η) = η .

Theorem 3.5. If (X,µN ) be a µN TS and η is µN dense subset of (X,µN ) then µNFr(η) = µNCl(η) .

Proof. µNFr(η) = µNCl(η)− µNInt(η) = µNCl(η).

Remark 3.2. The back and forth statement of above statement need not be true.

Example 3.1. Let X = {a} . We define neutrosophic sets A = {< 0.3, 0.4, 0.5 >}, B = {< 0.3, 0, 0.1 >}, C =

{< 0.4, 0.6, 0.8 >}, D = {< 0.4, 0, 0.1 >}, E = {< 0.4, 0.4, 0.5 >} . Here the µN Dense sets are {B,D, 1N} .

Now µNFr(A) = µNCl(A) . But A is not µN dense subset of (X,µN ) .

Theorem 3.6. If a neutrosophic subset η is µN dense in (X,µN ) if and only if µNExt(η) = 0N .

Proof. Suppose η is µN dense, µNCl(η) = 1N . Now, µNExt(η) = µNInt(η) = (µNCl(η)) = 0N . Conversely

assume µNExt(η) = 0N then µNCl(η) = (µNInt(η)) = 1N .

4. µN Irresolvable and µN Resolvable

Definition 4.1. A neutrosophic set A in µN TS (X,µN ) is called µN Resolvable if there exists a µN dense

set A in (X,µN ) such that µNCl(A) = 1N . Otherwise, it is µN Irresolvable.

Example 4.1. Let X = {a} . We define neutrosophic sets A,B,C,D and E as follows: P = {< 0.3, 0.3, 0.5 >

}, Q = {< 0.1, 0.2, 0.3 >}, R = {< 0.3, 0.2, 0.3 >}, S = {< 0.3, 0.6, 0.2 >}, T = {< 0.3, 0.8, 0.5 >} under

µN = {0N , P,Q,R} where (X,µN ) form a µN TS. Now, µNIntP = P, µNIntQ = Q,µNIntR = R,µNIntS =

ON , µNIntT = ON , µNInt1N = C , and µNCl0N = {< 0.3, 0.8, 0.3 >}, µNCl(P ) = 1N , µNCl(Q) = 1N ,

µNCl(R) = 1N , µNCl(S) = 1N , µNCl(T ) = {< 0.3, 0.8, 0.3 >}, µNCl(1N ) = 1N , µNCl(1
c
N ) = 1N , µNCl(P ) =

{< 0.5, 0.7, 0.3 >}, µNCl(Q) = {< 0.3, 0.8, 0.1 >}, µNCl(R) = {< 0.3, 0.8, 0.3 >}, µNCl(S) = 1N , µNCl(T ) =

1N , µNCl(1N ) = {< 0.3, 0.8, 0.3 >} . Here, P,Q,R, S, T c are µN Dense sets and µNCl(S) = 1N . Hence

(X,µN ) is µN Resolvable.

Theorem 4.1. If (X,µN ) is µN irresolvable iff µNInt(A) 6= ON for all µN dense set A in (X,µN ) .

Proof. Since (X,µN ) is µN irresolvable space for all µN dense set A we get µNCl(A) 6= 1N . From this we

deduce (µNInt(A)) 6= 1N that yields us that µNInt(A) 6= ON . Conversely we assume that µNInt(A) 6= ON for

all µN dense set A in (X,µN ). Suppose that (X,µN ) is µN resolvable then there exists a µN dense set A in

(X,µN ) such that µNCl(A) = 1N which implies us that (µNInt(A)) = 1N . From this we get µNInt(A) = ON

which is a contradiction to our assumption. Hence (X,µN ) is µN irresolvable.
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Definition 4.2. A µN TS is called µN submaximal space if for each neutrosophic set A 6= 1N in (X,µN )

such that µNCl(A) = 1N , then A ∈ µN .

Theorem 4.2. If the µN TS (X,µN ) is µN submaximal then (X,µN ) is µN irresolvable.

Proof. Let (X,µN ) be a µN submaximal space. Assume that (X,µN ) is µN resolvable space. Let A be

a µN dense set in (X,µN ) then µNCl(A) = 1N . From this we get that (µNInt(A)) = 1N which implies

µNInt(A) = ON . This concludes that A 6∈ µN which is a contradiction. Hence (X,µN ) is µN irresolvable

space.

Remark 4.1. The contrary statement of the above theorem need not be true. That is, if the µN TS (X,µN ) is

µN irresolvable then (X,µN ) need not be µN submaximal. On assumimg that (X,µN ) is µN irresolvable space

we obtain that there is no µN dense set in (X,µN ) such that µNCl(A) = 1N . From this we cannot conclude

that every µN dense set A in (X,µN ) is µN -open in (X,µN ) . Hence, (X,µN ) need not be µN submaximal.

Definition 4.3. A µN TS is called µN maximal irresolvable space if (X,µN ) is µN irresolvable and every µN

dense set A 6= 1N of (X,µN ) is µN open.

Definition 4.4. The µN TS (X,µN ) is said to be µN open hereditarily irresolvable if µNInt(µNClA) 6= 0N

then µNInt(A) 6= 0N , for any non zero neutrosophic set A in (X,µN ).

Theorem 4.3. Let (X,µN ) be a µN TS. If (X,µN ) is µN -open hereditarily irresolvable space then (X,µN )

is µN Irresolvable.

Proof. Let A be a µN dense set in (X,µN ) then µNCl(A) = 1N which implies us that µNInt(µNClA) 6= 0N

because we have µNInt(1N ) 6= 1N . Since (X,µN ) is µN -open hereditarily irresolvable, µNInt(A) 6= 0N . Now

by making use of “ If (X,µN ) is µN Irresolvable iff µNInt(A) = 0N for all µN dense sets A in (X,µN )”.

Thus we conclude that (X,µN ) is µN Irresolvable.

Remark 4.2. The reversal concept of the theorem need not be true. That is “Let (X,µN ) be a µN TS. If

(X,µN ) is µN Irresolvable then (X,µN ) need not be µN -open hereditarily irresolvable space”. This can be

explained with the help of th e upcoming example.

Example 4.2. Let (X,µN ) be a µN TS. We define µN = {0N , A,B,C,D} where A = {< 0.7, 0.3, 0.8 ><

0.5, 0.8, 0.9 >}, B = {< 0.4, 0.9, 0.9 >< 0.3, 0.9, 0.9 >}, C = {< 0.5, 0.8, 0.7 >< 0.5, 0.8, 0.8 >}, D = {<
0.5, 0.8, 0.8 >< 0.5, 0.8, 0.7 >}, E = {< 0.3, 0.9, 0.9 >< 0.4, 0.9, 0.9 >} . Here, E is µN dense set but

µNCl(E) 6= 1N . Hence it is µN Irresolvable. µNInt(µNClA) = {< 0.7, 0.3, 0.7 >< 0.5, 0.8, 0.7 >} 6=
0N and µNInt(A) = {< 0.7, 0.3, 0.7 >< 0.5, 0.8, 0.7 >} 6= 0N , µNInt(µNClB) = {< 0.5, 0.8, 0.7 ><

0.5, 0.8, 0.7 >} 6= 0N and µNInt(B) = {< 0.4, 0.9, 0.9 >< 0.3, 0.9, 0.9 >} 6= 0N and µNInt(µNClC) =

{< 0.5, 0.8, 0.7 >< 0.5, 0.8, 0.7 >} 6= 0N and µNInt(C) = {< 0.5, 0.8, 0.7 >< 0.5, 0.8, 0.8 >} 6= 0N ,

µNInt(µNClD) = {< 0.5, 0.8, 0.7 >< 0.5, 0.8, 0.7 >} 6= 0N and µNInt(D) = {< 0.5, 0.8, 0.8 >< 0.5, 0.8, 0.7 >

} 6= 0N , µNInt(µNClE) = {< 0.5, 0.8, 0.7 >< 0.5, 0.8, 0.7 >} 6= 0N and µNInt(E) = {< 0, 1, 1 >< 0, 1, 1 >

} = 0N . In this example µNInt(µNClE) 6= 0N but µNInt(E) = 0N which implies us that “If (X,µN ) is µN

Irresolvable then (X,µN ) need not be µN -open hereditarily irresolvable space.”
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Theorem 4.4. Let (X,µN ) be a µN TS. If (X,µN ) is µN -open hereditarily irresolvable space, then µNCl(A) =

1N for any non zero µN dense set A in (X,µN ) which implies that µNCl(µNIntA) = 1N .

Proof. Let A be a neutrosophic set in (X,µN ) such that µNCl(A) = 1N . From this we obtain that

(µNCl(A)) = 0N which gives us that µNInt(A) = 0N . Since (X,µN ) is µN -open hereditarily irresolvable

by using above theorem we have µNInt(µNClA) = 0N . Therefore (µNCl(µNIntA)) = 0N that yields us that

µNCl(µNIntA) = 1N .

Theorem 4.5. If µNCl(∩∞i=1ωi) = 1N where ωi ’s are µN dense sets in a µN -open hereditarily irresolvable

space then (X,µN ) is a µN Baire space.

Proof. On considering µNCl(∩∞i=1ωi) = 1N where µNCl(ωi) = 1N we get that µNInt(∪∞i=1(ωi)) = 0N , where

µNInt((ωi)) = 0N . Let ϑi = (ωi). Then, µNInt(∪∞i=1ϑi) = 0N where µNInt(ϑi) = 0N . Since (X,µN ) is a

µN -open hereditarily irresolvable space, µNInt(ϑi) = 0N that yields us that µNInt(µNCl(ϑi)) = 0N . Hence

ϑi is µN nowhere dense set in (X,µN ). Hence, µNInt(∪∞i=1ϑi) = 0N where ϑi ’s are µN nowhere dense sets

in (X,µN ) that provides us that (X,µN ) is a µN Baire space.

Theorem 4.6. If (X,µN ) is a µN Baire irresolvable space, then µNCl(∪∞i=1σi) 6= 1N where σi ’s are µN

nowhere dense sets in (X,µN ) .

Proof. Let σi be µN first category set in (X,µN ) there upon κ = ∪∞i=1(σi), where σi ’s are µN nowhere

dense sets in (X,µN ). By the reason of (X,µN ) is a µN Baire space, µNInt(κ) = 0N thereupon we get

(µNInt(κ)) = 1N which entails us that µNCl(κ) = 1N . Already we have that (X,µN ) is irresolvable space,

µNCl(κ) 6= 1N . Hence, µNCl(κ) 6= 1N and so we obtain that µNCl∪∞i=1 (σi) 6= 1N where σi ’s are µN nowhere

dense sets in (X,µN ).

Definition 4.5. A µN TS (X,µN ) is said to be µN strongly irresolvable if µNCl(µNIntA) = 1N for every

dense set except 1N in (X,µN ).

Theorem 4.7. A µN TS (X,µN ) is µN submaximal space then (X,µN ) is a µN Strongly irresolvable space.

Proof. Assume (X,µN ) is µN submaximal space. By the definition of µN submaximal spaces, we obtain that

every µN dense set except 1N ∈ µN is µN -open in (X,µN ). Now muNCl(A) = 1N ⇒ µNCl(µNIntA) = 1N .

Hence, (X,µN ) is µN Strongly irresolvable space.

The converse of the above theorem need not be true.

Remark 4.3. A µN TS (X,µN ) is a µN Strongly irresolvable space then (X,µN ) need not be µN sub-

maximal. On assuming that (X,µN ) is µN Strongly irresolvable space. We obtain that, µNCl(A) = 1N ⇒
µNCl(µNIntA) = 1N but we cannot obtain that µNIntA = A which leads us to µN submaximal space. Hence,

we conclude that (X,µN ) is a µN Strongly irresolvable space then (X,µN ) need not be µN submaximal.

Theorem 4.8. If the µN TS (X,µN ) is a µN strongly irresolvable Baire space and ν is a µN first category

set in (X,µN ) then ν is a µN nowhere dense set in (X,µN ) .
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Proof. Let ν be a µN first category set in (X,µN ). Then γ = ∪∞i=1νi where ν ’s are µN nowhere dense sets in

(X,µN ). Since (X,µN ) is a µN Baire space by theorem 2.15, µNInt(ν) = 0N in (X,µN ). Thereupon we get

(µNInt(ν)) = 1N that entails us that µNCl(ν) = 1N . By the cause of (X,µN ) is a µN strongly irresolvable

space for the µN dense set except 1N ∈ µN in (X,µN ). Hence we retrieve that µNCl(µNIntν) = 1N . Thus

we get that (µNInt(µNClν)) = 1N and so we get µNInt(νNClν) = 0N . Thus we obtain ν is a µN nowhere

dense set in (X,µN ).

Theorem 4.9. If the µN TS is a µN submaximal Baire space and ν is a µN first category set in (X,µN ) ,

then ν is a µN nowhere dense set in (X,µN ) .

Proof. Let ν be a µN first category set in (X,µN ). Since (X,µN ) is µN submaximal Baire space by theorem

4.17 (X,µN ) is µN Strongly irresolvable space. Then (X,µN ) is µN Strongly irresolvable baire space. Since ν

is a µN first category set in (X,µN ). By Theorem 4.19 we get that ν is a µN nowhere dense set in (X,µN ).

Theorem 4.10. If µNCl(∩∞i=1δi) = 1N where δi ’s are µN dense sets in a µN submaximal space (X,µN ) ,

then (X,µN ) is a µN Baire space.

Proof. Let δi ’s be µN dense sets in µN submaximal space. Then δi ∈ µN . Now µNCl(δi) = 1N and

µNInt(δi) = δi that entails us that µNCl(µNIntδi) = 1N . From this we obtain that (µNCl(µNIntδi)) =

0N ⇒ µNInt(µNCl(δi)) = 0N . Hence, δi ‘s are µN nowhere dense sets in (X,µN ). Now we consider that

µNCl(∩∞i=1δi) = 1N by taking complement we obtain that µNInt(∪∞i=1δi) = 0N . Now by making use of

theorem 2.15 we obtain that (X,µN ) is a µN Baire space.

Theorem 4.11. If µNCl(µNInt(A)) 6= 1N , for every neutrosophic set A in µN strongly irresolvable space

(X,µN ) , then µNCl(A) 6= 1N in (X,µN ) .

Proof. Let A be a neutrosophic set in (X,µN ) such that µNCl(µNInt(A)) 6= 1N . Now we are in a need to

prove that µNCl(A) 6= 1N in (X,µN ). We are assuming that µNCl(A) = 1N in (X,µN ). Already its given

that (X,µN ) is µN strongly irresolvable space ⇒ if µNCl(A) = 1N then µNCl(µNInt(A)) = 1N which is a

contradiction. Henceforth we obtain µNCl(A) 6= 1N in (X,µN ).

Theorem 4.12. If A is a neutrosophic set in a µN strongly irresolvable space (X,µN ) such that µNInt(µNClA)

6= 0N , then µNInt(A) 6= 0N in (X,µN ) .

Proof. Let A be a neutrosophic set in (X,µN ) such that µNInt(µNClA) 6= 0N in (X,µN ). Now we have to

obtain that µNInt(A) 6= 0N . Suppose that µNInt(A) = 0N in (X,µN ). Then µNCl(A) = (µNInt(A)) = 1N .

We have that (X,µN ) is µN strongly irresolvable space, µNCl(A) = 1N yields us µNCl(µNIntA) = 1N . Thus,

we get (µNInt(µNClA)) = 1N ⇒ µNInt(µNClA) = 0N in (X,µN ) which is a contradiction. Thus we obtain

µNInt(A) 6= 0N in (X,µN ).

Theorem 4.13. ηi ⊆ ηj ,i 6= j where ηi ’s are µN dense sets in a µN strongly irresolvable space (X,µN ) , then

ηj is a µN nowhere dense set in (X,µN ) .
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Proof. Let ηi and ηj , i 6= j be neutrosophic sets in (X,µN ) such that ηi ⊆ (ηj) and µNCl(ηi) = 1N in

(X,µN ). Since, (X,µN ) is µN strongly irresolvable space, for the µN dense sets ηi , µNCl(µNIntηi) = 1N

in (X,µN ). We have that ηi ⊆ (ηj) that implies us that µNCl(µNIntηi) ⊆ µNCl(µNInt(ηj)) thereupon we

obtain 1N ⊆ µNCl(µNInt(ηj))⇒ µNCl(µNInt(ηj)) = 1N . Thus we get (µNInt(µNClηj)) = 1N . Henceforth,

we obtain that µNInt(µNClηj) = 0N ⇒ ηj is a µN nowhere dense set in (X,µN ).

Theorem 4.14. If each µN dense sets η is a µN first category set in a µN strongly irresolvable space (X,µN ) ,

then µNInt(µNCl(∩∞i=1(ηi))) = 0N , where ηi ’s are µN nowhere dense sets in (X,µN ) .

Proof. Let η be µN dense set in (X,µN ). Since (X,µN ) is µN strongly irresolvable space, µNCl(η) = 1N

that entails us that µNCl(µNIntη) = 1N in (X,µN ). Suppose that η is a µN first category set in (X,muN ).

Then η = ∪∞i=1ηi , where ηi ’s are µN nowhere dense sets in (X,µN ). Thus we obtain that µNCl(µNIntη) =

1N ⇒ µNCl(µNInt∪∞i=1 ηi) = 1N in (X,µN ). From this we retrieve that (µNCl(µNInt ∪∞i=1 ηi)) = 0N . Hence

µNInt(µNCl(∩∞i=1((ηi))) = 0N , where ηi ’s are µN nowhere dense sets in (X,µN ).

Theorem 4.15. If η ⊆ ν , where ν is a neutrosophic set and ν is a µN dense sets in a µN strongly irresolvable

space (X,µN ) , then ν is a µN nowhere dense sets in (X,µN ) .

Proof. Let ν be a µN dense set in (X,µN ) such that ν ⊆ ν . Since (X,µN ) is a µN strongly irresolvable

space (X,µN ), for the µN dense sets µNCl(µNIntη) = 1N in (X,µN ). Now η ⊆ ν implies us that

µNCl(µNIntη) ⊆ µNCl(µNIntν). Henceforth 1N ⊆ µNCl(µNIntν) which leads us into µNCl(µNIntν) = 1N

in (X,µN ). From this we deduce that (µNCl(µNIntν)) = 0N that yields us that µNInt(µNCl(ν)) = 0N in

(X,µN ). Thus we obtain that ν is a µN nowhere dense sets in (X,µN ).

Theorem 4.16. If η ⊆ ν , where ν is a neutrosophic set and η is a µN dense sets in a µN strongly irresolvable

space (X,µN ) , then ν is not a νN open set in (X,µN ) .

Proof. Let η be a µN dense set in (X,µN ) in a manner that η ⊆ ν . Since (X,µN ) is a µN strongly

irresolvable space, By theorem 4.25 we obtain that ν is a µN nowhere dense sets in (X,µN ). Thereupon

µNInt(µNCl(ν)) = 0N . But we know that µNInt(ν) ⊆ µNInt(µNCl(ν))⇒ µNInt(ν) ⊆ 0N that leads us into

that µNInt(ν) = 0N . Henceforth ν is not a µN -open set in (X,µN ).

Theorem 4.17. If η ⊆ ν , where ν is a neutrosophic set and η is a µN dense sets in a µN strongly irresolvable

space (X,µN ) , then ν is a µN Rare set in (X,µN ) .

Proof. Let η be a µN dense set in (X,µN ) in a manner that η ⊆ ν . Since (X,µN ) is a µN strongly

irresolvable space, By theorem 4.26 we obtain that ν is a µN nowhere dense sets in (X,µN ). Thereupon

µNInt(µNCl(ν)) = 0N . But we know that µNInt(ν) ⊆ µNInt(µNCl(ν))⇒ µNInt(ν) ⊆ 0N that leads us into

that µNInt(ν) = 0N . Henceforth ν is a µN Rare set in (X,µN )

Theorem 4.18. If η is a µN dense sets in a µN strongly irresolvable space (X,µN ) , then 1N − η is a µN

nowhere dense set and µN -semi closed in (X,µN ) .
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Proof. Let eta be a µN -dense sets in (X,µN ). Since (X,µN ) is µN strongly irresolvable space, for the µN

dense sets η , µNCl(µNIntη) = 1N in (X,µN ). Thereupon (µNCl(µNIntη)) = 0N . From this we retrieve

that µNInt(µNCl(η)) = 0N that leads us into η is a µN nowhere dense set in (X,µN ). On considering

µNInt(µNCl(η)) ⊆ η . This clearly shows that η is µN -semi closed in (X,µN ). Henceforth η is a µN nowhere

dense set and µN -semi closed in (X,µN ).

Theorem 4.19. If η = ∩∞i=1ηi is a µN dense sets, where ηi ’s are neutrosophic sets in µN strongly irresolvable

space (X,µN ) , then η is a µN first category set in (X,µN ) .

Proof. Let η = ∩∞i=1ηi is a µN dense set in (X,µN ). Thereupon we get µNCl(∩∞i=1ηi) = 1N . At the same

time we know that µNCl(∩∞i=1ηi) ⊆ ∩∞i=1µNCl(ηi) in (X,µN ). Thus we obtain that 1N ⊆ ∩∞i=1µNCl(ηi).

That is, ∩∞i=1µNCl(ηi) = 1N . So, µNCl(ηi) = 1N in (X,µN ). Since (X,µN ) is a µN strongly irresolvable

space, by theorem 4.28, ηi ’s are µN nowhere dense sets in (X,µN ). Now η = ∩∞i=1ηi implies us that

η = (∩∞i=1ηi) = ∪∞i=1((ηi)). Thus we obtain η = ∪∞i=1((ηi)) that implies us that η is a µN nowhere dense

set in (X,µN ). Hence, η is a µN first category set in (X,µN ).

Theorem 4.20. If each µN dense set η is a µN -open set in a µN -topological space (X,µN ) , then (X,µN ) is

a µN strongly irresolvable space.

Proof. let η be a µN dense set in (X,µN ) in a manner that µNInt(η) = η . Thereupon by the theorem 2.16,

η is a µN nowhere dense set in (X,µN ). Thus we obtain that µNInt(µNClη) = 0N . Hence we get that

(µNCl(µNIntη))) = 0N from this we deduce that µNCl(µNIntη) = 1N in (X,µN ). Hence for the µN dense

set η in (X,µN ), µNCl(µNIntη) = 1N in (X,µN ). Therefore, (X,µN ) is a µN strongly irresolvable space.

Theorem 4.21. If µNCl(∩∞i=1ηi) = 1N , where ηi ’s are µN dense sets in a µN strongly irresolvable space

(X,µN ) , then (X,µN ) is a µN Baire space.

Proof. Let ηi ’s be µN dense sets in a µN strongly irresolvable space (X,µN ) in a manner that µNCl(∩∞i=1ηi) =

1N . Since (X,µN ) is a µN strongly irresolvable space, µNCl(µNIntηi) = 1N in (X,µN ).

Then, (µNCl(µNIntηi)) = 0N in (X,µN ). Hence we retrieve that µNInt(µNCl((ηi))) = 0N in (X,µN ).

From this we clearly get that η ’s are µN nowhere dense sets in (X,µN ). Now, µNCl(cap
∞
i=1ηi) = 1N ⇒

(µNCl(∩∞i=1ηi)) = 0N ⇒ µNInt(∪∞i=1ηi) = 0N . Thus we deduce that µNInt(cup
∞
i=1(etai)) = 0N where η ’s are

µN nowhere dense sets in (X,µN ). Henceforth, (X,µN ) is a µN Baire space.

Theorem 4.22. If ηi ’s where i ranges from 1 to ∞ are µN dense sets in a µN strongly irresolvable space

(X,µN ) and µN Baire space then µNCl(∩∞i=1ηi) = 1N in (X,µN ) .

Proof. Let ηi ’s are µN dense sets in a µN strongly irresolvable space (X,µN ) then we obtain that for the

µN dense sets, µNCl(µNIntηi) = 1N in (X,µN ). From this we obtain that (µNCl(µNIntηi)) = 0N ⇒
µNInt(µNClη)) = 0N . From this we clearly get that η ’s are µN nowhere dense sets in (X,µN ). Since (X,µN )

is a µN Baire space, µNInt(∪∞i=1(ηi)) = 0N ⇒ µNInt((∩∞i=1ηi)) = 0N ⇒ (µNCl(cap∞i=1ηi)) = 0N . Henceforth

µNCl(∩∞i=1ηi) = 1N in (X,µN ).
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5. µN Connectedness & µN Disconnectedness

Definition 5.1. A µN -topological spaces (X,µN ) is said to be µN disconnected if there exists µN -open sets

A 6= 0N , B 6= 0N in (X,µN ) such that A ∨B = 1N and A ∧B = 0N .

If (X,µN ) is not µN disconnected then it is µN connected.

Example 5.1. Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >}, δ1 = {< 0.3, 0.3, 0.5 >}, δ2 = {<
0.1, 0.2, 0.3 >}, δ3 = {< 0.3, 0.2, 0.3 >}, δ4 = {< 0.3, 0.6, 0.2 >}, δ5 = {< 0.3, 0.8, 0.5 >}, 1N = {< 1, 0, 0 >}
and we define a µN TS µN = {0N , δ1, δ2, δ3} . Here δ1 6= 0N , δ2 6= 0N , δ1 ∨ δ2 = {< 0.3, 0.2, 0.3 >} 6= 1N and

δ1 ∧ δ2 = {< 0.1, 0.3, 0.5 >} . Hence (X,µN ) is µN connected.

Example 5.2. Let X = {a, b} define neutrosophic sets 0N = {< 0, 1, 1 >< 0, 1, 1 >}, α1 = {< 1, 0, 0 ><

0, 0, 1 >}, α2 = {< 0, 1, 1 >< 1, 1, 0 >}, α3 = {< 1, 0, 0 >< 1, 1, 1 >} and we define a µN TS as

{0N , α1, α2, α3} . Here, α1 6= 0N , α2 6= 0N , α1 ∨ α2 = {< 1, 0, 0 >< 1, 0, 0 >} = 1N , α1 ∧ α2 = {< 0, 1, 1 ><

0, 1, 1 >} = 0N . Hence (X,µN ) is µN disconnected.

Definition 5.2. Let (X,µN ) be a µN -topological spaces. If there exists µN -open sets A and B in X satisfying

the following properties, then N is said to be µNCn disconnected.

(a) µNC1 : N Q A ∨B,A ∧B Q N c, N ∧A 6= 0N , N ∧B 6= 0N

(b) µNC2 : N Q A ∨B,N ∧A ∧B = 0N , N ∧A 6= 0N , N ∧B 6= 0N

(c) µNC3 : N Q A ∨B,A ∧B Q N c, A ≮ N c, B ≮ N c

(d) µNC4 : N Q A ∨B,N ∧A ∧B = 0N , A ≮ N c, B ≮ N c

N is said to be µNCn connected (n = 1, 2, 3, 4) if N is not µNCn disconnected.

Remark 5.1. Clearly, we obtain the following implications between the four types of µNCn connected (n =

1, 2, 3, 4) .

(a) Every µNC1 connected implies µNC2 connected.

(b) Every µNC1 connected implies µNC3 connected.

(c) Every µNC3 connected implies µNC4 connected.

(d) Every µNC2 connected implies µNC4 connected.

The following examples shows us that the converse implications need not be true

Example 5.3. Let X = {a, b}, µN = {0N , A,B,C} where A = {< 0.4, 0.6, 0.6 >< 0.1, 0.9, 0.9 >}, B = {<
0.5, 0.5, 0.5 >< 0.3, 0.9, 0.7 >}, C = {< 0.3, 0.7, 0.7 >< 0.1, 0.9, 0.9 >} . Here, C is µNC2 connected, µNC3

connected, µNC4 connected but µNC1 disconnected.

Example 5.4. Let X = {a, b}, µN = {0N , P,Q,R, S} where P = {< 0.2, 0.6, 0.6 >< 0.8, 0.2, 0.2 >}, Q = {<
0.8, 0.2, 0.2 >< 0.6, 0.2, 0.2 >}, R = {< 0.8, 0.2, 0.2 >< 0.8, 0.2, 0.2 >}, S = {< 0.1, 0.9, 0.9 >< 0.1, 0.9, 0.9 >} .

Here, S is µNC4 connected but µNC3 disconnected.
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Definition 5.3. A µN -topological spaces (X,µN ) is said to be µNC5 disconnected if there exists µN subset

A in X which is both µN -closed and µN -open in (X,µN ) such that A 6= 0N , A 6= 1N . If X is not µNC5

disconnected then it is said to be µNC5 connected.

Example 5.5. Let X = {a, b}, µN = {0N , A1, A2} where A1 = {< 0.3, 0.5, 0.9 >< 0.6, 0.5, 0.4 >}, A2 = {<
0.9, 0.5, 0.3 >< 0.4, 0.5, 0.6 >} . Here, A1 6= 0N , A1 6= 1N is both µN -closed and µN -open in (X,µN ) . Thus

(X,µN ) is µNC5 disconnected.

Theorem 5.1. µN disconnectedness implies µNC5 disconnected. Equivalently, µNC5 connectedness implies

µN connectedness.

Proof. Suppose there exists a non-empty µN -open sets A and B such that A ∨ B = 1N and A ∧ B = 0N .

Then µA ∨ µB = 1N , σA ∧ σB = 0N , γA ∧ γB = 0N and µA ∨ µB = 0N , σA ∧ σB = 1N , γA ∧ γB = 1N . In

otherwords, Bc = A . Hence, A is µNclopen which yields us that X is µNC5 disconnected.

But the reversal statement of the above theorem need not be true.

Example 5.6. Let X = {a, b}, µN = {0N , A1, A2} where A1 = {< 0.3, 0.5, 0.9 >< 0.6, 0.5, 0.4 >}, A2 = {<
0.9, 0.5, 0.3 >< 0.4, 0.5, 0.6 >} . Here, A1 6= 0N , A1 6= 1N is both µN -closed and µN -open in (X,µN ) . Thus

(X,µN ) is µNC5 disconnected but not µN disconnected.

Theorem 5.2. A µN -topological spaces (X,µN ) is µNC5 connected if and only if there exists no non-empty

µN -open sets U and V in (X,µN ) such that U = V c .

Proof. Assume (X,µN ) is µNC5 connected. Suppose U and V are µN -open sets in (X,µN ) such that

U 6= 0N , V 6= 0N and U = V c . Since U = V c, V c is µN -open in (X,µN ) which implies that V is µN -closed

in (X,µN ) and U 6= 0N implies V 6= 1N . Hence, V is both µN -open and µN -closed in (X,µN ) such that

V 6= 0N and V 6= 1N that implies us that V is µNC5 disconnected which is a contradiction to (X, muN ) is

µNC5 connected. Hence there is no non empty µN -open sets U and V in (X,µN ) such that U = V c .

Conversely we assume that there is no non empty µN -open sets U and V in (X,µN ) such that U = V c .

Let V be µN -closed in (X,µN ) and U be both µN -open and µN -closed in (X,µN ) such that U 6= 0N , U 6= 1N .

Now take U c = V is a µN -open set and V 6= 1N which implies us that that U c = V 6= 0N . Hence we get

V 6= 1N which is a contradiction to our assumption. Hence (X,µN ) is µNC5 connected.

Theorem 5.3. A µN -topological spaces (X,µN ) is µN connected space if and only if there exists no non-empty

µN -open sets U and V in (X,µN ) such that U = V c .

Proof. Assume (X,µN ) is µN connected. Suppose U and V are µN -open sets in (X,µN ) such that U 6=
0N , V 6= 0N and U = V c . Since U = V c, V c is µN -open in (X,µN ) which implies that V is µN -closed in

(X,µN ) and U 6= 0N implies V c 6= 1N . Hence, V is a proper µN subset which is both µN -open and µN -closed

in (X,µN ) that implies us that X is µN disconnected which is a contradiction to (X,µN ) is µN connected.

Hence there is no non zero µN -open sets U and V in (X,µN ) such that U = V c .

Conversely we assume that there is no non zero µN -open sets U and V in (X,µN ) such that U = V c .

Let V be µN -closed in (X,µN ) and U be both µN -open and µN -closed in (X,µN ) such that U 6= 0N , U 6= 1N .

Now take U c = V is a µN -open set and V 6= 1N which implies us that that U c = V 6= 0N . Hence we get

that there is non-empty µN -open sets U and V such that U = V c which is a contradiction to our assumption.

Hence (X,µN ) is µN connected.
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Theorem 5.4. A µN -topological spaces (X,µN ) is µN connected space if and only if there exist no non-zero

µN subsets U and V in (X,µN ) such that U = V c, V = (µNClU)c and U = (µNClV )c .

Proof. Let U and V be two µN subsets in (X,µN ) such that U 6= 0N , V 6= 0N and U = V c, V = (µNClU)c

and U = (µNClV )c . Since, (µNClU)c and (µNClV )c are µN -open sets in X . U and V are µN -open sets in

X . This implies X is not µN connected which is a contradiction. Therefore there exists no µN -open sets in

X such that U = V c, V = (µNClU)c and U = (µNClV )c .

Suffiency:Let U be both µN -open and µN -closed sets in X such that U 6= 0N , U 6= 1N . By taking V = U c

which is a contradiction to our hypothesis. Hence, (X,µN ) is µN connected.

6. µN Hyperconnected

Definition 6.1. A µN TS is said to be µN hyperconnected if every non-empty µN -open subset of (X,µN ) is

µN dense in (X,µN ).

Example 6.1. Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >}, δ1 = {< 0.3, 0.3, 0.5 >}, δ2 = {<
0.1, 0.2, 0.3 >}, δ3 = {< 0.3, 0.2, 0.3 >}, δ4 = {< 0.3, 0.6, 0.2 >}, δ5 = {< 0.3, 0.8, 0.5 >}, 1N = {< 1, 0, 0 >} and

we define a µN TS µN = {0N , δ1, δ2, δ3} . Here δ1, δ2, δ3, δ4, δ5, 1N are µN dense sets in (X,µN ) . Here every

µN -open subset of (X,µN ) is muN dense in (X,µN ) . Thus, (X,µN ) is µN hyperconnected.

Theorem 6.1. Every µN hyperconnected is µN connected.

Proof. Assume that (X,µN ) is not µN connected that entails us that there exists two non-empty proper sets

A ∈ µN and B ∈ µN such that A ∩ B = 0N and A ∪ B = 1N from this we deduce A ∪ B ∈ µN and

µNCl(A ∪ B) = µNCl(1N ) 6= 1N . Here we obtained that A ∪ B is µN -open but not µN dense which is a

contradiction. Henceforth (X,µN ) is µN connected.

Remark 6.1. The contrary statement of the above theorem need not be true.

Example 6.2. Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >}, ϑ1 = {< 0.7, 0.8, 0.9 >}, ϑ2 = {<
0.3, 0.4, 0.6 >}, ϑ3 = {< 0.9, 0.7, 0.6 >}, 1N = {< 1, 0, 0 >} and we define a µN TS µN = {0N , ϑ1, ϑ3} . Here,

ϑ1 and ϑ3 are µN -open sets in (X,µN ) but they are not µN dense in (X,µN ) . Hence (X,µN ) is not µN

hyperconnected. But (X,µN ) is µN connected.

Theorem 6.2. (X,µN ) is µN hyperconnected if and only if every µN subset of (X,µN ) is either µN dense

or µN nowhere dense.

Proof. Let (X,µN ) be a µN hyperconnected space. Let A be any µN subsets such that A ⊆ 1N . Suppose A

is not µN nowhere dense. Then µNCl(X−µNClA) = X−µNInt(µNClA) 6= 1N . Since µNInt(µNClA) 6= 1N .

By our assumption we get A is µN dense.

Conversely, Let A be non-empty µN -open in X . Now for any non-empty µN -open set we have

A ⊆ µNInt(µNClA) which implies that A is not µN nowhere dense but by hypothesis we have A is µN

dense. Hence the theorem.

47



N.Raksha Ben and G. Hari Siva Annam

References

[1] Atanassov.K.T, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986; 20, 87–96.

[2] Chang.C.L, Fuzzy topological spaces, Journal of Mathematical Analysis and Application, 1968; 24, 183–190.

[3] Al-Omeri, W.; Smarandache, F. New Neutrosophic Sets via Neutrosophic Topological Spaces. In Neutrosophic

Operational Research; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2017; I, 189–209

[4] Dhavaseelan.R and Jafari, Generalized Neutrosophic closed sets,New trends in Neutrosophic theory and applications,

2018; 2, 261–273.

[5] Dogan Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems, 1997; 88, 81–89

[6] FloretinSmarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neu-

trosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301,USA, 2002.

[7] Floretin Smarandache, NeutrosophicSet:- A Generalization of Intuitionistic Fuzzy set, Journal of DefenseResourses

Management, 2010; 1, 107–116.

[8] Floretin Smarandache, A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic set, Neutrosophic

Probability. Ameican Research Press, Rehoboth, NM,1999.

[9] Iswarya .P, K.Bageerathi, A Study on neutrosophic Frontier and neutrosophic semi frontier in Neutrosophic topo-

logical spaces, Neutrosophic sets and systems, 2017; 16, 6–15.

[10] Raksha Ben .N, Hari Siva Annam.G, Generalized Topological Spaces via Neutrosophic Sets, J.Math.Comput.Sci.,

2021; 11,

[11] Raksha Ben .N, Hari Siva Annam.G, µN Dense sets and its Nature [submitted]

[12] Salama A.A and Alblowi S.A, Neutrosophic set and Neutrosophic topological space,ISOR J. Mathematics, 2012;

3(4), 31–35.

[13] Salama.A.A and Alblowi.S.A, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces,

Journal computer Sci. Engineering, 2012; 2(7), 12–23.

[14] SalamaA.A, Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed set and Neutrosophic Continuous

Function, Neutrosophic Sets and Systems, 2014; 4, 4–8.

[15] Wadel Faris Al-omeri and Florentin Smarandache, New Neutrosophic Sets via Neutrosophic Topological Spaces,

New Trends in Neutrosophic Theory and Applications, 2016; 2.

[16] Zadeh.L.A, Fuzzy set, Inform and Control, 1965; 8, 338–353.

[17] O.Nethaji, R.Asokan and I.Rajasekaran, Novel concept of Ideal Nano Topological Space, Asia mathematica, 2019;

3(3), 5–15

[18] G.Helan Rajapushpam, P.Sivagami and G.Hari Sive Annam, µI g -Dense Sets and µI g - Baire spaces in GITS,

2021; 5(1), 158–167.

48


	Introduction
	Necessities
	N Dense
	N Irresolvable and N Resolvable
	N Connectedness & N Disconnectedness 
	N Hyperconnected

