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Abstract

A novel method of estimating selection bias due to informative censoring for a rolling cohort utilizing
matches is demonstrated for a recently published, and highly influential, study. The core reason for the
bias is related to the principle that those with Covid-19 symptoms are prevented from obtaining a
vaccine. The study explored the efficacy of the BNT162b2 mRNA Covid-19 vaccine in a nationwide mass
vaccination setting in Israel, and was conducted over a 44-day study period spanning December 2020
through early February 2021. The present approach utilizes the published data to establish a population
entering the study, and the number of matches which exist at the end of the study period is also a
known value. Since the time-wise distribution of those censored was not made available, two different
distribution patterns were compared. Simple probability rules were applied to estimate those who
rolled out of the cohort on any given day. Under those circumstances, a null assumption (i.e., that the
vaccine has no effect) for the exposed group clearly led to a different value for the outcome of interest,
demonstrating the effect of the bias. The expected value from the null assumption could then be
compared to the actual measured value to yield efficacy. It was found that the time-wise distribution of
those rolling out strongly influenced the level of bias. Discussion of the process includes a brief overview
of entities known from the Kaplan-Meier method of data presentation, from which several relevant
inferences may be drawn. First, a transparent listing of the number of matches which both enter and
exit the cohort for all possible combination of days within the study period would lead to a more robust
approximation of the selection bias due to informative censoring. The literature suggests that such a
practice be implemented and also that the estimate would likely be further improved if hazard ratios
were modeled, and this effect was confirmed herein. Two other examples from the literature are
explored and lead to a question: Is it possible that a similar selection bias due to informative censoring
might also be responsible, at least in part, for the difference between research studies which report high
vaccine efficiency and relatively poor outcomes in real-world environments? If so, the use of a booster
to improve outcomes is called into question. All studies and reports on Covid-19 vaccine efficiency
should be assessed to determine the significance of selection bias due to informative censoring and
provide a fully-transparent description of how this often-neglected bias is taken into account.

Introduction

Recently, the article, “BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting” by Dagan et al. was
published in the New England Journal of Medicine (April 15, 2021). It describes outcomes of a large-scale
study of the campaign in Israel to vaccinate a large population against Covid-19. The study matched
newly vaccinated (“exposed”) people with unvaccinated (“controls”) in a 1:1 ratio according to
demographic and clinical characteristics. Each study group included 596,691 persons. Its influence on
subsequent studies is profound as it has been cited over 300 times in a period of only a few months.?



The study utilized a “rolling cohort” as described in the authors’ supplemental material. This approach
was required since vaccination initiated in Israel on December 20, 2020, (calendar) Day 1 of the study
period. Each match was tracked within the 44-day study period, and outcomes were compared by
counting symptom occurrence, hospitalization, severe Covid-19 cases, and death. Matches accumulated
over the entirety of the study, and the number of matches established on each day was provided by the
authors in the form of a bar graph in their Figure S1 of the supplemental material, which is shown herein
as Figure 1. Since it was one of the first research articles to describe a large-scale Covid-19 vaccination
effort, it has been widely referenced not only by researchers, but also by government decision-makers,
and -through the media- the worldwide general public.
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Figure 1. Excerpt from the supplemental material of Dagan et al. (their Figure S1). Matches are shown in blue.

In a traditional study, one would begin with the same number of matched people (e.g., 596,618) in each
group, and the researchers would document how the exposed group fared in comparison to the control
group. From the initiation of the study period until its end, one would compile the number of events
(e.g., documented infection, occurrence of symptoms, hospitalization, severe disease, and death). One
could then report a direct comparison of the two groups to evaluate the effectiveness of the treatment
(e.g., avaccine).

Unlike a traditional study, the number of matches for that of Dagan et al. changed significantly with
time. In addition to accumulating matches each day, there was another way this change was manifested.
A large portion of the matched people (259,941 people, which is 44%) who were initially in the
unvaccinated control group were vaccinated within the 44-day study period. When vaccination of a
person initially in the unvaccinated cohort occurred, the follow-up ended for the matched pair as the
unvaccinated person “rolled out” (hereafter used without quotes) of the control cohort. In some cases, a



new unvaccinated match for a person who was initially in the (unvaccinated) cohort was found and
counted as another (new) match. The study authors refer to this step as “re-matching,” and 86,601
individuals were re-matched during the study period.

There are two other reasons why the follow-up can end prior to the end of the study period. As they
state on p. 1413, “For each person, follow-up ended at the earliest of the following events: occurrence
of an outcome event, death unrelated to Covid-19, vaccination (for unvaccinated controls), vaccination
of the matched control (for vaccinated persons), or the end of the study period.” The “occurrence of an
outcome event” is a vague statement, which is also addressed later in the discussion. It is certainly clear
that ‘death of one of the matched persons due to Covid-19’ would be an outcome which would end
follow-up, and that is what is assumed for the purpose of assessing the selection bias. Otherwise, if
follow-up simply concluded after one of the matched individuals merely experienced Covid-19
symptoms (also described as an “outcome event”), one would expect that there would be zero deaths
reported in either arm. The second, “death unrelated to Covid-19,” is much easier to interpret. Both of
these types of outcomes lead to only a very small percentage of the overall reason for follow-up to end
ahead of the study period conclusion when compared to the 44% which terminated because the initially
unvaccinated person attained a vaccine.

The majority of clinicians, health officials, and the general public are most interested in the efficacy of a
vaccine for preventing the most severe outcomes. Thus, one of the most critical figures, presenting the
number of deaths in each group (Fig. 2E from Dagan et al.), is repeated in Figure 2 below. It is useful as a
benchmark to note that the cumulative number of deaths reported therein is 32 for the unvaccinated
cohort while it is only 9 for the vaccinated cohort. These two values (32 and 9) are important to bear in
mind as this re-analysis of the data is undertaken. Dagan et al. report that the estimated differences in
preventing death from Covid-19 was “72% for days 14 through 20 (after one dose) and increases to 84%
for days 21 through 27 (gradually shifting between the first and second vaccination doses).” It happens
that the cumulative reduction in deaths reflected in Figure 2 is also 72% as (32-9)/32=0.72. So it stands
to reason that cumulative number of deaths is a reasonable parameter to consider and offers the
advantage of simplicity of interpretation. Undoubtedly, many who read the article will give those two
values outsized attention. While it happens to be that (32-9)/32 is equal to 0.72, the authors used a
Kaplan-Meier estimator to compute risk ratios for specific time periods after vaccination. Extensive
Kaplan-Meier life tables are provided by the authors on pp. 46-54 of their supplemental material.
Attributes and limitations of the Kaplan-Meier approach to data analysis will be forthcoming in the
discussion, but it is appropriate to first lay the groundwork for why such a discussion is useful and
necessary.
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Figure 2. Cumulative Incidence of the Five Outcomes.

Cumulative incidence curves (1 minus the Kaplan—Meier risk) for the various outcomes are shown, starting from the day of administra-
tion of the first dose of vaccine. Shaded areas represent 95% confidence intervals. The number at risk at each time point and the cumu-
lative number of events are also shown for each outcome. Graphs in which all data are shown with a y axis scale from 0 to 100 (along
with the data shown, as here, on an expanded y axis) are provided in Figure S8 in the Supplementary Appendix.

Figure 2. Number of deaths due to Covid-19 reported as an outcome by Dagan et al. in the body of their NEJM article.
(permission to reproduce requested)

The large number of people who roll out of the control cohort contributes to a peculiar bias when
another important fact is considered: people who have Covid-19 symptoms are not permitted to obtain
the vaccine. Specific guidance from the CDC is as follows from their “Frequently-asked-questions”
webpage: “Question: Can | get vaccinated against COVID-19 while | am currently sick with COVID-19?
Answer: No. People with COVID-19 who have symptoms should wait to be vaccinated until they have
recovered from their illness and have met the criteria for discontinuing isolation; those without
symptoms should also wait until they meet the criteria before getting vaccinated. This CDC guidance
also applies to people who get COVID-19 before getting their second dose of vaccine.”? Media reports
provided similar guidance along with common-sense reasoning in early 2021, during the Israeli
vaccination program reported by Dagan et al. For example, one media outlet reports: “If there's a
chance you have COVID, however, then it's a different story. If you are having upper respiratory
symptomes, the first thing you should do is get tested for COVID-19, Dr. Mandal says. ‘For one thing, if
you do have COVID-19 or are awaiting test results, you should immediately self-isolate, and definitely
shouldn't expose the person giving you the shot....”, “...If you currently have the virus, then getting
vaccinated will not be immediately helpful as the body takes time to mount an immune response,’ says
Dr. Eudene Harry MD, a board-certified emergency medicine physician in Orlando, Florida.”3

This difficulty arising from this process leads a “selection bias” due to “informative censoring,” which has
been identified as an often-neglected cause of bias in the literature,* despite several studies
documenting and modeling its effect. Campigotto and Weller used simulation studies to evaluate bias
when combined with Kaplan-Meier analysis. Their simulations, using proportions of informative
censoring ranging from 1% to 40%, showed that, “the magnitude of the bias depends primarily on the
proportion of patients who are informatively censored and secondarily on the hazard ratio between
those who are informatively censored and those who remain in the study.” They recommend that: “If
informative censoring cannot be avoided, then all patients should be observed until progression, and
sensitivity analyses should be used as appropriate.”®



It is very easy to understand how such a bias might play a role in assessing vaccine efficacy in the Dagan
et al. study by way of a counter-example. Suppose that the recommendation were for individuals to
immediately seek the vaccine as quickly as possible if Covid-19 symptoms appear. How many deaths
would be expected in the unvaccinated group for a study using the rules for ending the follow-up set in
place by Dagan et al.? The answer is zero. After all, there would be enough time (hours, presumably) for
an unvaccinated person to obtain the vaccine. Once that occurs, they would roll out of the unvaccinated
cohort, and follow-up of the matched pair would end. Therefore, even if the person in this example
ultimately died, their death would not be tallied using the rules set in place for this study. In a similar
vein, one could argue that the number counted as severe Covid-19 cases and hospitalizations could be
driven to zero for those labelled “unvaccinated” under such a circumstance if the response were
sufficiently fast.

A direct example applicable to the actual circumstances also provides guidance if one considers two
opposite scenarios. For each, assume that the individual in question is matched to someone outside the
example discussion (in other words, they would not be matched to one another). 1) Suppose a person is
matched into the unvaccinated group on (calendar) Day 5, experiences Covid-19 symptoms on Day 9,
and dies 18 days later on Day 27. In this case, the individual would have been restricted from receiving
the vaccine, and hence from rolling out of the unvaccinated cohort, from Days 9 through 26. Barring the
extremely highly unlikely possibility that this person’s match in the vaccinated group happens to die
sooner than Day 27, the outcome would be counted as a death in the unvaccinated group. 2) Now
suppose that the same progression occurs for a person in the vaccinated group — joining the group by
being vaccinated on (calendar) Day 5, experiencing symptoms on Day 9, and dying on Day 27. This death
would only be counted if the person’s match remains unvaccinated over this period. In these two
situations, the possibility of the unvaccinated person rolling out is the same as that of the match for the
vaccinated person on Days 6 through 8. However, from Days 9 through 27, the restriction of the
unvaccinated control from being vaccinated due to symptomatic Covid-19 leads to the potential for a
significant bias in counting deaths.

This bias is acknowledged by Dagan et al. and described as “a selection bias due to informative
censoring.” They address the concern with respect to event outcomes, including severe Covid-19 and
death, and their description is as follows: “To assess a possible selection bias that could stem from
informative censoring, whereby controls who are vaccinated feel well around the time of vaccination,
we performed a sensitivity analysis in which they were kept in the unvaccinated group for a period of
time that was set differently for each outcome (Figure S7 of their supplement and Table S5). This
analysis showed results similar to the main analysis, which suggests that such bias was small in our
analysis.” (p. 1422) Additional specific details are also provided, as follows: “Table S5 and Figure S7 show
the results of the sensitivity analysis in which data for persons who were enrolled as controls and were
then vaccinated were censored at a delay (a number of days after the vaccination date, depending on
the outcome). The estimates are similar to those of the main analysis.” (p. 1417)

To clarify, Dagan et al. present the outcomes without any correction of bias due to informative
censoring in the body of their article as the “main analysis.” Meanwhile, the outcomes with bias taken
into account in the fashion they describe, presumably with the goal of eliminating the bias, are
presented in their supplemental material.



Some specific guidance for their approach was given in their ‘Methods’ section: “We performed an
additional sensitivity analysis to assess the potential for selection bias due to informative censoring. In
this analysis, data on controls who were subsequently vaccinated were censored only after 7 days plus
the median time from documented Covid-19 diagnosis to the outcome being studied.” Thus, when
death was considered as the outcome event, the delay in censoring can be computed using Dagan et
al.’s Figure S3E, replicated here as Figure 3. It can be seen that the median time described is 11 days.
Therefore, the total delay period for the sensitivity analysis for the outcome of death is 7+11 = 18 days.
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Figure 3. This histogram, reproduced from Dagan et al., shows “the distribution of time (in days) from the date the first positive
PCR test was sampled until incidence of the different outcomes: hospitalization due to COVID-19 and death due to COVID-19. A

dashed vertical red line in each plot shows the median.” The median time between PCR-positive test and death is depicted as 11
days. (permission to reproduce requested)

Considering that a person must be free of Covid-19 symptoms on the day they are vaccinated, this
exploration of the bias due to informative censoring made by Dagan et al. implies that a person could
have (1) acquired the virus prior to vaccination, (2) presented no symptoms at the time of vaccination,
and (3) died within 18 days of vaccination. In other words, the sensitivity analysis presumed that death
would occur within 18 days of presenting symptoms. Furthermore, this assumption implies that the
vaccine would have no effect for the first 18 days after it is administered. Is it possible that such an
assumption could lead to a circular argument?

The analysis of this bias by Dagan et al. provided charts in Fig S7 (“Cumulative Incidence Curves when
Delaying Censoring of Vaccinated Controls”). The specific chart for “Death due to Covid-19” is replicated
in Figure 4 where it can be seen that the cumulative number of deaths for both unvaccinated and
vaccinated groups rise. For the unvaccinated group the increase is from 32 to 39 whereas for the
vaccinated group the rise is from 9 to 20. A first approximation from this figure suggests via a coarse
approximation that the effectiveness in preventing death is lower - 49% [simply from (39-20)/39] - than
what was given in the main body of the article (72%). Arguably, the most surprising outcome from this



analysis is the increase of deaths by 7 due to Covid-19 counted in the unvaccinated cohort, especially
considering that the individuals were free of Covid-19 symptoms on the day of vaccination.

One clarifying comment on how the analysis proceeded is also provided in the caption of Dagan et al.’s
Table S5, stating “This analysis does not allow vaccinated controls to re-enroll as exposed, so individuals
do not contribute time to both study groups.” While this sentence is a bit confusing to read at first, it is
descriptive and necessary. Of the 259,941 controls who rolled out of the unvaccinated cohort, 86,601
(or 33.3%) were “rolled into” the vaccinated cohort and re-matched with a new unvaccinated person.

There is, however, an unanswered, and very important, question. How many of the 7 individuals whose
deaths were attributed to the unvaccinated cohort in the “delayed-censoring sensitivity analysis” were
originally attributed to the vaccinated cohort in the analysis of the main body of the article? To wit, if all
7 were re-matched and counted as part of the 9 deaths in Figure 2, one would reach the conclusion that
18 new deaths were counted in the vaccinated cohort due to the 18-day delay in censoring controls. On
the other hand, if none of these 7 individuals were “rolled into” the vaccinated cohort in the main
analysis, there would be only 11 additional deaths due to the delay in censoring. In the context of the
present study, such a difference is large. The authors make the assumption that exposure to the vaccine
has no effect in the first several days after vaccination, so in the supplement they count the 7 in the
unvaccinated cohort. This is arguably an example of aforementioned circular logic. Aside from this
ambiguity, there is a possibility that suggests that the vaccine itself might be a confounding factor
shortly after vaccination. For example, recent data from Bernal et al. show that study participants
vaccinated with BNT162b2 “had a higher odds of testing positive for Covid-19 in the first 9 days after
vaccination.”®

The number of deaths counted in the vaccinated cohort is more than doubled (increasing from 9 to 20),
but this is not surprising given the rules regarding censoring. The authors assessed the difference in
outcome by stating in reference to all outcomes, “This analysis showed results similar to those of the
main analysis, which suggests that any such bias was small in our analysis.” Yet a simple measure of
efficacy of the vaccine in preventing death over the 44-day period shows a reduction from 72% to 49%
in the analysis accounting for bias. Also significant is that the error bars shown by the authors overlap
when the delayed-censoring approach is used whereas they do not overlap in the main analysis. The
words “small” and “similar” are subjective, and such an assertion would be certainly strengthened by a
more objective rationale.
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Figure 4. A copy of figure S7E from Dagan et al. which indicated cumulative deaths of 39 for the unvaccinated cohort and 20 for
the vaccinated cohort. (permission to reproduce requested)

One purpose of the present communication is to demonstrate that a different approach, with several
advantages, may be utilized to approximate the effectiveness of the vaccine described in Dagan et al. in
preventing deaths. Rather than choosing a specific number of days to delay censoring, one may
compute the apparent effectiveness of a “null vaccine” given the rules restricting vaccination only to
individuals free of Covid-19 symptoms. This value quantifies the effect of the bias alone and may then
be compared to the measured outcome, for example as a ratio, and used as a means of assessment of
efficacy. However, in order to implement the approach, one must also utilize the information regarding
those rolling out of the unvaccinated cohort over time. Figure 1 does not provide the time-wise
distribution for those rolling out of the unvaccinated cohort nor does any information in the remainder
Dagan et al. article. The prospect that the Kaplan-Meier tables does not fully inform the reader
regarding the distribution of those rolling out requires a lengthier argument and is addressed in the
discussion herein.



A second purpose of the present communication is to show that the distribution has a substantial
influence on this “apparent effectiveness,” and therefore it should be included in future similar studies
of this nature. A broader point is that data transparency is essential not only for the scientific
community but also for decision-makers and the general public.

To begin, an approximation of the number of matches for each day from Dagan et al.’s Fig S1 (see also
Figure 1) is depicted in Figure 5. For the purposes of explaining the effect of the bias and the approach,
it is not necessary to utilize the exact values of that of Dagan et al. Nonetheless, the distribution was
established to result in a total of 596,618 matches.
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Figure 5. Approximation of data from Dagan et al. (Fig. S1), matched persons only.

A cumulative number of matches provides some added insight into how their study was conducted. This
is given in Figure 6. It is important to understand that the number of people in each group for any given
day differs from the cumulative number of matches. This occurs to due to those who are roll out of each
group (i.e., are censored).
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Figure 6. Cumulative number of matches for Dagan et al., by day if there were no censored matches.

Results Section I. Assessment of bias for a “neutral” distribution of those rolling out of the unvaccinated
group

To assess the effect of individuals rolling out of the unvaccinated cohort, one must first establish a time-
wise distribution of those who start in the unvaccinated group but become vaccinated within the 44-day
study period and roll out of that group. Ideally, one would use the actual data, but for the purpose of
demonstrating the effect on bias, one may also propose a specific time-wise distribution and follow it to
an outcome. A reasonable place to begin is to simply assume that a constant multiplied by the number
of matches from the previous day would yield a reasonable, and neutral, estimate of the number of
those rolling out of the unvaccinated cohort. As expected, the number works out be slightly over 44% in
order to achieve the cumulative total of 259,941 who roll out. This distribution is shown in Figure 7. As
one would anticipate, the distribution in this figure resembles Figure 5, except that the columns appear
shifted one day to the right and the vertical scale is altered. Since the number of deaths due to Covid-19
and other causes is expected to be much smaller than the 259,941 who roll out due to vaccination, the
effect of those individuals on the bias are neglected in the present discussion.
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Figure 7. Assumed time-wise distribution of those rolling out of the unvaccinated cohort — neutral case.

With this “neutral” distribution treated as ‘known,” one may then compute the number of people in
each cohort for any given day of the trial. This result is given for the neutral distribution in Figure 8.
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Figure 8. Number of people in each group by day for the neutral distribution.



The next step in the process of demonstrating the bias is matching the number of symptomatic persons
in the unvaccinated cohort to the value of 3,607 reported by Dagan et al. One could set parameters
which allow for sub-groups or time intervals to have different likelihoods of having symptomatic Covid-
19 to fully quantify bias. However, it is sufficient for the purpose of demonstrating bias to assume that
the number of symptomatic people is simply proportional to the number of persons in each group on
any given day. This approach has the advantage of being easy to understand and straightforward. To
determine the value used for the proportion, it is helpful to set up a spreadsheet. This is given in Figure
9. The value at the top of the sixth column (0.004718, shown in red) was determined to provide the
proper proportion. This value is multiplied by number of matches for each day, resulting in the values in
the sixth column. These values are summed to yield the total of 3,607 for the unvaccinated cohort,
listed at the bottom of that column. Another, arguably slightly more appropriate, way to approach the
number of symptomatic people might be to subtract those who were already counted as symptomatic
on previous days. This approach was tested and showed a negligible difference due to the low number
of symptomatic people compared to the total number of matches in the study (less than one percent).
Thus, the simpler approach is used herein, and its outcome is shown in Figure 10. Once more, it is not
surprising that the distribution resembles that of Figure 8 since a simple proportional constant was used.
Only the vertical scale is different.
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Figure 9. Spreadsheet used to prepare plots for the demonstration of bias for the neutral case.



Number of new symptomatic people in unvaccinated group for each day for Dagan
et al. : Neutral
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Figure 10. New symptomatic people in the unvaccinated cohort each day, as projected using the ‘neutral’ model. If there were
no rolling out due to vaccination of matches, this would also represent the number of symptomatic vaccinated persons (with a
"null vaccine").

At this point, one could apply a correction factor in the form of either a constant or a more sophisticated
expression, to match the number of symptomatic people in the vaccinated group as well. However, the
focus in the present process is to establish the effect of a “null vaccine,” and so the number of
symptomatic “vaccinated” people is taken to be equal to the values for those who are unvaccinated.
Thus, the values in Column 7 match those of Column 6.

The next step is to estimate both the proportion of symptomatic people who die and the time after
which symptoms appear that death would occur. One might develop a sophisticated model by
accounting for factors in various subgroups or by applying a possible distribution of delay times between
appearance of symptoms and death. Here, it is sufficient to demonstrate the effect of bias with an
exceptionally straightforward approach. Simply take the number of people who are newly symptomatic
on each day and assume that they each have equal likelihood of dying precisely 18 days later.

The choice of an 18-day differential between symptom appearance and death is analogous to the value
utilized by Dagan et al. in their delayed censoring approach and can be supported on other grounds as
well. First, consider the plot from Dagan et al. reproduced in Figure 11 which shows a histogram for the
number of days from number of days from a PCR-positive test and hospitalization. The median is 10 days
shorter than that for death (see Figure 3). If one assumes that symptoms, which would prevent
vaccination, initiate 8 days prior to hospitalization, one computes an 18-day differential. Early data in
the pandemic from Wuhan specifically state their population had an 18.5-day median delay between
illness onset and death.” Faes et al. report a mean time between symptom onset and hospitalization in
Belgium of 5.74 days and that the median hospital length-of-stay for patients that die is 12.2 days for
the working-age population, yielding a total time from symptom onset to death of 17.9 days. So, an
assumed 18-day differential between symptom onset and death may be justifiable. Faes et al. do



continue that the median hospital length-of-stay is quite a bit lower (5.7) for elderly patients and there
is also variability from country to country.®

Even though the choice of an 18-day differential between symptom onset and death appears a
reasonable estimate, one might also justify other choices. What would the outcome be if the delay time
for delayed censoring were selected by Dagan et al. to be 14 days or 22 days? The histogram presented
in Figure 3 shows that a non-negligible number of deaths occurred more than 18 days after the first PCR
test was given. It is quite reasonable to expect that deaths may be undercounted in the vaccinated
group, despite their effort applied via the delayed-censoring analysis. Additional information regarding
the patient population, especially among those whose deaths were newly counted in the sensitivity
analysis with delayed censoring, would be helpful to determine whether an 18-day delay is an
appropriate choice. In addition, data analogous to that compiled by Faes et al. specific to Israel, if
available, would be a welcome addition to inform the choice.

In a more advanced analysis using the null vaccine approach, one might also venture to utilize a time-
wise distribution of death occurrence for any given symptomatic person, as opposed to choosing a
singular delay (18 days in this analysis) for all deaths to occur. Herein, the advantage once more is
simplicity, and it serves the purpose of illustrating the effect of the bias brought about due to individuals
being free of Covid-19 symptoms on the day they chose to obtain the vaccine.
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Figure 11. This histogram shows “the distribution of time (in days) from the date the first positive PCR test was sampled until
incidence of the different outcomes: hospitalization due to COVID-19 and death due to COVID-19. A dashed vertical red line in
each plot shows the median.” The median time between a PCR-positive test and hospitalization is one day. (permission to
reproduce requested)



To determine the proper proportionality constant to apply to the number of symptomatic people, one
can utilize the value for the total number of deaths in the control group (32.0). The proportionality
constant works out to be 0.02408 for this ‘neutral’ case, and is shown in red above the eighth column in
Figure 9. Since the number of deaths is low, it is useful to include “fractional deaths” to maintain
accuracy. It may be helpful to consult once more the number of newly symptomatic people in the
unvaccinated group from the same spreadsheet, and this is given in Figure 10. It should make sense that
the number grows with time since the number of matches also grow monotonically under the assumed
‘neutral’ circumstances. Given that there is a necessary delay between symptom appearance and death,
one might expect that some of those who become symptomatic near the end of the trial die after the
follow-up has ended after Day 44.

The number of deaths, computed under this set of assumptions, on each given day is given in Figure 12.
Due to the proportionality constant applied to symptoms and the 18-day delay, the shape of the curve
resembles that of Figure 10 except that there is a pronounced (18-day) shift to the right and the vertical
scale has changed. If one sums all the values represented in the bars of Figure 12, the result is 32.0
deaths.

Number of new deaths for each day for Dagan et al. for assumed roll-out : Neutral
For Unvaccinated. (*If* there were no roll, this would be the vaccinated data too.)
25

0 .IIIIIII||““||||“““

12 3 456 7 8 91011121314151617 181920212223 242526272829 30313233343536373839401414243 44

[N

1

w

-

0

(5l

M Series1

Figure 12. Number of deaths per day given fractionally in the unvaccinated cohort when roll out of due to vaccination is
neutral.

At this point in the procedure, the net effect of the bias can finally be addressed. The fraction of
individuals who roll out of the unvaccinated cohort on any given day can be found by dividing the
number of people who roll out on a given day by the number of people in that cohort on the prior day.
(It is appropriate to use the value from the prior day for the denominator because a person cannot both
join the unvaccinated cohort and roll out of it on the same day.) This fraction also represents the
likelihood that follow-up will end for any person in the vaccinated cohort, whether symptomatic or not,



as well. This fraction is given in terms of a percentage in Column 9. It is notable that the percentage
diminishes with time as the denominator (i.e., the number of matches) grows with time.

The fraction of people who remain in the vaccinated cohort for any given day can be simply computed
as one minus the fraction who roll out. Then, to compute an estimate of the possibility of remaining in
the cohort for multiple days, one can simply multiply those fractions together, following simple laws of
probability. For example, suppose a person is in a group on Day 1. Let’s then assume there is a 60%
chance of that person remaining in the group through Day 2, a 70% chance of remaining in the group
through Day 3, and a 50% chance of the person remaining in that group through Day 4. One can
compute the likelihood of the person remaining in the group as 0.60* 0.70 *0.50 = 0.21. In other words,
there would be a 21 percent chance that person would still be in the group after Day 4 in this brief
example.

For the present situation, there is an 18-day progression from symptom appearance to death, so there
are eighteen terms multiplied together instead of three in the above example. This fraction is shown in
the eleventh column for each day of interest. Note that the values do not extend past Day 26 since the
assumption is made that an 18-day difference between symptom appearance and death is in place. In
column 12, the number of deaths is computed for the vaccinated cohort with the bias taken into
account. The difference is depicted in Figure 13.

Number of new deaths for each day for Dagan et al. : Neutral
For Vaccinated: comparing "No roll out" condition to the actual "Roll out" condition
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Figure 13. The effect of the bias due to rolling out by unvaccinated persons is illustrated for the vaccinated cohort for this
“neutral” case. Deaths per day are shown. The sum of the *with* roll-out cases (orange) is 19.3 rather than 32.0.

By summing the (orange) columns for the vaccinated cohort in Figure 13, the expected value for a null
vaccine under the conditions where selection bias due to informative censoring is present can be
computed, under the assumption of a uniform 18-day delay between symptom appearance and death.
The summed output is 19.3 shown also in the spreadsheet of Figure 9 at the bottom of Column 13. This
value may then be compared to the actual value of 9 found in the study. The ratio of (19.3-9)/19.3 yields



a coarse approximation of 54% efficacy for the vaccination effectiveness under the described
circumstances using the null vaccine approach. Bearing in mind that the goal is to establish an
“expected number of deaths” for comparison to the actual number (9), if one were to allow the vaccine
to “take credit for” a lower value for the number of symptomatic people, the expected number of
deaths would drop from 19.3 to a lower value, which in turn would lead to a reduced value of efficacy
for preventing deaths.

Results, Section Il. “Optimized” distribution to increase bias

One can also set up a time-wise distribution for those who roll out of the control group which leads to a
considerably lower value for expected number of deaths for a null vaccine. For the purposes of this
discussion, the distribution is described as “optimized” only because it would lead to the appearance
that a “null vaccine” would increase the bias. One such example of a distribution is given in Figure 14.
Here it can be seen that there are two relatively large groupings of those rolling out. Note that the
vertical scale is larger than that of Figure 7. The spreadsheet associated with the output is given in
Figure 15 and is analogous to the information given in Figure 9.

Assumed Roll out (not given by Dagan): "Optimized" to increase bias
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Figure 14. Assumed time-wise roll out distribution for a nearly "optimized" outcome in the sense that the expected number of
deaths form a null vaccine would be lower than the neutral case.
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Figure 15. Spreadsheet used to prepare plots for the demonstration of bias for the "optimized" case.



The first item to examine for the optimized case is the resulting number of cumulative matches, which is
given in Figure 16. The difference between this “optimized” output and that of the “neutral” case in
Figure 8 is rather profound. One easy way to quantify the difference is to look specifically at Day 19. The
neutral case shows 178,844 people in each group on Day 19 whereas the “optimized” case leads to only
46,059 in each group (see also the spreadsheet data in Figure 9 and Figure 15). Only those who are free
of Covid-19 symptoms are permitted to roll out of the unvaccinated cohort, so, as one might anticipate,
the proportion of those who are symptomatic in the unvaccinated cohort on that day would be higher
for the optimized case.

Cumulative matches for Dagan et al. with assumed "roll out": "Optimized" to

200000 increase bias

350000
300000

250000

200000

150000

100000

=l || ||| ||||||
O_-llll II i

12 3 45 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344

8

M Seriesl

Figure 16. Number of people in each group by day for the “optimized” distribution.

In essence, the “optimized” distribution filters out many more of the people who were matched in the
first portion of the study. If one proceeds to compute the number of symptomatic people in the
unvaccinated group using the same constant of proportionality approach, one can produce Figure 17.
Note that the actual constant used to compute the number of people in the unvaccinated cohort who
become symptomatic is adjusted upward from 0.0004718 (from Figure 9) up to 0.00062118 (from Figure
15) so that the same value of 3,607 symptomatic patients in the control group is reached. In other
words, the control output is used as a benchmark, or calibration parameter, for the present analysis.



Number of new symptomatic people in unvaxed group for each day for Dagan et al.
Roll-out assumed to be "Optimized" to increase bias
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Figure 17. New symptomatic people in the unvaccinated cohort each day for the "optimized" roll out distribution. If there were
no rolling out due to vaccination of matches, this would also represent the number of symptomatic vaccinated persons (with a
"null vaccine").

The same uniform 18-day delay between symptom appearance and death for a fraction of individuals in
the unvaccinated cohort is used in this demonstration to work out the bias. Note that, once more, the
proportionality constant must be adjusted (from 0.02408 to 0.02654) to maintain 32.0 deaths in the
unvaccinated group. The output is given in Figure 18. This same constant is then used with vaccinated
group as well since a “null vaccine” is still assumed for this “optimized” distribution.



Number of new deaths for each day for Dagan et al. : "Optimized" to increase bias
For Unvaccinated. (¥If* there were no roll, this would be the vaccinated data too.)
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Figure 18. Number of deaths given fractionally in the unvaccinated cohort when roll out of due to vaccination is “optimized”.

The same process is followed using the law of probabilities to eliminate those in the vaccinated group
whose “match” rolls out of the unvaccinated group. With that, the effect for the “optimized” case using
the same uniform 18-day delay between symptom initiation and death may be determined. The results,
in the form of a comparison to illuminate the bias, are shown in Figure 19. Summing the total number of
deaths for this “optimized” group leads to a value of only 12.0. In turn, a coarse estimate of the vaccine
efficacy under this distribution and enumerated set of assumptions would be only 25 % [(12-9)/12)]. It is
rather remarkable that such a strong influence on the “apparent effectiveness of a null vaccine” can be
achieved without any assumptions being made about the health, age, or demographics of the people in
the trial. Rather, simply the choice of the time-wise distribution of those rolling out, combined with
simple laws of probability to provide an estimate, is demonstrated to play an outsized role on the
interpretation of the outcome.



Number of new deaths for each day for Dagan et al. : "Optimized" to increase bias
For Vaccinated: comparing "No roll out" condition to the actual "Roll out" condition
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Figure 19. The effect of the bias due to rolling out by unvaccinated persons is illustrated for the vaccinated cohort for this
“optimized” case. Deaths Oper day are shown. The sum of the *with* roll-out cases (orange) is 12.0 rather than 32.0.

It should also be pointed out that the bias could also be reduced substantially by adjusting the time-wise
distribution of those rolling out of the trial. If all, or nearly all, of the rolling out occurs near the end of
the trial, the expected value approaches 32. However, it is a mathematical certainty that the expected
value must be lower than 32.

Campigotto and Weller specifically state that “the hazard ratio between the group of patients who
remain on study and the group of patients who are informatively censored” is a secondary factor to
consider (after the primary influence of the proportion who are informatively censored). For Dagan et al.
one important consideration is that older individuals tended to be vaccinated sooner than younger
people. In a Jerusalem Post story dated 7 January 2021, the Israeli Health ministry is quoted as saying
that about 70 percent of those over the age of 60 had the first dose of vaccine.® Age is correlated closely
with the likelihood of dying from Covid-19 as the CDC reports that those aged 65-74 are 95 times more
likely to die than those aged 18-29. Meanwhile, the likelihood of attaining a case of Covid-19 is similar
throughout all age groups.® With this in mind, consider an adjusted model which allows those in the
first 14 (calendar) days of the trial to have twice the likelihood of dying compared to those who enter
the trial on (calendar) day 15 or later should they become symptomatic. For the purpose of this model,
also assume that symptoms occurrence remains unchanged, and additionally utilize the “optimized”
time-wise distribution for the roll out. The spreadsheet under this model, adjusted to crudely take
hazard ratio into account, is given in Figure 20.
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Figure 20. Spreadsheet used to demonstrate bias for the "optimized" case with those entering the study from Days 1-14

assumed to have double the chance of dying from Covid-19, compared to those entering later.



This model demonstrates that a specific time-wise distribution of those rolling out combined with a
crude, but justifiable, age-associated model can lead to a value of 8.9 expected deaths in the
“vaccinated” group - even if the vaccine does nothing at all (i.e., it is a null vaccine). Since this value is
very nearly the 9 deaths found in the actual case, this analysis provides some credence to the notion
that Dagan et al.’s findings might actually support the notion that the vaccine they studied has no effect
of deaths which occur due to Covid-19. To produce this output, note that the constant above columns 9
and 11 is 0.0188. This value is multiplied by 2 for Days 1-14 and multiplied by 1 for Days 15 onward.
Otherwise, the process is the same which was followed for the prior two examples in Figure 9 and Figure
15.

The underlying reason can perhaps be better understood with reference to Figure 21. The reduction of
the multiplier from 2 down to 1 is observable in the “No roll out” dataset in that there is a marked step
down from Day 32 to Day 33, in contrast with the data shown in Figure 19. This outcome, reducing the
number of expected deaths from 12.0 to 8.9, also exemplifies the finding of Campigotto and Weller that
hazard ratio can is a secondary factor in determining the influence of selection bias due to informative
censoring. A point of emphasis is that this outcome does not mean that the actual vaccine effectiveness
studied by Dagan et al. is definitively zero; rather, it suggests that additional transparency of the data is
required in order to rule such a possibility.
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Figure 21. Number of new deaths for each day if one assumes that the chances of dying if Covid-19 symptoms occur is twice as
high for those entering the study during Days 1-14 than for Days 15-end.

Discussion

These three examples confirm that (1) selection bias due to informative censoring can have an
important effect, (2) the time-wise distribution of those rolling out influence the level of bias, and (3) the
hazard ratio does have a secondary effect on the level of bias. A follow-on question is: could the
extensive supplementary data provided in the form of Kaplan-Meier life tables by Dagan et al. be utilized
to fully address such a bias? The Kaplan-Meier approach yields values associated with a time difference,
described as ‘number censored,” after being counted in the group for a certain number of days whereas



the examination of the bias carried out in the previous section utilized events which occur at specific
times, in an absolute sense. One can simplify the question, then, by considering the combination of an
initial distribution showing when matches enter the study and a list of the number censored after a
specific number of days, analogous to what is provided by Dagan et al. on a much larger scale. Dagan et
al. also provided the total number of those who rolled out before the end of the study period, from
which one can calculate how many matches are intact at its end.

To examine this question, consider the thought experiment illustrated in Figure 22. Herein, the concern
is not related to what outcomes of any events might be. Rather, the goal is to assess whether more than
one time-wise distribution of matched study participants is possible. In other words, with constraints
applied by Dagan et al., could one deduce a unique distribution of the number who roll out of the study
on any given day? If so, one would be able to rule out the possibility of ambiguity implied by the two
different plots in Figure 8 and Figure 16.

The example includes a total of 18 matches formed over four days (4 on Day 1, 6 on Day 2, 6 on Day 3,
and 2 on Day 4). After Day 4 (Day 5), we take as given that 9 matches remain intact. Our question can
posed as this: If we are given that 1 match lasts (i.e., is censored after) 4 days, 3 matches last 3 days, 7
matches last 2 days, and 7 matches last for 1 day, is this associated with only one unique possible
sequence of events?

To determine the answer, one can set up a system of equations where all possible combinations are
expressed. It is certain that the lone 4-day event started from a match on Day 1 and lasted until Day 5.
Likewise, it is certain that every match formed on Day 4 is censored after only 1 day. For this example,
the remaining possible outcomes for matches are expressed in terms of 8 different variables (shown as
a-h, on the left) while the constraints applied to the problem may be expressed as equations, of which
there are 7 (shown on the right). Because the number of variables exceeds the number of constraints,
the problem is under-constrained. Like Dagan et al., the number of matches formed is provided for each
day, the number of matches left at the end of the study period is given. The number of matches which
last (or are censored after) each allowable number-of-days is also given, and so this specification is
analogous to what is provided in a Kaplan-Meier table, which is also provided by Dagan et al. That the
system of equations is under-constrained suggests that more than one solution is possible.



Day 1

Number of matches formed

each day during a following

4-day study period (study

ends on Day 5): I

Day 2

Match outcomes expressed as 8 variables a through h

4-day: 1 match lasts from Day 1 to Day 5 (only option, known)

3-day: a matches lasts from Day 1 to Day 4
b matches lasts from Day 2 to Day 5

2-day: ¢ matches last from Day 1 to Day 3
d matches last from Day 2 to Day 4
e matches last from Day 3 to Day 5

1-day: f matches last from Day 1 to Day 2
g matches last from Day 2 to Day 3
h matches last from Day 3 to Day 4

Day 3 Day 4 Day 5
6 2

| | (9 left - known)
Given: 18 matches, 9 matches left on Day 5
1 match lasts 4 days
3 matches last 3 days
I 7 matches last 2 days
7 matches last 1 day

Rules expressed as equations for variables a through h
1) a+b=3 (3 matches last 3 days)

2) c+d+e=7 (7 matches last 2 days)

3) f+g+h+ 2=7 (7 matches last 1 day)

4) 1+a +c+f=4 (4 matches formed on Day 1)

5) b+d+g=6 (6 matches formed on Day 2)

6) e+ h=6 (6 matches formed on Day 3)

7) 1+b+e+2=9 (9 matchesremain on Day5)

2 matches last from Day 4 to Day 5 (only option, known)

There are 8 variables but only 7 equations. Hence the system is under-constrained.

Figure 22. Thought experiment to demonstrate that, given an identical initial daily distribution of matches, two different
sequences in time can lead to the same information in a Kaplan-Meier table.

To fully demonstrate the proof, one may carry out calculations and perform linear algebra as needed. In
Figure 23, two different solutions are shown. Each was determined by first assuming a value for the
variable ‘a’ (the number of matches which start on Day 1 and end on Day 4) and then the solution

follows. The essential point is that more than one histogram shape of accumulated matches can be

produced.

Possible outcome 1: Begin by setting a = 1.
Carrying out the linear algebra leads to:

Possible outcome 2: Begin by setting a = 2.
Carrying out the linear algebra leads to:

4-day: 1 match starts Day 1 and ends Day 5 (only option, known) 4-day: 1 match starts Day 1 and ends Day 5 (only option, known)

3-day: 1 match starts Day 1 and ends Day 4
2 matches start Day 2 and end Day 5
2-day: 1 match starts Day 1 and ends Day 3
2 matches start Day 2 and end Day 4
4 matches start Day 3 and end Day 5
1-day: 1 match starts Day 1 and ends Day 2
2 matches start Day 2 and end Day 3
2 matches start Day 3 and end Day 4

3-day: 2 matches starts Day 1 and ends Day 4
1 match starts Day 2 and ends Day 5
2-day: 1 match starts Day 1 and ends Day 3
1 match starts Day 2 and ends Day 4
5 matches start Day 3 and end Day 5
1-day: 0 matches start Day 1 and end Day 2
4 matches start Day 2 and end Day 3
1 match starts Day 3 and ends Day 4

2 matches start Day 4 and end Day 5 (only option, known) 2 matches start Day 4 and end Day 5 (only option, known)

Matches accumulated (thought experiment)

14

After Day 1

10
8
6
4
2 .
0

After Day 2

W Sequence possility 1

m Sequence possibility 2

After Day 3 After Day 4

The under-constrained system means that more than 1 result for accumulated matches for
intermediate days within the study (as specified).

Figure 23. Demonstration that more than one possible outcome is possible for the thought experiment described.



The two different temporal sequences shown can satisfy the same constraints (number of matches
given each day, number of matches existing and the end, and censorship times consistent with what is
given by a Kaplan-Meier table for the time period). Thus, more than one possible distribution of matches
may exist. Moreover, consider that if yet another day were added to this thought experiment, the
number of variables would increase by 5. Referring to Figure 20, one would need to account for Day 1 to
Day 6, Day 2 to Day 6, Day 3 to Day 6, Day 4 to Day 6, and Day 5 to Day 6. However, only two added
constraints would be required: one equation for the additional time-interval, and a second to account
for the number of matches initiated on the new day. So even more time-wise distributions of matches
are possible. As the number of days increases further (e.g., to 44), the number of possible distributions
of outcomes increases multiplicatively.

This exercise undergirds the statements about the limitations of Kaplan-Meier tables carefully drawn out
in the literature. A recent article by Rosen et al. expounds upon the issue central to the present
discussion, as follows: “Despite widespread use of the Kaplan —Meier method, little attention has been
paid to the proportion of participants censored over time... Few (trials) if any, disclose the number of
patients censored at each time interval. Therefore, little is known about the pattern of censoring... In
2018, the Lancet Oncology editors mandated publications presenting Kaplan-Meier plots to include the
number of censored patients at each time interval.”*! An example of the basis of these statements, and
the decision made by the Lancet Oncology editorial committee, is well illustrated herein. The two
different histograms of matches, shown in Figure 8 and Figure 16, leads to the difference in ‘expected
outcome’ when the combined effects of informative censoring and temporal delays in outcomes are
taken into account. The combination of an initial list of when matches are formed and a Kaplan-Meier
life table is insufficient for assessing a bias which is affected by time in an absolute sense, as is the
situation depicted herein.

There is however, some helpful information which can be gleaned from the Kaplan-Meier tables.
Consider once more Figure 22 and note the two lines specified as the ‘only option’ for matches in the
left column. If one considers the last line of the various Kaplan-Meier tables corresponding to the
longest (44-day) differential in the Dagan et al. supplement, it can be seen that about 500-600 matches
entered into the trial on Day 1 (depending on the precise table) persisted to the end of the study period.
Estimating the Day 1 matches as about 2,000 would mean that 25-30% of those who enter the study on
Day 1 remain through the trial. In the two examples given herein, the values are considerably lower (less
than 5% for both the neutral case and the optimized case). With specific reference to the present study,
one might conjecture that this discrepancy might be due to the nature of the population given the
vaccine on Day 1 of the trial. For example, if those individuals who were relatively young and healthy
(e.g., government or business leaders and their families) were given the vaccine on Day 1 in order to
encourage participation by others, one might expect that matches for those individuals to be more likely
to remain unvaccinated throughout the 44-day period. This approach toward reconciliation is difficult to
extend to time delays of 2 days to 43 days, for the reasons depicted in Figure 22 and Figure 23.

This difference suggests that a better way of quantifying the bias using a null vaccine approach would be
to include a more complete representation of information for both the Day that a match is formed along
with the Day it is censored, for all combinations. For example, how many matches were formed on Day 5
were subsequently censored on Day 6 and, for example, on Day 22? From a full compendium of data,



one would not only be able to answer that question, but would also be able to compute with certainty
how many matches formed on Day 5 were still uncensored by, say, Day 23. If this data were made
readily available to researchers, it would enable a direct computation of the fraction of individuals who
entered the study on, say, Day 5 and who remained on Day 23. As such, this would be a preferred
method of determining values in Column 11 of the spreadsheets of Figure 9 and Figure 15, which by
necessity herein relied on assumptions and probability laws.

The Kaplan-Meier tables from Dagan et al. also provide an interesting and insightful detail if one
considers the 1-day delay time. Analogous to the line in Figure 22, it can be seen than anyone who
entered the study on the last day would end up in this group. If one considers the number of
symptomatic infections for both vaccinated and unvaccinated groups censored after only 1 day (p. 49,
supplemental material), one can see that 227 symptomatic Covid-19 infections were counted for the
unvaccinated group whereas only 90 symptomatic infections were counted for the vaccinated group.
This excerpt of the Kaplan-Meier table is shown in Figure 24. The red-outlined boxes indicated the 1-day
differential.

This large difference diminishes as the time-delay represented in the Kaplan-Meier life table increases.
By a 7-day differential, the number of symptomatic people in the vaccinated group exceeds that of the
unvaccinated group (195 to 190, as indicated by the blue-outlined boxes). The initial difference (227 vs.
90) is incompatible with the notion that the vaccine has no effect in only one day. One logical
explanation is that the low value on Day 1 for the vaccinated gorup could be a consequence of the rule
that only those without Covid-19 symptoms may receive the vaccine.

Main Analysis
Unvaccinated Vaccinated
Discrete Discrete
P Time b Time
Time Numberat =~ of Hazard Number Cumulative | Numberat of Hazard Number Cumalative | Number Nt
(Days) Risk Ev per  Censored Incidence Risk per  Censored Incidence at Rusk 1
ents Events
100,000 100,000
Svmptomatic SARS-CoV-2 Infection
I 1 I 596618 227 38 39287 0.000 596618 I %0 I 15 39277 0.000 526877
2 557104 2 40 32773 0.001 557251 116 bl 32769 0.000 515683
3 524109 199 38 27455 0.001 524366 150 36 27482 0.001 505725
4 496411 158 40 25910 0.002 456634 154 31 25506 0.001 498817
5 470303 204 43 29775 0.002 470634 193 41 29762 0.001 491683
6 440324 179 41 26377 0.002 430679 165 37 26374 0.002 475330
413768 46 27743 0.003 414140 195 47 27720 0002 | 468974

Figure 24. Excerpt of Kaplan-Meier life table from Dagan et al. Supplement, p. 49: symptomatic Covid-19 for time differences of
1 through 7 days. (permission to reproduce requested)

This raises a different, but arguably even more significant, issue from the delayed censoring discussion.
To perform a fully fair comparison, both the vaccinated and unvaccinated groups should enter the trial
with the same level of symptom occurrence. Since those who enter the vaccinated group are symptom-
free the day of entry, it is essential that only those who are symptom-free should be allowed to enter
the unvaccinated group as part of a match. The Day values in the Kaplan-Meier table of Figure 24
strongly suggests that Dagan et al. allowed unvaccinated people with symptoms to be matched with
vaccinated individuals who were free of symptomes. It would be interesting to know how many of the



227 symptomatic infections in the unvaccinated group correspond to those who entered the study on
the last day (calendar Day 43) of the study period.

If symptomatic people are entered the unvaccinated arm, they cannot roll out of it by attaining a
vaccination. Since some with symptoms progress to more serious events, the increased values in the
unvaccinated group signified by the one-day differential could be quite impactful and may permeate
other aspects of the results. This consideration only reinforces how important it is for researchers to
contemplate the ramifications of the CDC rule that vaccinations are permitted only for those who do not
present Covid-19 symptoms. This is especially important to factor into analyses in which consider data is
collected over a compressed time period.

Although the nature of the rolling cohort exacerbates the bias, this problem may be present to some
degree in other studies conducted on Covid-19 vaccines. Start first with a thought experiment which
uses a null vaccine as a basis for comparison: suppose a study has two groups which are unvaccinated
and are tracked for symptoms from 1 February to 30 April with assumed constant infection rates over
time. For Group 1, it is known that each individual is free of Covid-19 symptoms on 1 February. For
Group 2, it is known that each individual is free of Covid-19 symptoms on both 1 February and on 1
March. Would it not be reasonable to expect that the percentage of people who experience symptoms
by 30 April would be higher for Group 1 than for Group 2? Likewise, if individuals- who must be free of
symptoms when vaccinated- are exposed to the vaccine on 1 March and tracked through 30 April, it
would be more appropriate to compare the outcome to Group 2, not Group 1. In a similar vein,
depending on the study, one must also consider that some individuals may not report symptoms until
after the follow-up is concluded. So even if the same time difference is considered, a discussion of how
bias is either eliminated or addressed should be included when outcomes for early time periods are
compared to outcomes for later time periods.

Now examine a recently published study by Jara et al., which included clear and precise statements of
the model assumptions in their associated supplementary material. One statement reads: “The chance
to get the vaccine is the same for everyone in the time-predictor-dependent risk set is the same (sp). We
think this is also a valid assumption for our analysis because the vaccination scheme was primarily based
on individual’s age.” 2 One outcome described in their article is reproduced in Figure 25 and
demonstrates an apparent increase in Covid-19 cumulative incidence when one dose of the two-dose
vaccine studied (Sinovac) is administered but then a decrease in cumulative incidence of Covid-19 when
two doses are administered. Is it possible that the restriction of the second dose vaccine to only those
free of Covid-19 symptoms might lead to a selection bias due to informative censoring which favors the
administration of two doses of the vaccine?
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Figure 2. Vaccination Rollout and Crude Cumulative Incidence of Covid-19
in the Study Cohort.

Panel A shows the pace and coverage of the vaccination program among
persons who received both doses of vaccine (first and second doses shown
separately) or only one dose during the study period (February 2 through
May 1, 2021). Panel B shows the crude cumulative incidence of Covid-19
during the study period among unvaccinated persons, among persons who
had received only one dose of vaccine, and among persons who had re-
ceived both doses of vaccine. The relatively high cumulative incidence of
Covid-19 in the one-dose group should be interpreted with caution. As
shown in Panel A, this group initiated vaccination approximately 40 days
after the beginning of the vaccination campaign on February 2, 2021.
Therefore, the incidence curve includes all cases that occurred from before
vaccination up to 13 days after receipt of the first dose. Shading on the
lines indicates 95% confidence intervals.

Figure 25. Reproduction of Figure 2B of Jara et al. (ref. 12) demonstrating that one dose of Sinovac appears to increase the
cumulative incidence of Covid-19 while two doses appear to reduce the cumulative incidence of Covid-19.

A second example of an apparent increase in covid-19 cases after the first dose of vaccine (Pfizer-
BioNTech BNT162b2) is provided by Bernal et al (ref. 6). The odds ratio is above unity within the time
within which a second dose might typically be administered. Therefore, it seems reasonable that a
second dose would not be administered to patients who, for whatever reason, are most likely to
experience a confirmed case. Is it possible that this result might also be influenced by a selection bias
due to informative censoring, which biases toward a perceived increased vaccine efficacy for those hwo
receive two doses of vaccine?

Many have attributed relatively disappointing performance of the vaccines in real-world scenarios,
compared to research trials, either to the occurrence of new variants or to declining vaccine
effectiveness in time. Is it possible that an important contributor to this discrepancy is the “neglected
cause of bias” (as phrased in ref. 4) in favor the vaccine for many studies?
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Fig 2 | Adjusted odds ratios for confirmed cases of covid-19 by interval after vaccination with Pfizer-BioNTech
BNT162b2 before 4 January 2021 in those aged 80 years and older

Figure 26. Reproduction of odds ratio from ref. 6 showing that one dose of Covid vaccine leads to an apparent increase in cases
through the first 20 days after vaccination while two doses lead to an apparent benefit.

The apparent uptick in Covid cases after one dose of vaccine demonstrated in these two examples (Jara
et al. and Bernal et al.) raise another important question. Dagan et al. reported 2,389 symptomatic cases
within the vaccinated group. Surely, many of those who were experienced symptoms prior to receiving a
second dose, yet the article does not detail how those individuals fared compared to either the
unvaccinated group or the fully vaccinated group. Is it possible that the authors might have chosen the
phrase, “For each person, follow-up ended at the earliest of the following events: occurrence of an
outcome event...” in order to allow the termination of follow-up once Covid-symptoms prevent an
individual who has received one dose of vaccine from obtaining a second dose? If not, why would the
authors avoid stating the condition as “occurrence of Death due to Covid-19” since follow-up would
surely continue for all other outcomes?

Was the phrase “occurrence of an outcome event” chosen specifically to obscure how those who
experience symptoms and other outcomes after a single dose of vaccine fared in the study? In other
words, did follow-up end prior to more serious outcomes for those individuals who received one dose of
vaccine. One might rationalize that this approach would simplify the analysis to focus on “unvaccinated”
compared to “fully vaccinated.” However, such a choice would lead to serious ramifications with respect
to selection bias due to informative censoring.

Summary and conclusions

A very simple model demonstrates that the “selection bias due to informative censoring” can play an
outsized role, influencing how one should interpret data in Covid-19 vaccination studies, especially
those employing a rolling cohort. The bias originates from a very simple reason: People experiencing
symptoms of Covid-19 are ineligible to be vaccinated.



The approach to demonstrate how one could estimate of bias for the rolling cohort described in the
New England Journal of Medicine article by Dagan et al. utilized the concept of a “null vaccine” along
with several very simple assumptions. The exercise included: (1) an assumed time-wise distribution of
those rolling out of the unvaccinated cohort (not provided by Dagan et al.), (2) the number of newly
symptomatic people on each day was assumed to be proportional to the number of people in each
cohort with the total unvaccinated people who become symptomatic serving as a de facto calibration
setting, and (3) a fixed 18-day delay between symptom appearance and death for the relatively small
fixed percentage of people who are symptomatic with Covid-19 with each symptomatic individual
having the same odds of dying. The two proportionality constants are selected to achieve values for the
unvaccinated persons reported in Figure 2 of Dagan et al. This process was repeated for a second
assumed ‘optimized’ time-wise distribution and the same assumed 18-day delay between symptom
appearance and death for the (small) fraction of those who experience Covid-19 symptoms. A third
example demonstrated the effect of an age-associated hazard ratio between those who enter the study
early in the study period and those who enter later is applied.

The outcome of these three examples demonstrates that the selection bias due to informative censoring
should be explored more deeply for Dagan et al. For the ‘neutral’ distribution, the estimated expected
number of deaths under the assumptions given for the “null vaccine” worked out to be 19.3, compared
to the 32.0 for the unvaccinated group. In other words, the “statistical rule” that only those who are free
of Covid-19 symptoms can obtain a vaccine leads to a 40 percent reduction in the expected number of
deaths implied by the “unvaccinated” label.

Moreover, the choice of time-wise distribution of those rolling out of the unvaccinated cohort (due to
receiving the vaccine) strongly affects the expected number of deaths from the “null vaccine” in the
particular rolling cohort described by Dagan et al. With the assumptions described herein, the value
would be reduced from 32 to 12.0, as demonstrated in the second example. In turn, one could
approximate vaccine effectiveness for preventing death over a 44-day period after vaccination as [1-(9
actual deaths/12.0 expected deaths)] = 25%. Interestingly, these two values are somewhat close to the
values found by using the data in the supplemental material of Dagan et al. depending on whether one
“counts” the 7 additional deaths reported in the unvaccinated group there [leading to 39-20)/39 = 49%]
or rather in the vaccinated cohort [leading to (32-27)/32 = 16%)]. This outcome is consistent with
Campigotto and Weller, who found that the bias depends heavily on proportion of individuals who are
censored.

Campigotto and Weller also found that hazard ratio influenced the bias in a secondary sense.> Such an
effect was explored herein using an age-adjusted approach. Approximately twice as many individuals
over age 60 were vaccinated in the first 14 days of the trial compared to the number vaccinated later
and because age plays an outsized role in whether a symptomatic person with Covid-19 survives. To
model this effect, a factor of 2 was applied to compute the number of deaths of symptomatic individuals
for those who entered the trial in the first 14 days. This age-adjusted model of the hazard ratio,
combined with the ‘optimized’ time-wise distribution, led to an outcome wherein the entire difference
of 32 deaths for the unvaccinated group and 9 for the vaccinated group could be explained only by
selection bias due to informative censoring. In other words, the set of circumstances and assumptions
laid out in this the example would lead to a determination that the actual vaccine had zero efficacy.



The use of a “null vaccine” assumption to check for bias, using a statistical ‘rule’ that only those free of
Covid-19 symptoms, might also be useful outside the scope of the rolling cohort utilized by Dagan et al.
This bias is likely to play an outside role when (1) the overall study time is compressed, (2) vaccines are
administered throughout the study period, and/or (3) two doses of vaccines are required — meaning that
the individual in the test group must be Covid-symptom free at two specific times during the test period.
Alternatively, one could take measures to ensure that only an unvaccinated subgroup -free of Covid-19
symptoms at the time at which the vaccination occurs for the test group- is used as the control. In either
case, the focus should be placed on ensuring comparisons are conducted on a fair basis.

In a narrow sense, a key conclusion of this effort is that the research community would be served if
Dagan et al. provide the time-wise distribution of those rolling out of the unvaccinated control cohort.
This exercise demonstrates that there is not simply a possibility, but rather a mathematical certainty,
that the data in arguably the most impactful figure of the article (2E, showing number of deaths in each
group) is biased in favor of the vaccine. While the authors analyze the data in a fashion which avoids a
direct comparison of the two values (32 vs. 9), they also state only that “any such bias was small”
without sufficient quantification of what is meant by the word “small.” The present exercise focuses on
‘death’ as an outcome, but any outcome with a delay from symptom origination, such as severe Covid-
19 or hospitalization, would also be affected by this same bias.

Clearly, the level of selection bias due to informative censoring depends on data which has not been
released. It is counter-intuitive that a widely referenced journal article on the subject of Covid-19
vaccine effectiveness (Dagan et al.) does not disclose the total number of hospitalizations and deaths
due to Covid-19 which occurred during the time period of the study. Moreover, the total number of
hospitalizations and deaths from all causes is withheld. Others have addressed this overarching ethical
concern in a much broader sense.®

Clearly, data transparency is essential, both for thorough analyses and academic debate. Unfortunately,
many of the most consequential works related to addressing the Covid-19 crisis maintain significant
limitations on data availability, and perhaps that is the most important point to be made in the present
discussion. Academic journals and government bodies should require full transparency of medical
studies, especially for work related to Covid-19. If transparency cannot be ensured by journals (or by
other entities), then the research community, governmental bodies, and the general public are
cautioned to avoid relying upon them when making decisions about health and safety.
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