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Since the first reports of a novel SARS-like coronavirus in December 2019 in Wuhan, China, 61 

there has been intense interest in understanding how SARS-CoV-2 emerged in the human 62 

population. Recent debate has coalesced around two competing ideas: a “laboratory escape” 63 

scenario and zoonotic emergence. Here, we critically review the current scientific evidence 64 

that may help clarify the origin of SARS-CoV-2. 65 

  66 

 67 

Evidence supporting a zoonotic origin of SARS-CoV-2 68 

Coronaviruses have long been known to present a high pandemic risk. SARS-CoV-2 is the ninth 69 

documented coronavirus that infects humans and the seventh identified in the last 20 years 70 

(Lednicky et al., 2021; Vlasova et al., 2021). All previous human coronaviruses have zoonotic 71 

origins, as have the vast majority of human viruses. The emergence of SARS-CoV-2 bears several 72 

signatures of these prior zoonotic events. It displays clear similarities to SARS-CoV that spilled 73 

over into humans in Foshan, Guangdong province, China in November 2002, and again in 74 

Guangzhou, Guangdong province in 2003 (Xu et al., 2004). Both these SARS-CoV emergence 75 

events were associated with markets selling live animals and involved species, particularly civets 76 

and raccoon dogs (Guan et al., 2003), that were also sold live in Wuhan markets in 2019 (Xiao et 77 

al., 2021) and are known to be susceptible to SARS-CoV-2 infection (Freuling et al., 2020). 78 

Animal traders working in 2003, without a SARS diagnosis, were documented to have high levels 79 

of IgG to SARS-CoV (13% overall and >50% for traders specializing in civets; Centers for Disease 80 

Control and Prevention, 2003). Subsequent serological surveys found ~3% positivity rates to 81 

SARS-related coronaviruses (SARSr-CoV) in residents of Yunnan province living close to bat 82 

caves (Wang et al., 2018), demonstrating regular exposure in rural locations. The closest known 83 

relatives to both SARS-CoV and SARS-CoV-2 are viruses from bats in Yunnan, although animals 84 

from this province have been preferentially sampled. For both SARS-CoV and SARS-CoV-2 there 85 

is a considerable geographic gap between Yunnan and the location of the first human cases, 86 

highlighting the difficulty in identifying the exact pathway of virus emergence and the importance 87 

of sampling beyond Yunnan. 88 

  89 

SARS-CoV-2 also shows similarities to the four endemic human coronaviruses: HCoV-OC43, 90 

HCoV-HKU1, HCoV-229E, and HCoV-NL63. These viruses have zoonotic origins and the 91 
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circumstances of their emergence are unclear. In direct parallel to SARS-CoV-2, HCoV-HKU1, 92 

which was first described in a large Chinese city (Shenzhen, Guangdong) in the winter of 2004, 93 

has an unknown animal origin, contains a furin cleavage site in its spike protein, and was originally 94 

identified in a case of human pneumonia (Woo et al., 2005). 95 

  96 

Based on epidemiological data, the Huanan market in Wuhan was an early and major epicenter of 97 

SARS-CoV-2 infection. Two of the three earliest documented COVID-19 cases were directly 98 

linked to this market selling wild animals, as were 28% of all cases reported in December 2019 99 

(WHO, 2021). Overall, 55% of cases during December 2019 had an exposure to either the Huanan 100 

or other markets in Wuhan, with these cases more prevalent in the first half of that month (WHO, 101 

2021). Examination of the locations of early cases shows that most cluster around the Huanan 102 

market, located north of the Yangtze river (Figure 1B-E), although case reporting may be subject 103 

to sampling biases reflecting the density and age structure of the population in central Wuhan, and 104 

exact location of some early cases is uncertain. These districts were also the first to exhibit excess 105 

pneumonia deaths in January 2020 (Figure 1F-H), a metric that is less susceptible to the potential 106 

biases associated with case reporting. There is no epidemiological link to any other locality in 107 

Wuhan, including the Wuhan Institute of Virology (WIV) located south of the Yangtze and the 108 

subject of considerable speculation. Although some early cases do not have a direct 109 

epidemiological link to a market (WHO, 2021), this is expected given high rates of asymptomatic 110 

transmission and undocumented secondary transmission events, and was similarly observed in 111 

early SARS-CoV cases in Foshan (Xu et al., 2004). 112 

  113 

During 2019, markets in Wuhan – including the Huanan market – traded many thousands of live 114 

wild animals including high-risk species such as civets and raccoon dogs (Xiao et al., 2021). 115 

Following its closure, SARS-CoV-2 was detected in environmental samples at the Huanan market, 116 

primarily in the western section that traded in wildlife and domestic animal products, as well as in 117 

associated drainage areas (WHO, 2021). While animal carcasses retrospectively tested negative 118 

for SARS-CoV-2, these were unrepresentative of the live animal species sold, and specifically did 119 

not include raccoon dogs and other animals known to be susceptible to SARS-CoV-2 (Xiao et al., 120 

2021).  121 

 122 
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The earliest split in the SARS-CoV-2 phylogeny defines two lineages - denoted A and B (Rambaut 123 

et al., 2020) - that likely circulated contemporaneously (Figure 1A). Lineage B, which became 124 

dominant globally, was observed in early cases linked to the Huanan market and environmental 125 

samples taken there, while lineage A contains a case with exposure to other markets (Figure 1A-126 

B) as well as with later cases in Wuhan and other parts of China (WHO, 2021). This phylogenetic 127 

pattern is consistent with the emergence of SARS-CoV-2 involving one or more contacts with 128 

infected animals and/or traders, including multiple spill-over events, as potentially infected or 129 

susceptible animals were moved into or between Wuhan markets via shared supply chains and sold 130 

for human consumption (Xiao et al., 2021). The potential emergence of SARS-CoV-2 across 131 

multiple markets again mirrors SARS-CoV in which high levels of infection, seroprevalence and 132 

genetic diversity in animals were documented at both the Dongmen market in Shenzhen (Al, 2004; 133 

Guan et al., 2003) and the Xinyuan market in Guangzhou (Tu et al., 2004; Wang et al., 2005). 134 

  135 

Viruses closely related to SARS-CoV-2 have been documented in bats and pangolins in multiple 136 

localities in South-East Asia, including in China, Thailand, Cambodia, and Japan (Lytras et al. 137 

2021; Zhou et al., 2021), with serological evidence for viral infection in pangolins for more than a 138 

decade (Wacharapluesadee et al., 2021). However, a significant evolutionary gap exists between 139 

SARS-CoV-2 and the closest related animal viruses: for example, the bat virus RaTG13 collected 140 

by the WIV has a genetic distance of approximately 4% (~1,150 mutations) to the Wuhan-Hu-1 141 

reference sequence of SARS-CoV-2, reflecting decades of evolutionary divergence (Boni et al., 142 

2020). Widespread genomic recombination also complicates the assignment of which viruses are 143 

closest to SARS-CoV-2. Although RaTG13, sampled from a Rhinolophus affinis bat in Yunnan 144 

(Zhou et al., 2020b), has the highest average genetic similarity to SARS-CoV-2, a history of 145 

recombination means that three other bat viruses – RmYN02, RpYN06 and PrC31 – are closer in 146 

most of the virus genome (particularly ORF1ab) and thus share a more recent common ancestor 147 

with SARS-CoV-2 (Li et al., 2021; Lytras et al. 2021; Zhou et al., 2021). None of these three closer 148 

viruses were collected by the WIV and all were sequenced after the pandemic had begun (Li et al., 149 

2021; Zhou et al., 2020a; Zhou et al., 2021). Collectively, these data demonstrate beyond 150 

reasonable doubt that RaTG13 is not the progenitor of SARS-CoV-2, with or without laboratory 151 

manipulation or experimental mutagenesis. 152 

  153 
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No bat reservoir nor intermediate animal host for SARS-CoV-2 has been identified to date. This 154 

is presumably because the right animal species and/or populations have not yet been sampled 155 

and/or any progenitor virus may be at low prevalence. Initial cross-species transmission events are 156 

also very likely to go undetected. Most SARS-CoV-2 index case infections will not have resulted 157 

in sustained onward transmission (Pekar et al., 2021) and only a very small fraction of spillovers 158 

from animals to humans result in major outbreaks. Indeed, the animal origins of many well-known 159 

human pathogens, including Ebola virus, Hepatitis C virus, poliovirus, and the coronaviruses 160 

HCoV-HKU1 and HCoV-NL63, are yet to be identified, while it took over a decade to discover 161 

bat viruses with >95% similarity to SARS-CoV and able to use hACE-2 as a receptor (Hu et al., 162 

2017). 163 

 164 

Could SARS-CoV-2 have escaped from a laboratory? 165 

There are precedents for laboratory incidents leading to isolated infections and transient 166 

transmission chains, including SARS-CoV (Parry, 2004). However, with the exception of Marburg 167 

virus (Ristanović et al., 2020), all documented laboratory escapes have been of readily identifiable 168 

viruses capable of human infection and associated with sustained work in high titer cultures 169 

(Geddes, 2006; Lim et al., 2004; Senio, 2003). The 1977 A/H1N1 influenza pandemic, that most 170 

likely originated from a large-scale vaccine challenge trial (Rozo and Gronvall, 2015), is the only 171 

documented example of a human epidemic or pandemic resulting from research activity. No 172 

epidemic has been caused by the escape of a novel virus and there is no data to suggest that the 173 

WIV—or any other laboratory—was working on SARS-CoV-2, or any virus close enough to be 174 

the progenitor, prior to the COVID-19 pandemic. Viral genomic sequencing without cell culture, 175 

which was routinely performed at the WIV, represents a negligible risk as viruses are inactivated 176 

during RNA extraction (Blow et al., 2004). No case of laboratory escape has been documented 177 

following the sequencing of viral samples. 178 

 179 

Known laboratory outbreaks have been traced to both workplace and family contacts of index 180 

cases and to the laboratory of origin (Geddes, 2006; Lim et al., 2004; Ristanović et al., 2020; Senio, 181 

2003). Despite extensive contact tracing of early cases during the COVID-19 pandemic, there have 182 

been no reported cases related to any laboratory staff at the WIV and all staff in the laboratory of 183 

Dr. Shi Zhengli were said to be seronegative for SARS-CoV-2 when tested in March 2020 (WHO, 184 
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2021), with the laboratory reportedly following the appropriate biosafety protocols during their 185 

coronavirus work (Cohen, 2020). During a period of high influenza transmission and other 186 

respiratory virus circulation (Liu et al., 2020a) reports of illnesses would need to be confirmed as 187 

caused by SARS-CoV-2 to be relevant. Epidemiological modeling suggests that the number of 188 

hypothetical cases needed to result in multiple hospitalized COVID-19 patients prior to December 189 

2019 is incompatible with observed clinical, genomic, and epidemiological data (Pekar et al., 190 

2021). 191 

 192 

The WIV possesses an extensive catalogue of samples derived from bats (Latinne et al., 2020) and 193 

has reportedly successfully cultured three SARSr-CoVs from bats – WIV1, WIV16 and Rs4874 194 

(Ge et al., 2013; Hu et al., 2017; Yang et al., 2015). Importantly, all three viruses are more closely 195 

related to SARS-CoV than to SARS-CoV-2 (Ge et al., 2013; Hu et al., 2017; Yang et al., 2015). 196 

In contrast, bat virus RaTG13 from the WIV has reportedly never been isolated nor cultured and 197 

only exists as a nucleotide sequence assembled from short sequencing reads (Cohen, 2020). The 198 

three cultured viruses were isolated from fecal samples through serial amplification in Vero E6 199 

cells, a process that consistently results in the loss of the SARS-CoV-2 furin cleavage site 200 

(Davidson et al., 2020; Klimstra et al., 2020; Liu et al., 2020b; Ogando et al., 2020; Sasaki et al., 201 

2021; Wong et al., 2020; Zhu et al., 2021b). It is therefore highly unlikely that these techniques 202 

would result in the isolation of a SARS-CoV-2 progenitor with an intact furin cleavage site. No 203 

published work indicates that other methods, including the generation of novel reverse genetics 204 

systems, were used at the WIV to propagate infectious SARSr-CoVs based on sequence data from 205 

bats. Gain-of-function research would be expected to utilize an established SARSr-CoV genomic 206 

backbone, or at a minimum a virus previously identified via sequencing. However, past 207 

experimental research using recombinant coronaviruses at the WIV has used a genetic backbone 208 

(WIV1) unrelated to SARS-CoV-2 (Hu et al., 2017) and SARS-CoV-2 carries no evidence of 209 

genetic markers one might expect from laboratory experiments (Andersen et al., 2020). There is 210 

no rational experimental reason why a new genetic system would be developed using an unknown 211 

and unpublished virus, with no evidence nor mention of a SARS-CoV-2-like virus in any prior 212 

publication or study from the WIV (Ge et al., 2012; Hu et al., 2017; Menachery et al., 2015), no 213 

evidence that the WIV sequenced a virus that is closer to SARS-CoV-2 than RaTG13, and no 214 

reason to hide research on a SARS-CoV-2-like virus prior to the COVID-19 pandemic. Under any 215 
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laboratory escape scenario SARS-CoV-2 would have to have been present in a laboratory prior to 216 

the pandemic, yet no evidence exists to support such a notion and no sequence has been identified 217 

that could have served as a precursor. 218 

 219 

A specific laboratory escape scenario involves accidental infection in the course of serial passage 220 

of a SARSr-CoV in common laboratory animals such as mice. However, early SARS-CoV-2 221 

isolates were unable to infect wild-type mice (Wan et al., 2020). While murine models are useful 222 

for studying infection in vivo and testing vaccines, they often result in mild or atypical disease in 223 

hACE2 transgenic mice (Bao et al., 2020; Hassan et al., 2020; Israelow et al., 2020; Rathnasinghe 224 

et al., 2020; Sun et al., 2020b). These findings are inconsistent with a virus selected for increased 225 

pathogenicity and transmissibility through serial passage through susceptible rodents. Although 226 

SARS-CoV-2 has since been engineered (Dinnon et al., 2020) and mouse-adapted by serial 227 

passage (Gu et al., 2020; Leist et al., 2020; Sun et al., 2020a), specific mutations in the spike 228 

protein, including N501Y, are necessary for such adaptation in mice (Gu et al., 2020; Sun et al., 229 

2020a). Notably, N501Y has arisen convergently in multiple SARS-CoV-2 variants of concern in 230 

the human population, presumably being selected to increase ACE2 binding affinity (Khan et al., 231 

2021; Kuzmina et al., 2021; Liu et al., 2021; Starr et al., 2020). If SARS-CoV-2 resulted from 232 

attempts to adapt a SARSr-CoV for study in animal models, it would likely have acquired 233 

mutations like N501Y for efficient replication in that model, yet there is no evidence to suggest 234 

such mutations existed early in the pandemic. Both the low pathogenicity in commonly used 235 

laboratory animals and the absence of genomic markers associated with rodent adaptation indicate 236 

that SARS-CoV-2 is highly unlikely to have been acquired by laboratory workers in the course of 237 

viral pathogenesis or gain-of-function experiments. 238 

 239 

Evidence from genomic structure and ongoing evolution of SARS-CoV-2 240 

Considerable attention has been devoted to claims that SARS-CoV-2 was genetically engineered 241 

or adapted in cell culture or “humanized” animal models to promote human transmission (Zhan et 242 

al., 2020). Yet, since its emergence, SARS-CoV-2 has experienced repeated sweeps of mutations 243 

that have increased viral fitness (Deng et al., 2021; Otto et al., 2021; Simmonds, 2020). The first 244 

clear adaptive mutation, the D614G substitution in the spike protein, occurred early in the 245 

pandemic (Korber et al., 2020; Volz et al., 2021). Recurring mutations in the receptor binding 246 
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domain of the spike protein, including N501Y, K417N/T, L452R, and E484K/Q—constituent 247 

mutations of the variants of concern—similarly enhance viral infectivity (Cai et al., 2021; Khan et 248 

al., 2021; Kuzmina et al., 2021) and ACE2 binding (Liu et al., 2021; Starr et al., 2020; Zhu et al., 249 

2021a), refuting claims that the SARS-CoV-2 spike protein was optimized for binding to human 250 

ACE2 upon its emergence (Piplani et al., 2021). Further, some pangolin-derived coronaviruses 251 

have receptor binding domains that are near-identical to SARS-CoV-2 at the amino acid level 252 

(Andersen et al., 2020; Xiao et al., 2020) and bind to human ACE2 even more strongly than SARS-253 

CoV-2, showing that there is capacity for further human adaptation (Dicken et al., 2021). SARS-254 

CoV-2 is also notable for being a host generalist virus (Conceicao et al., 2020), capable of efficient 255 

transmission in multiple mammalian species, including mink, tigers, cats, gorillas, dogs, raccoon 256 

dogs, ferrets, and large outbreaks have been documented in mink with spill-back to humans (Oude 257 

Munnink et al., 2021) and to other animals (van Aart et al., 2021). Combined, these findings show 258 

that no specific human “pre” adaptation was required for the emergence or early spread of SARS-259 

CoV-2, and the claim that the virus was already highly adapted to the human host (Zhan et al., 260 

2020), or somehow optimized for binding to human ACE2, is without validity. 261 

  262 

The genesis of the polybasic (furin) cleavage site in the spike protein of SARS-CoV-2 has been 263 

subject to recurrent speculation. Although the furin cleavage site is absent from the closest known 264 

relatives of SARS-CoV-2 (Andersen et al., 2020), this is unsurprising as the lineage leading to this 265 

virus is poorly sampled and the closest bat viruses have divergent spike proteins due to 266 

recombination (Boni et al., 2020; Lytras et al. 2020; Zhou et al., 2021). Furin cleavage sites are 267 

commonplace in other coronavirus spike proteins, including some feline alphacoronaviruses, 268 

MERS-CoV, most but not all strains of mouse hepatitis virus, as well as in endemic human 269 

betacoronaviruses such as HCoV-OC43 and HCoV-HKU1 (Gombold et al., 1993; de Haan et al., 270 

2008; Kirchdoerfer et al., 2016). A near identical nucleotide sequence is found in the spike gene 271 

of the bat coronavirus HKU9-1 (Gallaher, 2020), and both SARS-CoV-2 and HKU9-1 contain 272 

short palindromic sequences immediately upstream of this sequence that are indicative of natural 273 

recombination break-points via template switching (Gallaher, 2020). Hence, simple evolutionary 274 

mechanisms can readily explain the evolution of an out-of-frame insertion of a furin cleavage site 275 

in SARS-CoV-2 (Figure 2).   276 

  277 
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The SARS-CoV-2 furin cleavage site (containing the amino acid motif RRAR) does not match its 278 

canonical form (R-X-R/K-R), is suboptimal compared to those of HCoV-HKU1 and HCoV-OC43, 279 

lacks either a P1 or P2 arginine (depending on the alignment), and was caused by an out-of-frame 280 

insertion (Figure 2). The RRAR and RRSR S1/S2 cleavage sites in feline coronaviruses (FCoV) 281 

and cell-culture adapted HCoV-OC43, respectively, are not cleaved by furin (de Haan et al., 2008). 282 

There is no logical reason why an engineered virus would utilize such a suboptimal furin cleavage 283 

site, which would entail such an unusual and needlessly complex feat of genetic engineering. The 284 

only previous studies of artificial insertion of a furin cleavage site at the S1/S2 boundary in the 285 

SARS-CoV spike protein utilized an optimal ‘RRSRR’ sequence in pseudotype systems 286 

(Belouzard et al., 2009; Follis et al., 2006). Further, there is no evidence of prior research at the 287 

WIV involving the artificial insertion of complete furin cleavage sites into coronaviruses.  288 

 289 

The recurring P681H/R substitution in the proline (P) residue preceding the SARS-CoV-2 furin 290 

cleavage site improves cleavage of the spike protein and is another signature of ongoing human 291 

adaptation of the virus (Peacock et al., 2021a). The SARS-CoV-2 furin site is also lost under 292 

standard cell culture conditions involving Vero E6 cells (Ogando et al., 2020; Peacock et al., 293 

2021b), as is true of HCoV-OC43 (Follis et al., 2006). The presence of two adjacent CGG codons 294 

for arginine in the SARS-CoV-2 furin cleavage site is similarly not indicative of genetic 295 

engineering (Maxmen and Mallapaty, 2021). Although the CGG codon is rare in coronaviruses, it 296 

is observed in SARS-CoV, SARS-CoV-2 and other human coronaviruses at comparable 297 

frequencies (Maxmen and Mallapaty, 2021). Further, if low-fitness codons had been artificially 298 

inserted into the virus genome they would have been quickly selected against during SARS-CoV-299 

2 evolution, yet both CGG codons are more than 99.8% conserved among the >2,300,000 near-300 

complete SARS-CoV-2 genomes sequenced to date, indicative of strong functional constraints 301 

(Supplementary Information, Table S1).  302 

 303 

Conclusions 304 

As for the vast majority of human viruses, the most parsimonious explanation for the origin of 305 

SARS-CoV-2 is a zoonotic event. The documented epidemiological history of the virus is 306 

comparable to previous animal market-associated outbreaks of coronaviruses with a simple route 307 

for human exposure. The contact tracing of SARS-CoV-2 to markets in Wuhan exhibits striking 308 
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similarities to the early spread of SARS-CoV to markets in Guangdong, where humans infected 309 

early in the epidemic lived near or worked in animal markets. Zoonotic spillover by definition 310 

selects for viruses able to infect humans. Although strong safeguards should be consistently 311 

employed to minimize the likelihood of laboratory accidents in virological research, those 312 

laboratory escapes documented to date have almost exclusively involved viruses brought into 313 

laboratories specifically because of their known human infectivity. 314 

  315 

There is currently no evidence that SARS-CoV-2 has a laboratory origin. There is no evidence that 316 

any early cases had any connection to the WIV, in contrast to the clear epidemiological links to 317 

animal markets in Wuhan, nor evidence that the WIV possessed or worked on a progenitor of 318 

SARS-CoV-2 prior to the pandemic. The suspicion that SARS-CoV-2 might have a laboratory 319 

origin stems from the coincidence that it was first detected in a city that houses a major virological 320 

laboratory that studies coronaviruses. Wuhan is the largest city in central China with multiple 321 

animal markets and is a major hub for travel and commerce, well connected to other areas both 322 

within China and internationally. The link to Wuhan therefore more likely reflects the fact that 323 

pathogens often require heavily populated areas to become established (Pekar et al., 2021). 324 

  325 

We contend that although the animal reservoir for SARS-CoV-2 has not been identified and the 326 

key species may not have been tested, in contrast to other scenarios there is substantial body of 327 

scientific evidence supporting a zoonotic origin. While the possibility of a laboratory accident 328 

cannot be entirely dismissed, and may be near impossible to falsify, this conduit for emergence is 329 

highly unlikely relative to the numerous and repeated human-animal contacts that occur routinely 330 

in the wildlife trade. Failure to comprehensively investigate the zoonotic origin through 331 

collaborative and carefully coordinated studies would leave the world vulnerable to future 332 

pandemics arising from the same human activities that have repeatedly put us on a collision course 333 

with novel viruses. 334 

 335 
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Figure Legends 625 

Figure 1. Phylogenetic and epidemiological data on the early COVID-19 pandemic in 626 

Wuhan. (A) Phylogenetic tree of early SARS-CoV-2 genomes sampled from Wuhan during 627 

December 2019-January 2020. The split between lineages A and B is labelled with the coordinates 628 

and base of the two differentiating nucleotide mutations. Cases with a known association to the 629 

Huanan or other markets are denoted by symbols (reported in WHO, 2021). (B) Map of districts 630 

of Wuhan showing the location of markets, the Wuhan National Biosafety Laboratory at the 631 

Zhengdian Scientific Park of the Wuhan Institute of Virology (denoted WIV), where the 632 

coronavirus isolation and culture work of Dr. Shi Zhengli is performed, and the earliest known 633 

cases. (C-E) Location of recorded COVID-19 cases in Wuhan from 8th December to 31st 634 

December 2019. Cases with a home address outside of Wuhan city are not shown. (F-H) Map of 635 

districts of Wuhan indicating the first record of excess deaths due to pneumonia (shaded green) 636 

from 15th January 2020. Case and excess death data were extracted and redrawn from figures 637 

provided in WHO, 2021. For more details see Supplementary Information. 638 

 639 

Figure 2. Evolution of the furin cleavage site (FCS) in the spike protein of betacoronaviruses. 640 

(A) Sequence alignment of the region around the FCS in SARS-CoV-2 (NCBI accession 641 

MN908947) and bat coronavirus RaTG13 (NCBI accession MN996532) showing that the former 642 

was the result of an out-of-frame nucleotide sequence insertion. (B) Amino acid sequence 643 

alignment of the FCS region in representative members of the different subgenera of 644 

betacoronaviruses, highlighting the evolutionary volatility of this site and that the relevant amino 645 

acid motif (RRAR) in SARS-CoV-2 is functionally suboptimal. The residues predicted to be O-646 

linked glycans are also marked. For more details see Supplementary Information.647 
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