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Abstract: In this article, the idea of uy irresolvable, un irresolvable, uny open hereditarily irresolvable spaces are
to be introduced. Some of its characters are to be discussed. Also, the concept of uny hyperconnectedness are to be

introduced and its properties are to be contemplated.
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1. Introduction

The idea of fuzzy set[16] which plays a vital role in almost all sectors of mathematics. Belatedly C.L Chang[2]
brought out fuzzy topological space and after that several notions in general topology were extended and
enhanced in fuzzy topological spaces. K.T Attansov[l] published his idea of intuitionistic set and some re-
search works came into the literature. The concept of neutrosophy and neutrosophic sets were putforth by
Samarandache[3],[6],[7],[8],[15] with his idea later on Salama and Albowi[12],[13],[14] introduced neutrosophic
crisp sets. The concept of resolvability and irresolvablility in neutrosphic topology was brought out by Dhavasee-
lan et al[4]. The concept of generalized topological spaces via nutrosophic sets were introduced by N.Raksha
Ben[10],[11] and some of its attributes were delineated by them. In this article the concept of py irresolv-
able, un resolvable, uy open hereditarily irresolvable spaces, py submaximal spaces, py connected, py

hyperconnected are to be introduced and some of their characters are to be narrated.

2. Necessities

Definition 2.1. [13] Let X be a non-empty fixed set. A Neutrosophic set [ NS for short | A is an object
having the foom A = {< =z, pa (z ), ca(z), va(z) >: © € X} where pa (z), 04 () and
~v4 (2 ) which represents the degree of membership function, the degree of indeterminacy and the degree of

non-membership function respectively of each element = € X to the set A.

Remark 2.1. [13] Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neutrosophic sets
having the form A = {< pa (z), 1 —(ua (x)+0oa (z)), va(x) >: x € X}. Since our main

purpose is to construct the tools for developing Neutrosophic Set and Neutrosophic topology, we must introduce

©Asia Mathematika, DOI: 10.5281/zenodo.5253245
*Correspondence: rakshaarun218@gmail.com

36


https://orcid.org/0000-0003-1208-8620
https://orcid.org/0000-0002-0561-1287
http://www.asiamath.org/article/vol5iss2/AM-2104-5135.pdf

N.Raksha Ben and G. Hari Siva Annam

the neutrosophic sets On and 1y in X as follows: Oyn may be defined as follows
(01)0ny = {< 2,0,0,1 >: 2z € X

1y may be defined as follows

(1L1)1Iy ={< 2, 1,0,0 >: z € X

Definition 2.2. [13] Let A = {< pa, 04, 74 >} beaNSon X, then the complement of the set A [C ( A)
for short] may be defined as three kinds of complements :
(C1)YC(A)=A={ <z, 1l—pa(x),l—0oa(z),l—va(x) >: z € X}

Definition 2.3. [13] Let X be a non-empty set and neutrosophic sets A and Bin the form A = {< x, pa (z),
oa(z),va(z) >: 2 € Xyand B = {< z,pup (z), op(z ), yg (z) >: x € X}. Then we may
consider two possibilities for definitions for subsets (A C B ).

A C B may be defined as :

(ACB) < pa(z)<pp(z), oa(z)<op(z), ya(z)2m(z)Vr e X

Proposition 2.1. [13] For any neutrosophic set A, the following conditions holds:
Oy € A, Oy C Oy
A C 1y, Iy C 1n

Definition 2.4. [13] Let X be a non empty set and A = {< x, pa (), oa ( = ),
va(z) >: 2 € X} B = {< z, pg(z),op(z), yg(xz) >: x € X} are NSs. Then
A N B may be defined as :

(L)ANB =<z, pa(z) App(z), oa(z) ANop(z), va(z)Vys(z) >

A U B may be defined as :

(L)AUB =< o, pa(a) Vs (a)oa(a)Vas(a)v(e)Ap(a) >

Definition 2.5. [10] A py topology is a non - empty set X is a family of neutrosophic subsets in X satisfying
the following axioms:

(N, )ON € pn
(un,)G1 UGy € py for any G1,G2 € puy .

Remark 2.2. [10] The elements of pun are py-open sets and their complement is called pn closed sets.

Definition 2.6. [10] Let (X,un) bea uny TS and A = {< x,pa(x),04(z),va(x) >} be a neutrosophic set in
X . Then the upy- Closure of A is the intersection of all uy closed sets containing A.

Definition 2.7. [10] Let (X,un) bea puy TS and A = {< z,pa(z),04(x),va(x) >} be a neutrosophic set in
X . Then the up - Interior of A is the union of all py open sets contained in A.

Definition 2.8. [4] A neutrosophic set A in NTS is called neutrosophic dense if there exists no neutrosophic
closed sets B in (X,T) such that AC B C 1.

Definition 2.9. [11] The puy Topological spaces is said to be py Baire’s Space if pyInt(

U2, G;) = 0n where G;’s are uy nowhere dense set in (X, un).
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Proposition 2.2. [11] Let (X,un) be a uy TS. Then the following are equivalent.
(i) (X,un) is un Baire’s Space.
(ii) pnInt(A) =0y, for all un first category set in (X, pun) .
(ii) unCIUl(A) = 1N, for every un Residual set in (X, un).

Theorem 2.1. [11] If A is a pux dense set in (X,uy) and also uy open set in (X,pun) then A is a pn

nowhere dense set in (X, un).

3. uny Dense
Theorem 3.1. If (X,un) is a uny TS and A is un dense in (X, uyn) then for any non-empty un closed
subset F' in such a way that A C F then FF = 1y.

Proof. Let us guesstimate that A is py dense in (X, uy) then for any non-empty ppy-closed subset F in
such a way that A C F'. On account of the fact A is uy dense, unyCIl(A) = 1. By our presumption, F is
pun-closed and A C F hereinafter we get that 1y = uyCI(A) C unyCI(F) = F. As a result of that we get
F=1y. O

Remark 3.1. The above theorem is fallacious if F is not un closed.

Theorem 3.2. Let 1 be a subset of (X, un). If n is pun dense in (X, un) then for any non empty un open
subset G in (X,un),GNn#0xN.

Proof. Assume that n is uxn dense in (X, py). Then for every single non-empty py-closed subset F' in such
a way that A C F then F' = 1y. Suppose GNn = Oy for few non-empty py-open subset G of (X, un)
precedently we obtain that 7 C X — G which is ux-closed because of that G is py-open subset of (X, un).
By the conjucture, X —G = 1. Hence G = On which is a contradiction to G is a non-empty py-open subset
in (X,un). It yields that GNn # On . O

Proposition 3.1. If a neutrosophic subset n is uy dense in (X, uy) and 77/ C n, the postiliminary charac-

teristics holds.
(1) 1y is always py dense.
(2) On is not py dense in anyways.
(3) nUn is py dense.
(4) unCl(n) is un dense.

(5) Every superset of un dense set is un dense.

Theorem 3.3. If (X,un) be a uy TS and 1 is py dense and G € uy then, G C unCl(nNG).

Proof. Suppose v € G but v ¢ uxy Cl nN G ) then v € (unyCl(n N G))
= v € uvInt ((n N G)) C B U G which shows that either v belongs to 7 or v belongs to

G.
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case (1) : Assume v belongs to 7 = G C 7 that provides us that G N 7 = Oy which is contrary to
Theorem 3.2.3. Hence v € unx Cl(n N G).

case ( ii ) : Assume v belongsto G, G C 7 which is contradiction. Hence v € uyx Cl (7 N G). Thus,
G C unCl(nn G). O

Theorem 3.4. If (X,un) be a uy TS and n is py dense and uyn open in (X, un) then unFr(n) =7.

Proof. Suppose 1 is muy dense and py open in (X,un), unCl(n) = 1y and pnInt(n) = n. Now
pnEr(n) = pyCl(n) — pnInt(n) = pnCIL(7) = 7. O

Theorem 3.5. If (X,un) be a uy TS and n is uy dense subset of (X, un) then unyFr(n) = unCIUl(7).

Proof. unFr(n) = punCl(n) — punxInt(n) = punCIU(T). O
Remark 3.2. The back and forth statement of above statement need not be true.

Example 3.1. Let X = {a}. We define neutrosophic sets A ={< 0.3,0.4,0.5 >}, B ={< 0.3,0,0.1 >},C =
{<0.4,0.6,0.8 >},D = {< 0.4,0,0.1 >}, E = {< 0.4,0.4,0.5 >}. Here the uy Dense sets are {B,D,1x}.
Now punFr(A) = unCIl(A). But A is not uy dense subset of (X, un).

Theorem 3.6. If a neutrosophic subset n is uy dense in (X, uyn) if and only if pyExt(n) =0y .

Proof. Suppose n is un dense, pnyCl(n) = 1n. Now, unyExt(n) = unInt() = (unCl(n)) = On. Conversely
assume pyExt(n) = 0y then punCl(n) = (unInt()) = 1. O

4. puy Irresolvable and py Resolvable
Definition 4.1. A neutrosophic set A in uy TS (X, un) is called pun Resolvable if there exists a un dense

set A in (X, py) such that puyCI(A) = 1. Otherwise, it is un Irresolvable.

Example 4.1. Let X = {a}. We define neutrosophic sets A, B,C,D and E as follows: P ={<0.3,0.3,0.5 >
1,Q = {< 0.1,02,03 >} R = {< 0.3,02,03 >},5 = {< 0.3,0.6,0.2 >}, T = {< 0.3,0.8,0.5 >} under
un = {0n, P,Q, R} where (X,pun) form a py TS. Now, unIntP = P, uyIntQ = Q,unIntR = R, uyIntS =
On,unIntT = Opn,unIntly = C, and pnyClOy = {< 0.3,0.8,0.3 >}, unCIl(P) = 1n,unCl(Q) = 1x,
pnCUR) = 1y, unCU(S) = 1, unCUT) = {< 0.3,0.8,0.3 >}, unCl(1y) = 1n, unCIl(1%) = 1y, unCIU(P) =
{<0.5,0.7,0.3 >}, unCI(Q) = {< 0.3,0.8,0.1 >}, unCI(R) = {< 0.3,0.8,0.3 >}, unyCI(S) = 1n, unCI(T) =
In, unCl(1y) = {< 0.3,0.8,0.3 >}. Here, P,Q,R,S,T¢ are ux Dense sets and unCI(S) = 1x. Hence
(X, un) is pn Resolvable.

Theorem 4.1. If (X,un) is pun irresolvable iff pnInt(A) # On for all un dense set A in (X, un).

Proof. Since (X,un) is py irresolvable space for all py dense set A we get unyCIl(A) # 1x. From this we

deduce (unInt(A)) # 1y that yields us that pyInt(A) # On . Conversely we assume that pyInt(A) # Oy for
all un dense set A in (X, uy). Suppose that (X, un) is pn resolvable then there exists a ux dense set A in

(X, un) such that uyCI(A) = 1y which implies us that (uyInt(A)) = 1x. From this we get puyInt(4) = On

which is a contradiction to our assumption. Hence (X, uy) is pn irresolvable. O
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Definition 4.2. A ux TS is called py submaximal space if for each neutrosophic set A # 1y in (X, un)
such that unCIl(A) = 1x, then A € uy.

Theorem 4.2. If the uy TS (X,un) is un submazimal then (X, un) is un irresolvable.

Proof. Let (X,un) be a puy submaximal space. Assume that (X,pun) is pny resolvable space. Let A be

a puy dense set in (X, un) then punyCI(A) = 1n. From this we get that (unInt(A)) = 1y which implies
pnInt(A) = Opn. This concludes that A € pn which is a contradiction. Hence (X, un) is un irresolvable
space. O

Remark 4.1. The contrary statement of the above theorem need not be true. That is, if the un TS (X, un) is
wun irresolvable then (X, un) need not be py submazimal. On assumimg that (X, un) is un irresolvable space
we obtain that there is no uy dense set in (X, uy) such that uxyCI(A) = 1x. From this we cannot conclude

that every uy dense set A in (X, un) is pn -open in (X, un). Hence, (X, un) need not be pun submazimal.

Definition 4.3. A uy TS is called uy maximal irresolvable space if (X, uy) is py irresolvable and every un

dense set A # 1y of (X,un) is un open.

Definition 4.4. The uny TS (X, un) is said to be pn open hereditarily irresolvable if pyInt(unCIlA) # On
then pyInt(A) # Oy, for any non zero neutrosophic set A in (X, uy).

Theorem 4.3. Let (X,un) be a py TS. If (X, un) is pn -open hereditarily irresolvable space then (X, pn)

is un Irresolvable.

Proof. Let A be a py dense set in (X, uy) then punyCI(A) = 1x which implies us that puyInt(unCIlA) # On
because we have uyInt(1y) # 1n. Since (X, un) is pun-open hereditarily irresolvable, unInt(A) # Ox. Now
by making use of “ If (X,un) is pun Irresolvable iff pyInt(A) = Oy for all puy dense sets A in (X, un)”.
Thus we conclude that (X, uy) is py Irresolvable. O

Remark 4.2. The reversal concept of the theorem need not be true. That is “Let (X,un) be a puny TS. If
(X, un) is pn Irresolvable then (X, un) need not be ppn-open hereditarily irresolvable space”. This can be
explained with the help of th e upcoming example.

Example 4.2. Let (X,un) be a uy TS. We define uy = {On, A, B,C,D} where A = {< 0.7,0.3,0.8 ><
0.5,0.8,0.9 >}, B = {< 0.4,0.9,0.9 >< 0.3,0.9,0.9 >},C = {< 0.5,0.8,0.7 >< 0.5,0.8,0.8 >},D = {<
0.5,0.8,0.8 >< 0.5,0.8,0.7 >},E = {< 0.3,0.9,0.9 >< 0.4,0.9,0.9 >}. Here, E is uy dense set but
unCUE) # 1n. Hence it is py Irresolvable. pnInt(unyClA) = {< 0.7,0.3,0.7 >< 0.5,0.8,0.7 >} #
Oy and pxInt(A) = {< 0.7,0.3,0.7 >< 0.5,0.8,0.7 >} # On, pnInt(unCIB) = {< 0.5,0.8,0.7 ><
0.5,0.8,0.7 >} # Oy and pxInt(B) = {< 0.4,0.9,0.9 >< 0.3,0.9,0.9 >} # Oy and pyInt(uyCIC) =
(< 0.5,08,0.7 >< 05,0807 >} # Oy and pxInt(C) = {< 0.5,0.8,0.7 >< 0.5,0.8,0.8 >} # Oy,
pn Int(unCID) = {< 0.5,0.8,0.7 >< 0.5,0.8,0.7 >} # Ox and pyInt(D) = {< 0.5,0.8,0.8 >< 0.5,0.8,0.7 >
Y % Oy, pnInt(uyCIE) = {< 0.5,0.8,0.7 >< 0.5,0.8,0.7 >} # Oy and pyInt(E) = {< 0,1,1 >< 0,1,1 >
} = 0n. In this example pnyInt(unCIE) # On but unInt(E) = 0n which implies us that “If (X, un) is pn

Irresolvable then (X, un) need not be py -open hereditarily irresolvable space.”
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Theorem 4.4. Let (X, un) bea un TS. If (X, un) is pun -open hereditarily irresolvable space, then unCIl(A) =
1n for any non zero py dense set A in (X, un) which implies that unCl(pyIntA) =1y .

Proof. Let A be a neutrosophic set in (X, puy) such that uyCI(A) = 1x. From this we obtain that

(unCl(A)) = Oy which gives us that puyInt(A) = On. Since (X, un) is pun-open hereditarily irresolvable

by using above theorem we have uyInt(unyCIlA) = 0y . Therefore (unCl(unIntA)) = Oy that yields us that
,LLNCZ(,LLNITLtA) =1xn. O

Theorem 4.5. If unyCIl(N2 w;) = 1n where w;’s are pun dense sets in a pn -open hereditarily irresolvable

space then (X, py) is a uy Baire space.

Proof. On considering unyCIl(N2 w;) = 1y where unyCl(w;) = 1x we get that unyInt(U2, (@;)) = Oy, where

pnInt((w;)) = On. Let ¥; = (w;). Then, pnyInt(U2,9;) = Oy where punInt(d;) = On. Since (X, pun) is a
pn -open hereditarily irresolvable space, puyInt(¥;) = Oy that yields us that punInt(unCl(¥;)) = On. Hence
¥; is pun nowhere dense set in (X, puy). Hence, unInt(U2,9;) = On where 9;’s are uy nowhere dense sets

in (X, py) that provides us that (X, un) is a un Baire space. O

Theorem 4.6. If (X,un) s a pn Baire irresolvable space, then punCIl(U2,0;) # 1y where o;’s are py

nowhere dense sets in (X, un).

Proof. Let o; be un first category set in (X, uy) there upon £ = U2, (0;), where o;’s are uy nowhere
dense sets in (X, un). By the reason of (X, uy) is a uy Baire space, uyInt(k) = Oy thereupon we get
(unInt(k)) = 1y which entails us that uyCI(R) = 1x. Already we have that (X,puy) is irresolvable space,
unCIl(R) # 1x. Hence, unyCl(k) # 1x and so we obtain that unyCIU, (0;) # 1n where o;’s are py nowhere
dense sets in (X, un). O

Definition 4.5. A ux TS (X, pn) is said to be puy strongly irresolvable if unCl(unIntA) = 1y for every

dense set except 1y in (X, un).

Theorem 4.7. A uny TS (X,pun) is un submazimal space then (X, un) is a uy Strongly irresolvable space.

Proof. Assume (X, ppy) is puny submaximal space. By the definition of un submaximal spaces, we obtain that
every puy dense set except 1y € un is py-open in (X, uyn). Now muyCIl(A) =1y = unCl(unIntA) =1x.
Hence, (X, uy) is pny Strongly irresolvable space.

The converse of the above theorem need not be true. O

Remark 4.3. A uy TS (X,un) is a pun Strongly irresolvable space then (X, un) need not be uy sub-
mazimal. On assuming that (X, un) is pun Strongly irresolvable space. We obtain that, pyCIl(A) = 1y =
unCl(punIntA) = 1n but we cannot obtain that unIntA = A which leads us to un submazimal space. Hence,

we conclude that (X, un) is a pun Strongly irresolvable space then (X, un) need not be uy submazimal.

Theorem 4.8. If the uy TS (X, puy) is a un strongly irresolvable Baire space and v is a pn first category

set in (X, un) then v is a uy nowhere dense set in (X, un).
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Proof. Let v be a py first category set in (X, un). Then v = U2, v; where v’s are uy nowhere dense sets in
(X, un). Since (X, pn) is a pny Baire space by theorem 2.15, puyInt(v) =0y in (X, pn). Thereupon we get
(unInt(v)) = 1y that entails us that uyCl(7) = 1. By the cause of (X, uy) is a py strongly irresolvable
space for the puxn dense set except 1xy € un in (X, uy). Hence we retrieve that unyCl(unIntv) = 1y. Thus

we get that (unyInt(unClv)) = 1x and so we get punInt(vyCly) = On. Thus we obtain v is a uy nowhere
dense set in (X, un). O

Theorem 4.9. If the uny TS is a pun submazimal Baire space and v is a py first category set in (X, pun),

then v is a un nowhere dense set in (X, un).

Proof. Let v be a uy first category set in (X, pn). Since (X, un) is gy submaximal Baire space by theorem
4.17 (X, un) is pn Strongly irresolvable space. Then (X, un) is puy Strongly irresolvable baire space. Since v
isa puy first category set in (X, ). By Theorem 4.19 we get that v is a puy nowhere dense set in (X, uy). O

Theorem 4.10. If uyCIl(N2,0;) = 1 where §;’s are un dense sets in a py submazimal space (X, py),

then (X, un) is a un Baire space.

Proof. Let §;’s be uy dense sets in puy submaximal space. Then 0; € uy. Now unCi(§;) = 1y and

unInt(d;) = §; that entails us that puyCl(uyIntd;) = 1n. From this we obtain that (unCl(unIntd;)) =
On = punInt(unCl(5;)) = On. Hence, &;‘s are px nowhere dense sets in (X, uyn). Now we consider that
punCIl(N2,8;) = 1x by taking complement we obtain that uxInt(U$2,6;) = Oy. Now by making use of
theorem 2.15 we obtain that (X, uy) is a un Baire space. O

Theorem 4.11. If unCl(unInt(A)) # 1n, for every neutrosophic set A in un strongly irresolvable space
(X, pun), then pnCI(A) # 1n in (X, pn).

Proof. Let A be a neutrosophic set in (X, un) such that pnyCl(unInt(A)) # 1n. Now we are in a need to
prove that unyCl(A) # 1n in (X, un). We are assuming that unCIl(A) = 1n in (X, uyn). Already its given
that (X, un) is pn strongly irresolvable space = if uyCI(A) = 1y then unCi(pnInt(A)) = 1n which is a
contradiction. Henceforth we obtain unCI(A) # 1x in (X, pn). O

Theorem 4.12. If A is a neutrosophic set in a uy strongly irresolvable space (X, puy) such that pyInt(uyCIlA)
# On , then pnInt(A) # On in (X, pun).

Proof. Let A be a neutrosophic set in (X, pun) such that pyInt(unCIlA) # Oy in (X, pn). Now we have to
obtain that puyxInt(A) # Ox. Suppose that unInt(A) =0y in (X,pux). Then uyCI(A) = (unInt(A)) = 1y.
We have that (X, uy) is pun strongly irresolvable space, unyCIl(A) = 1 yields us unCl(unIntA) = 15. Thus,

we get (unInt(pnClA)) = 1y = punInt(pyClA) = On in (X, py) which is a contradiction. Thus we obtain
pnInt(A) # 0y in (X, un). O

Theorem 4.13. n; C 7,1 # j where 1; ’s are un dense sets in a pun strongly irresolvable space (X, un), then

n; is a pn nowhere dense set in (X, un).
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Proof. Let 1; and 7;, i # j be neutrosophic sets in (X,uy) such that 7; C (n;) and uyCl(n;) = 1y in
(X, un). Since, (X,pun) is py strongly irresolvable space, for the uy dense sets 7;, unyCl(unyIntn;) = 1y

in (X, pn). We have that n; C (n;) that implies us that pnCl(unIntn;) € pnCl(pnInt(n;)) thereupon we

obtain 1y C punCl(unInt(n;)) = unCl(unInt(n;)) = 1n. Thus we get (unInt(unCln;)) = 1n . Henceforth,

we obtain that uyInt(unClin;) = O0n = n; is a uy nowhere dense set in (X, un). O

Theorem 4.14. If each puy dense sets ) is a un first category set in a un strongly irresolvable space (X, pun),

then punInt(unCI(N2,(1:))) = On , where n; ’s are ux nowhere dense sets in (X, py) .

Proof. Let n be puy dense set in (X, un). Since (X, un) is un strongly irresolvable space, unCl(n) = 1y
that entails us that unCl(unIntn) = 1y in (X, pun). Suppose that n is a py first category set in (X, muy).
Then n = U2 n;, where n;’s are un nowhere dense sets in (X, un). Thus we obtain that punCl(unyIntn) =

Iy = unClpunIntU2 n;) = 1y in (X, pn). From this we retrieve that (unCl(unInt U2, n;)) = On. Hence
pnInt(unCUNE, (7)) = On, where 7;’s are py nowhere dense sets in (X, uy)- O

Theorem 4.15. If n C v, where v is a neutrosophic set and v is a uy dense sets in a un strongly irresolvable

space (X, un), then U is a uny nowhere dense sets in (X, un).

Proof. Let v be a uy dense set in (X, un) such that ¥ C v. Since (X,un) is a un strongly irresolvable
space (X, pun), for the puy dense sets unyCl(unIntn) = 1y in (X,un). Now n C v implies us that
pnCl(pyIntn) C unCl(unIntv). Henceforth 1y C punCl(unIntv) which leads us into unyCl(unIntv) = 1y

in (X, pun). From this we deduce that (unCl(unIntv)) = On that yields us that puyInt(unyCl(7)) = Oy in
(X, un). Thus we obtain that 7 is a py nowhere dense sets in (X, uy). O

Theorem 4.16. If n C v, where v is a neutrosophic set and n is a py dense sets in a puy strongly irresolvable

space (X, un), then U is not a vy open set in (X, un).

Proof. Let n be a uy dense set in (X,un) in a manner that n C v. Since (X,un) is a uy strongly
irresolvable space, By theorem 4.25 we obtain that 7 is a ux nowhere dense sets in (X, uy). Thereupon
pnInt(unCl(P)) = 0n . But we know that punInt(7) C unInt(unCl(?)) = pnInt(v) C Ox that leads us into
that punInt(7) = 0n. Henceforth 7 is not a uy-open set in (X, uy). O

Theorem 4.17. If n C v, where v is a neutrosophic set and 1 is a uy dense sets in a uy strongly irresolvable

space (X, un), then U is a uy Rare set in (X, un).

Proof. Let n be a uy dense set in (X,un) in a manner that n C v. Since (X,un) is a uy strongly
irresolvable space, By theorem 4.26 we obtain that 7 is a uy nowhere dense sets in (X, uxn). Thereupon
pnInt(unyCl(P)) = 0n . But we know that punInt(¥) C unInt(unCl(V)) = puyInt(v) C On that leads us into
that unInt(v) = Oy . Henceforth 7 is a puy Rare set in (X, un) O

Theorem 4.18. If n is a un dense sets in a uyn strongly irresolvable space (X, pun), then 1y —n is a py

nowhere dense set and py -semi closed in (X, un).
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Proof. Let eta be a ppy-dense sets in (X, un). Since (X,pun) is puny strongly irresolvable space, for the pn

dense sets n, punCl(unIntn) = 1y in (X, un). Thereupon (unyCl(unIntn)) = On. From this we retrieve
that pnInt(unCl(7)) = On that leads us into 7 is a un nowhere dense set in (X, uy). On considering
pnInt(unCl(7)) C 7. This clearly shows that 7 is py-semi closed in (X, ). Henceforth 7 is a py nowhere

dense set and py-semi closed in (X, un). O

Theorem 4.19. If n =N n; is a pn dense sets, where 1; ’s are neutrosophic sets in puy strongly irresolvable

space (X, un), then 7 is a py first category set in (X, un).

Proof. Let n = N2m; is a puy dense set in (X, un). Thereupon we get unCl(N2yn;) = 1n. At the same
time we know that punCIl(N2yn;) C N2, unCl(n;) in (X, un). Thus we obtain that 1y C N2, unCl(n;).
That is, N2, unCl(n;) = 1n. So, unCl(n;) = 1y in (X, un). Since (X,un) is a pn strongly irresolvable

space, by theorem 4.28, 7j,’s are uy nowhere dense sets in (X,un). Now n = N7 implies us that

7= (N2m:) = UL, ((n:)). Thus we obtain 77 = U2, ((n;)) that implies us that 7 is a py nowhere dense
set in (X, un). Hence, 7 is a py first category set in (X, uy). O

Theorem 4.20. If each puy dense set n is a pn -open set in a py -topological space (X, un), then (X, uyn) is

a un strongly irresolvable space.

Proof. let n be a uy dense set in (X, uy) in a manner that pyInt(n) =n. Thereupon by the theorem 2.16,
7 is a uy nowhere dense set in (X, uy). Thus we obtain that puyInt(uyCif) = On. Hence we get that

(unCl(unIntn))) = On from this we deduce that unyCl(uyIntn) = 1x in (X, uy). Hence for the py dense
set nin (X, un), unCl(unIntn) = 1y in (X, py). Therefore, (X, uy) is a py strongly irresolvable space. [

Theorem 4.21. If unCIU(N2 1) = 1n, where n;’s are py dense sets in a py strongly irresolvable space

(X,un), then (X, un) is a py Baire space.

Proof. Let n;’s be un dense sets in a uy strongly irresolvable space (X, py) in a manner that puyCIlU(N52 ;) =
1n. Since (X,un) is a py strongly irresolvable space, upunCl(unIntn;) = 1nx in (X, un).
Then, (unCl(unIntn;)) = Oy in (X, uy). Hence we retrieve that pxInt(uxCIl((1:))) = On in (X, pn).
From this we clearly get that 7j’s are ux nowhere dense sets in (X, un). Now, puyCl(cap2in;) = 1y =

(pnClUN2 m:)) = On = pnInt(U2,7;) = On . Thus we deduce that pyInt(cupi®,(eta;)) = Oy where 7j’s are

un nowhere dense sets in (X, uy). Henceforth, (X, un) is a py Baire space. O

Theorem 4.22. If n;’s where i ranges from 1 to co are uy dense sets in a un strongly irresolvable space

(X,un) and py Baire space then unCIU(N2m;) = 1y in (X, puN).

Proof. Let n;’s are uy dense sets in a uy strongly irresolvable space (X, puy) then we obtain that for the

pn dense sets, unCl(pnyIntn;) = 1y in (X,un). From this we obtain that (unyCl(uxIntn;)) = Oy =
pnInt(unClin)) = On . From this we clearly get that 7’s are un nowhere dense sets in (X, un). Since (X, pn)

is a pn Baire space, unyInt(Us2, (7)) = On = pnInt((N2ym:)) = On = (unCl(capse n;)) = On . Henceforth
pnCUNZ ) = 1n in (X, un)- O

44



N.Raksha Ben and G. Hari Siva Annam

5. uy Connectedness & py Disconnectedness

Definition 5.1. A ux-topological spaces (X, puy) is said to be un disconnected if there exists ppy-open sets
A#0n,B# 0y in (X, un) such that AVB =1y and AAB =0x.

If (X,pun) isnot pyn disconnected then it is py connected.

Example 5.1. Let X = {a} define neutrosophic sets Oy = {< 0,1,1 >},6; = {< 0.3,0.3,0.5 >},d2 = {<
0.1,0.2,0.3 >},05 = {< 0.3,0.2,0.3 >},6, = {< 0.3,0.6,0.2 >},05 = {< 0.3,0.8,0.5 >}, 1y = {< 1,0,0 >}
and we define a uy TS py = {On,01,02,03}. Here 81 # On, 02 # On, 01 V o2 = {< 0.3,0.2,0.3 >} # 1x and
01 N o2 ={<0.1,0.3,0.5 >}. Hence (X,un) is un connected.

Example 5.2. Let X = {a,b} define neutrosophic sets Oy = {< 0,1,1 >< 0,1,1 >}, a1 = {< 1,0,0 ><
0,0,1 >},as = {< 0,1,1 >< 1,1,0 >} a3 = {< 1,0,0 >< 1,1,1 >} and we define a un TS as
{On, a1, a0,a3}. Here, ay # Oy, # Oy, 1 Vag = {<1,0,0 >< 1,0,0 >} = 1y, 00 Aag = {< 0,1,1 ><
0,1,1 >} =0n. Hence (X, un) is un disconnected.

Definition 5.2. Let (X, un) be a uy-topological spaces. If there exists py-open sets A and B in X satisfying
the following properties, then N is said to be uyC,, disconnected.

(a) unC1: NS AVB,ANBS N NAA#ON,NAB#0y
(b) unC2: NS AVB,NANAAB=0y,NAA#OyN,NAB#Oy
(¢) unC3: NS AVB,ANBS N¢,A#£ N°, B £ N°
(d) unCs: NS AVB,NAAANB=0y,A+£ N¢,B£N°
N is said to be uyC,, connected (n =1,2,3,4) if N is not puyC, disconnected.

Remark 5.1. Clearly, we obtain the following implications between the four types of unC, connected (n =
1,2,3,4).

(a) Every unCy connected implies puyCy connected.

(b) Every unCi connected implies unCs connected.

(¢) Every unCs connected implies unCy connected.

(d) Every unCs connected implies puyCy connected.
The following examples shows us that the converse implications need not be true

Example 5.3. Let X = {a,b},uny = {On, A4, B,C} where A = {< 0.4,0.6,0.6 >< 0.1,0.9,0.9 >}, B = {<
0.5,0.5,0.5 >< 0.3,0.9,0.7 >},C = {< 0.3,0.7,0.7 >< 0.1,0.9,0.9 >}. Here, C is unyCq connected, unCs

connected, unCy connected but uyCi disconnected.

Example 5.4. Let X = {a,b},un = {On,P,Q, R, S} where P = {< 0.2,0.6,0.6 >< 0.8,0.2,0.2 >}, Q = {<
0.8,0.2,0.2 >< 0.6,0.2,0.2 >}, R = {< 0.8,0.2,0.2 >< 0.8,0.2,0.2 >}, S = {< 0.1,0.9,0.9 >< 0.1,0.9,0.9 >}.

Here, S is unyCy connected but unCs disconnected.
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Definition 5.3. A uy-topological spaces (X, uy) is said to be unyC5 disconnected if there exists py subset
A in X which is both ux-closed and ppy-open in (X, puy) such that A # Oy, A # 1n. If X is not unCs

disconnected then it is said to be unyC5 connected.

Example 5.5. Let X = {a,b},un = {On, A1, A2} where Ay = {< 0.3,0.5,0.9 >< 0.6,0.5,0.4 >}, A = {<
0.9,0.5,0.3 >< 0.4,0.5,0.6 >}. Here, A1 # Oy, A1 # 1n is both py -closed and un -open in (X,un). Thus
(X, un) is unCs disconnected.

Theorem 5.1. uy disconnectedness implies unCs disconnected. Equivalently, unCs connectedness implies

un connectedness.

Proof. Suppose there exists a non-empty uy-open sets A and B such that AV B =1y and AANB = 0y .
Then pwaVpup = 1ny,04 Nop = On,va Ayp = On and paVup =0n,04 Ao = Iy, va Ay = 1In. In
otherwords, B¢ = A. Hence, A is uyclopen which yields us that X is uxCs disconnected.

But the reversal statement of the above theorem need not be true. O

Example 5.6. Let X = {a,b},uny = {On, A1, Az} where A; = {< 0.3,0.5,0.9 >< 0.6,0.5,0.4 >}, As = {<
0.9,0.5,0.3 >< 0.4,0.5,0.6 >}. Here, Ay # On, A1 # 1n is both py -closed and pn -open in (X, un). Thus

(X, un) is pnCs disconnected but not un disconnected.

Theorem 5.2. A uy -topological spaces (X, un) is punCs connected if and only if there exists no non-empty
pn -open sets U and V in (X, uy) such that U =Ve©.

Proof. Assume (X, uy) is unCs connected. Suppose U and V are uy-open sets in (X, pun) such that
U#0n,V#0x and U = V€. Since U = V¢, V¢ is puy-open in (X, uy) which implies that V' is py-closed
in (X,uy) and U # On implies V # 1y. Hence, V is both py-open and ppy-closed in (X, uy) such that
V # 0n and V # 1y that implies us that V' is unC5 disconnected which is a contradiction to (X, muy) is
unCs connected. Hence there is no non empty py-open sets U and V in (X, py) such that U = Ve.
Conversely we assume that there is no non empty py-open sets U and V in (X, uy) such that U = V.
Let V be un-closed in (X, uny) and U be both py-open and pp-closed in (X, pn) such that U # On,U # 1n.
Now take U¢ =V is a uy-open set and V # 1y which implies us that that U¢ = V # Oy. Hence we get

V # 1n which is a contradiction to our assumption. Hence (X, un) is unyCs connected. O

Theorem 5.3. A py -topological spaces (X, un) is pn connected space if and only if there exists no non-empty
pn -open sets U and V in (X, pn) such that U =Ve.

Proof. Assume (X, py) is py connected. Suppose U and V are puy-open sets in (X, puy) such that U #
On,V #0x and U = V. Since U = V¢, V¢ is uy-open in (X, uy) which implies that V' is ppy-closed in
(X,un) and U # Oy implies V¢ # 1. Hence, V is a proper uy subset which is both px-open and uy-closed
in (X, puyn) that implies us that X is pxn disconnected which is a contradiction to (X, uy) is py connected.
Hence there is no non zero py-open sets U and V in (X, un) such that U = V°.

Conversely we assume that there is no non zero uy-open sets U and V in (X, uy) such that U = V.
Let V be uy-closed in (X, un) and U be both py-open and pp-closed in (X, pn) such that U # O0n,U # 1.
Now take U¢ =V is a uy-open set and V # 1y which implies us that that U¢ = V # Oy. Hence we get
that there is non-empty py-open sets U and V' such that U = V¢ which is a contradiction to our assumption.

Hence (X, pn) is pn connected. O
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Theorem 5.4. A pup -topological spaces (X, un) is un connected space if and only if there exist no non-zero
pun subsets U and V' in (X, un) such that U =V, V = (unCIlU)® and U = (unCIV)©.

Proof. Let U and V be two up subsets in (X, puy) such that U # Oy, V # Oy and U =V, V = (unCIU)®
and U = (unCIV)©. Since, (unyCIU)® and (unCIV)¢ are py-open sets in X. U and V are py-open sets in
X . This implies X is not uny connected which is a contradiction. Therefore there exists no py-open sets in
X such that U =V V = (unyClU)¢ and U = (uyCIV)©.

Suffiency:Let U be both py-open and py-closed sets in X such that U # Oy, U # 15. By taking V = U*°

which is a contradiction to our hypothesis. Hence, (X, uy) is un connected. O

6. uny Hyperconnected

Definition 6.1. A uy TS is said to be puy hyperconnected if every non-empty gy -open subset of (X, uy) is
pun dense in (X, uy)-

Example 6.1. Let X = {a} define neutrosophic sets Oy = {< 0,1,1 >},5; = {< 0.3,0.3,0.5 >},d2 = {<
0.1,0.2,0.3 >},83 = {< 0.3,0.2,0.3 >},04 = {< 0.3,0.6,0.2 >},d5 = {< 0.3,0.8,0.5 >},1xy = {< 1,0,0 >} and
we define a uny TS py = {0n,d1,02,03}. Here 81,09,03,04,05, 15 are pyn dense sets in (X, un). Here every
un -open subset of (X, un) is muy dense in (X,un). Thus, (X,un) is un hyperconnected.

Theorem 6.1. Every uy hyperconnected is uyn connected.

Proof. Assume that (X, uy) is not puy connected that entails us that there exists two non-empty proper sets
A € uy and B € uy such that AN B = 0y and AU B = 1y from this we deduce AU B € uy and
unCIl(AU B) = unyCl(1y) # 1ny. Here we obtained that AU B is uy-open but not uxy dense which is a

contradiction. Henceforth (X, un) is py connected. O

Remark 6.1. The contrary statement of the above theorem need not be true.

Example 6.2. Let X = {a} define neutrosophic sets O = {< 0,1,1 >}, 91 = {< 0.7,0.8,0.9 >}, 395 = {<
0.3,0.4,0.6 >},95 = {< 0.9,0.7,0.6 >},1xy = {< 1,0,0 >} and we define a uny TS un = {On,1,93}. Here,
Y1 and ¥ are py-open sets in (X, puy) but they are not un dense in (X, uy). Hence (X, un) is not py
hyperconnected. But (X, un) is un connected.

Theorem 6.2. (X,un) is un hyperconnected if and only if every un subset of (X, un) is either uy dense

or puy nowhere dense.

Proof. Let (X,un) be a uy hyperconnected space. Let A be any un subsets such that A C 1. Suppose A
is not pn nowhere dense. Then puyCl(X —unClA) = X —unInt(unClA) # 1. Since unInt(unClA) # 1n.
By our assumption we get A is py dense.

Conversely, Let A be non-empty py-open in X. Now for any non-empty ppy-open set we have
A C unInt(unClA) which implies that A is not uxy nowhere dense but by hypothesis we have A is un

dense. Hence the theorem. O
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