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IMOTHEP: towards hybrid propulsion
for commercial aviation
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Project's context

European Research and Innovation Framework Program H2020

Call 2019 “Mobility for Growth”
Future propulsion and integration: towards a hybrid/electric aircraft

¢ Background
& Aligning commercial aviation with the COP21's target: AT < 2°C

= Critical need for disruptive technologies beyond incremental technology improvements

¢ Challenge
® Developing hybrid-electric and full-electric propulsion and integration technologies

® Developing a roadmap for key enabling technologies

IMOT IAIEIR

EEEEEEEEEEEEEEEEEEEEEEE



IMOTHEP in figures

& Four-year research project

& 33 partners
©® 9 European countries
® 6 international partners from Russia and Canada

@ 1311 person.month effort (~27 full time equivalent)

¢ 10.4 M€ EC funding + 7,8 M€ contribution of international partners
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IMOTHEP's top level ambition

Imhotep - Egyptian architect, doctor and philosopher
A great and innovative builder...

"Investigation and Maturation of Technologies for Hybrid Electric Propulsion™

¢ Achieving a key step in assessing potential benefits of HEP for emissions
reductions of commercial aircraft

& Building the overall European development roadmap for HEP

¢ First level objectives

o
o
o

4

Identifying HEP architecture & aircraft concepts benefiting from HEP
Investigating technologies for HE power train architecture and components

Analysing required tools, infrastructures, demonstrations and regulatory adaptations for
HEP development

Synthesising results through the elaboration of the development roadmap for HEP
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Hybrid electric propulsion

A broad variety of possibilities and concepts...
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IMOTHEP's overall approach

Investigating HEP energy system

& In close connection with propulsion integration in the vehicle
©® Specifications for power chain components derived from conceptual design of aircraft concepts

¢ At a meaningful scale
©® Representative of technological challenges in the power range of commercial aircraft (3 - 80 MW)

& With a major effort on investigating technologies for hybrid electric power train

& Synthesised through integrated aircraft performance analysis
® To identify technological gaps and key enablers
® Architectures and configurations best benefiting from HEP

® To issue a roadmap for HEP development
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IMOTHEP's methodological approach
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Project's targets

¢ Reference missions
® Short/medium range: minimum segment for a significant impact on aviation emissions
® Regional: more accessible, potential intermediate step toward SMR

40 Mach 0,4 600 nm (typ. 200 nm)

® EIS: 2040+

& Technological scope
® Central focus on thermal hybrid with drop-in fuel
+ some investigations on fuel cells at conceptual level (aircraft + fuel cell specific issue for aircraft)
& Main focus on conventional conductivity
+ Exploration of superconductivity as a potential enabler

& Performance target: 10% more emissions reduction than Clean Sky 2 targets for 2035
® Regional: -45% to -50% fuel burn
6 SMR: -40% fuel burn } compared to 2014 technology
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Project's suporting configurations

® Build-on / complement existing studies (e.g. CS2, CENTRELINE,etc.)
©® Explore a range of architectures
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Project's technical scope

IMOTHEP

Vehicle design and
overall integration

Conceptual design
Integration /optimisation
Vehicle aerodynamics and controls
DEP aero-propulsive integration/ optimisation
Thrust/drag bookkeeping

Performance analysis
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Energy chain

Electric architecture
Energy generation
Energy storage
Power electronics
Electricengines
CEM, thermal management,
Arcing

Superconductivity

Fuel cells

Developtroadmap
& demonstration

Key enabling technologies
Technology gaps
Demonstration needs
(ground demonstrations,In-flight demo)
Tools & Test facilities
Technology roadmap
Regulatory framework

TRL 2 to 4 conceptual studies
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Vehicle design

& Top level requirements from airframers

AIRBUS & LEONARDO

AIRCRAFT

©® First design loop achieved

o

O

)
o

Based on projection of components’ performances
to 2035

4 initial configurations defined with consistent
technology assumptions

Initial performance evaluated (no optimisation)

Specifications / targets for electric subsystems
issued

& Next steps

o
o

O

Refined design loop with higher fidelity model

Inclusion of the outcomes of first component
design studies and aeropropulsive integration
studies

Optimisation of aircraft configurations
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Electric waste heat management
faturing strategically localised heat
rejecfon on aircraft wetted surfaces

Propeller slipstream
—
-

Integrated parallel hybrid
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Vehicle initial design (€ Bautaus uttr

Electric waste heat management
featuring strategically localised heat
rejecion on aircratt wetted surfaces

Conservative regional: parallel hybrid
— Based on ATR 42-600 adapted to IMOTHEP

TLAR
Propeller slipstream .
— — Battery energy used for mechanical and

cycle assistance to two turboshaft engines
~3600 kg batteries

550 kW assistance /engine
540 DC voltage

- Forced convection cooling via propeller
slipstream over wing wetted surfaces

—

Integrated parallel hybrid

power plant system > Indicative preliminary

design values

> Optimisation of the hybridisation
strategy is key
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Vehicle initial design

DLR

Radical regional: turboelectric + distributed propulsion
« 6 electric engines (300 kW each)

« 2 turboshafts driving 2 electric generators

« 800V DC voltage

> Increased propulsive efficiency thanks to DEP
> Mass reduction of electric power chain is key
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Vehicle initial design ONERA

THE FRENCH AEROSPACE LAB

Conservative SMR: turboelectric with DEP
(DRAGON configuration)

« 24 electric fans, 820 kW each
« 2 turbogenerators : 2 x 11 KW
« 3000V DC voltage

> Increased propulsive efficiency thanks to
DEP

> Performance dependant on the efficiency of
24 electric fan distributed at trailing edge electric machines
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Vehicle initial design

Radical SMR: turboelectric + DEP + BLI + BWB
« 18 electric fan, 1100 kW each

« 2 turbogenerators : 2 x 11 KW

« 3000V DC voltage

> Need for further shape optimisation & higher fidelity
analysis for BLI

> Significant influence of turbogenerator efficiency
(PSFC)
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Aeropropulsive integration studies

> Key for a meaningful evaluation of the benefit of HEP
® Benefit through careful optimisation of efficiency and airframe / propulsion integration
® Need for a precise modelling for a precise evaluation of benefits
©® Applied to Radical configurations

¢ Design and integration of propellers for distributed propulsion "
® Design of propellers

© Propellers location on the wing _

. . . . . On-going :

& Design and benefit evaluation of wing-tip propellers low fidelity method
for Loop 1

& Aerodynamic optimisation of BLI integration for BWB >

©® Aerodynamic integration Next step:

& Impact on fan design and performances D(T;Cj)i:)eg analysis in

& Thrust / drag bookkeeping for BLI configuration

& Noise assessment (post-design)
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Aeropropulsive integration studies § saFRAN (<C'RA

Centro Italiano Ricerche Aerospaziali

On the Regional-radical configuration :

= Propeller conceptual design studies for orienting
parametric design space exploration

— Optimization for propeller efficiency / blowing
efficiency

— Wing tip propellers
— Including wing interaction

:
:
5
E

= 2D CFD of power-on / power-off wing behavior
— Including high lift devices
— For low speed and high speed conditions

= Surrogate model of propulsive efficiency

— Taking into account propellers number, high lift
devices, propellers performances, wing geometry and
airfoils

— Covering propellers slipstream effect on wing
performance in both cruise and low speed conditions
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On the SMR-radical configuration :

= Accounting for BLI effect in propulsive performance

» Set up of a low fidelity toolchain, based on parallel
compressor approach and power balance methods

= Design of ducted thrusters under BLI effect | Geometry 3D view

> Preliminary parametric exploration of top level sizing
parameters (fan pressure ratio, rotational speed ...) to be
linked with electric machine performances

» Inclusion of airframe integration constraints (available
space, integration of high lift devices ...) and electrical
chain design features (motors rotational speed ...).

= Parametric inlet geometry models for numerical
optimization in order to achieve best coupling
between S-duct BLI inlet and ducted thruster

Fan blade OGV to add

Distortion averaged
upstream the blade

Propulsor ducts Nacelle profile General arrangement
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Electric architecture

& Scope : Electric architecture definition and management
® Components selection and interfaces
® Power management & fault analysis
® Thermal management
® EMC and discharges

¢ Achieved during Loop 0 (“conceptual design”)
® Collection of technology assumptions
® Preliminary architecture design for turboelectric propulsion chain
© Specifications for electric components

¢ On going:
® Thermal management architecture definition
® Failure cases analysis (in connexion with configuration design)
©® Detailed SMR architecture analysis, extension to REG architectures
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- - University of
Electric architecture Strathctyde

DLR Glasgow

o | c e Al o | c & Ak Architecture for Conservative SMR

o i i e T T o T =y e e e e e e o Identification of itical fail
—_— === A e s e we o entitication or Critical raliure cases
1 EPU bus inoperative and one engine
inoperative

& Sizing of components for max normal
operation requirement + oversizing
margin

& Safety & reliability analysis :

--------------------- — stochastic model for reliability, availability and
repair, mainly for supply failure

— Low probability of aggregate EPUs failures, in
line with safety requirements.

ngnterfaiewnthenergv 3 ,-' . _ — Individual failures of a single EPU might not
' Left Engine Right Engin be uncommon
IMOTRIEIR
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Hybrid electric power train

» Technology investigation of all the components of the power train
& Energy sources

® Turbogenerator : turbine architecture and sizing, generator design, integration & dynamic aspects
€® Batteries: coin-cell demonstrator and modelling of all-solid-state Li-metal anode battery

® Fuel cells: investigation of fuel cell technologies for a commercial aircraft environment

& Electric machines
® Topology studies and pre-design
® Interaction of electric machines and power electronics

& Power electronics
® Investigation of Power Electronics topologies and pre-design of inverters and converters
® Inverter control concepts for optimized motor application
® Power distribution : choice of DC voltage, high voltage components and thermal release

& Superconductivity: exploration of potential benefits on electric machines, power electronics and
distribution
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Smith Chart
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Energy generation -

& Turbomachinery i e
® Component sizing and performance DB s e it
maps for the 4 concepts REG-CON assisted e T S
& Electric generator turboshaft (1.2 MW class) REG-RAD turbine

operating domain

dTisa = OK and PWel = -5.000MW

€® Surface mounted Permanent Magnets
Synchronous Machine

© For regional : 1.25 MW power class,
25000 rpm

e F MR : 11 MW | -
1%530 rpm power class, & SMR-CON turboshaft

(10 MW class)
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¢ Batteries
& Characterization of coin cell
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& ASSB parameters optimization modelling studies
I%2000"’)
AITAUSTRIANINSTITUTE ﬁ(IT G ITPAerO é In-ma.cath.,de.
AVIO AETO>” Coin cell

IMOTRIER clectrolyte o

= UN|VERS|TE Battery Width / pm
““““““““““““““““““““““ DLR @ Baunaus Lultans @ns LORRAINE 5C battery parameters



Electric power unit

® Requirement identification and refinement
from aircraft and electrical system
concept

© First applied to SMR turboelectric concept

® Preliminary requirement allocation to the
different electrical component that
compose the powertrain

©® Electric machines, EWIS, power electronics

& First evaluation of the electrical
components key characteristics

©® Initial sizing to be fed back to aircraft level
©® Superconductivity initial evaluation

3KV

® Integration of the electrical components
predesign in preliminary EPU concept
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Conclusion : the ambition of IMOTHEP

& A consolidated estimate of HEP potential
® Aircraft concept & performance built on consolidated technology data for power train components
©® Harmonised technology assumptions and design methodology
® Key enablers & techno gaps identified from components' performance integration at aircraft level

& A holistic approach of electric systems integrated in a propulsion architecture
Preliminary solutions for components in the targeted range of performances

Consolidated components' model
Integration in a whole electric architecture

2 2 9 9O

Analysis of failure cases, EMI, electric discharge

& A roadmap for HEP development
© R&T priorities with timely objectives and milestones
® Needs for tools, facilities and demonstrations for HEP maturation
® Preliminary analysis of needs for certification adaptation
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The IMOTHEP team
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THANK YOU !

Contact points for any question:

© Project Coordinator
© Philippe NOVELLI (ONERA)
© Email: philippe.novelli@onera.fr
© Office: +33 1 80 38 69 14

¢ PMO

© Peggy FAVIER (L-UP)

© Email : peggy.favier@I-up.com
© Office: +33 4 78 41 44 47

® Mobile: +33 6 7564 10 78

© www.imothep-project.eu

IMOT IAIEIR

EEEEEEEEEEEEEEEEEEEEEEE

.\@

.

kY

N
K

27


mailto:philippe.novelli@onera.fr
mailto:peggy.favier@l-up.com
http://www.imothep.eu/

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 875006

EEEEEEEEEEEEEEEEEE




