

IMOTHEP: towards hybrid propulsion for commercial aviation

Project Overview

Ph. Novelli, ONERA - Project coordinator

AIAA Aviation 2021 Forum- 02/08/2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

Project's context

European Research and Innovation Framework Program H2020

Call 2019 "Mobility for Growth"

Future propulsion and integration: towards a hybrid/electric aircraft

Background

- Aligning commercial aviation with the COP21's target: ∆T < 2°C</p>
- ⇒ Critical need for disruptive technologies beyond incremental technology improvements

Challenge

- Developing hybrid-electric and full-electric propulsion and integration technologies
- Developing a roadmap for key enabling technologies

IMOTHEP in figures

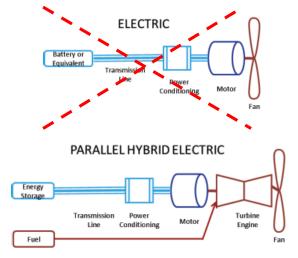
- Four-year research project
- 33 partners
 - 9 European countries
 - 6 international partners from Russia and Canada
- 1311 person.month effort (~27 full time equivalent)
- **10.4 M€ EC funding + 7,8 M€ contribution of international partners**

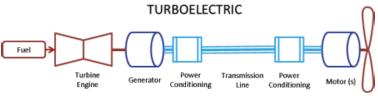
IMOTHEP's top level ambition

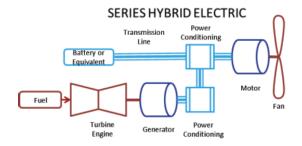
Imhotep - Egyptian architect, doctor and philosopher A great and innovative builder...

"Investigation and Maturation of Technologies for Hybrid Electric Propulsion"

- Achieving a key step in assessing potential benefits of HEP for emissions reductions of commercial aircraft
- Building the overall European development roadmap for HEP

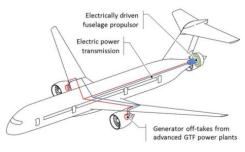

First level objectives


- Identifying HEP architecture & aircraft concepts benefiting from HEP
- Investigating technologies for HE power train architecture and components
- Analysing required tools, infrastructures, demonstrations and regulatory adaptations for HEP development
- Synthesising results through the elaboration of the development roadmap for HEP



Hybrid electric propulsion

A broad variety of possibilities and concepts...



Boeing Sugar Volt Electrically Assisted turbofan

CENTRELINE (H2020) BLI turboelectric tail fan

NASA Pegasus Parallel hybrid

NASA N3-X DEP + BLI + Superconductivity

EPS ECO150-300 Distributed propulsion

ONERA/SAFRAN Distributed propulsion Blown wing

IMOTHEP's overall approach

Investigating HEP energy system

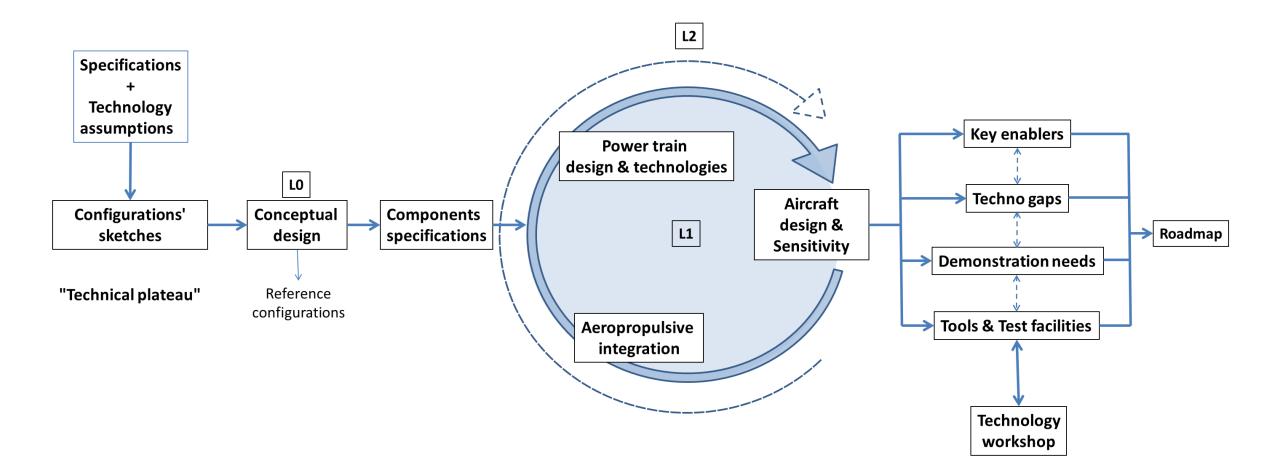
In close connection with propulsion integration in the vehicle

Specifications for power chain components derived from conceptual design of aircraft concepts

At a meaningful scale

Representative of technological challenges in the power range of commercial aircraft (3 - 80 MW)

• With a major effort on investigating technologies for hybrid electric power train


Synthesised through integrated aircraft performance analysis

- To identify technological gaps and key enablers
- Architectures and configurations best benefiting from HEP

To issue a roadmap for HEP development

IMOTHEP's methodological approach

Project's targets

Reference missions

- **Short/medium range:** minimum segment for a significant impact on aviation emissions
- **Regional:** more accessible, potential intermediate step toward SMR

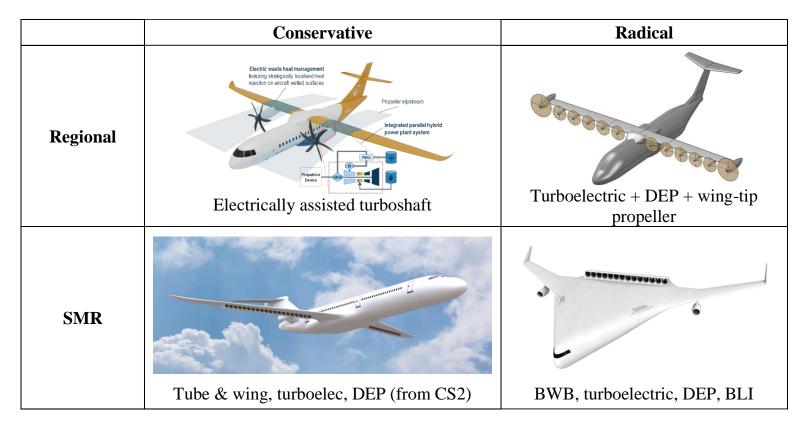
Mission	ΡΑΧ	Speed	Range
Regional	40	Mach 0,4	600 nm (typ. 200 nm)
SMR	150	Mach 0,78	>= 1200 nm (typ. 800 nm)

EIS: 2040+

Technological scope

- Central focus on thermal hybrid with drop-in fuel
 - + some investigations on fuel cells at conceptual level (aircraft + fuel cell specific issue for aircraft)
- Main focus on conventional conductivity
 - + Exploration of superconductivity as a potential enabler

Performance target: 10% more emissions reduction than Clean Sky 2 targets for 2035


- Regional: -45% to -50% fuel burn
- SMR: -40% fuel burn

compared to 2014 technology

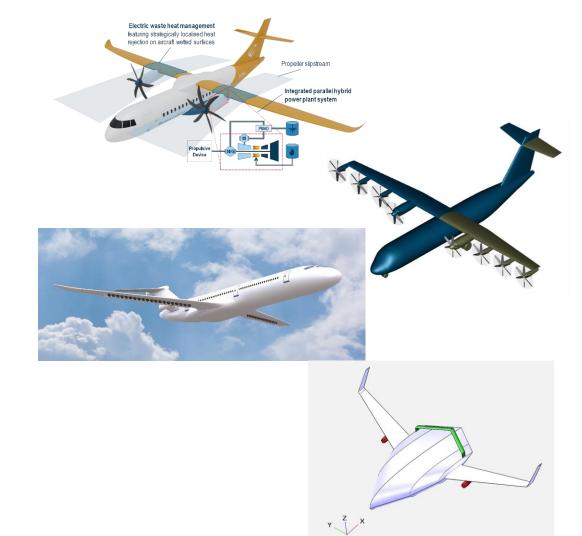
Project's suporting configurations

- Build-on / complement existing studies (e.g. CS2, CENTRELINE, etc.)
- Explore a range of architectures

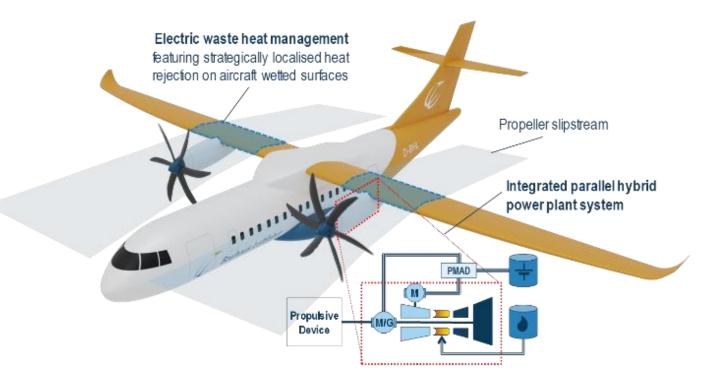
Project's technical scope

TRL 2 to 4 conceptual studies

Vehicle design


D Top level requirements from airframers

First design loop achieved


- Based on projection of components' performances to 2035
- 4 initial configurations defined with consistent technology assumptions
- Initial performance evaluated (no optimisation)
- Specifications / targets for electric subsystems issued

Next steps

- Refined design loop with higher fidelity model
- Inclusion of the outcomes of first component design studies and aeropropulsive integration studies
- Optimisation of aircraft configurations

Conservative regional: parallel hybrid

- Based on ATR 42-600 adapted to IMOTHEP TLAR
- Battery energy used for mechanical and cycle assistance to two turboshaft engines
 - Indicative preliminary design values

~3600 kg batteries 550 kW assistance /engine 540 DC voltage

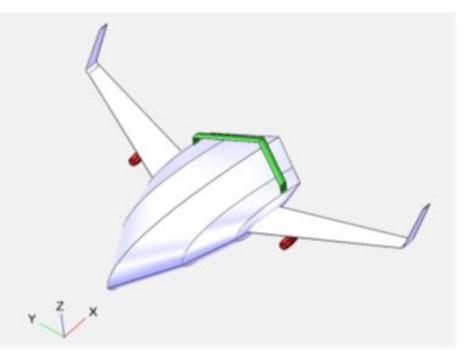
 Forced convection cooling via propeller slipstream over wing wetted surfaces

> Optimisation of the hybridisation strategy is key

Radical regional: turboelectric + distributed propulsion

- 6 electric engines (300 kW each)
- 2 turboshafts driving 2 electric generators
- 800 V DC voltage
- > Increased propulsive efficiency thanks to DEP
- > Mass reduction of electric power chain is key

Conservative SMR: turboelectric with DEP (DRAGON configuration)


- 24 electric fans, 820 kW each
- 2 turbogenerators : 2 x 11 KW
- 3000 V DC voltage
- Increased propulsive efficiency thanks to DEP
- Performance dependant on the efficiency of electric machines

Radical SMR: turboelectric + DEP + BLI + BWB

- 18 electric fan, 1100 kW each
- 2 turbogenerators : 2 x 11 KW
- 3000 V DC voltage
- > Need for further shape optimisation & higher fidelity analysis for BLI
- Significant influence of turbogenerator efficiency (PSFC)

Aeropropulsive integration studies

> Key for a meaningful evaluation of the benefit of HEP

- Benefit through careful optimisation of efficiency and airframe / propulsion integration
- Need for a precise modelling for a precise evaluation of benefits
- Applied to Radical configurations

Design and integration of propellers for distributed propulsion

- Design of propellers
- Propellers location on the wing
- Design and benefit evaluation of wing-tip propellers

Aerodynamic optimisation of BLI integration for BWB

- Aerodynamic integration
- Impact on fan design and performances

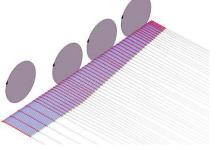
O Thrust / drag bookkeeping for BLI configuration

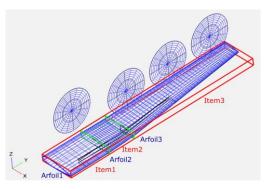
Noise assessment (post-design)

On-going : low fidelity method for Loop 1

Next step: Detailed analysis in loop 2

Aeropropulsive integration studies

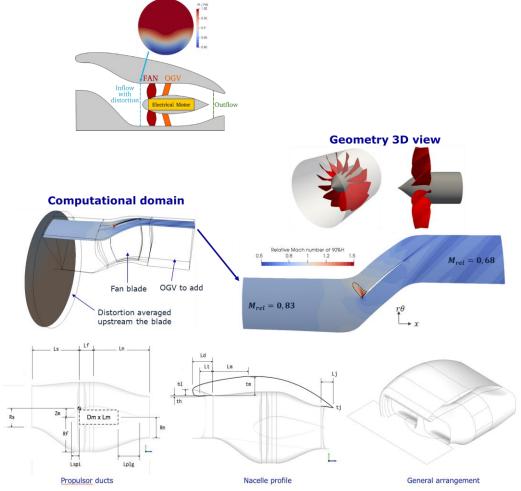

On the Regional-radical configuration :


- Propeller conceptual design studies for orienting parametric design space exploration
 - Optimization for propeller efficiency / blowing efficiency
 - Wing tip propellers
 - Including wing interaction
- 2D CFD of power-on / power-off wing behavior
 - Including high lift devices
 - For low speed and high speed conditions

Surrogate model of propulsive efficiency

- Taking into account propellers number, high lift devices, propellers performances, wing geometry and airfoils
- Covering propellers slipstream effect on wing performance in both cruise and low speed conditions

Aeropropulsive integration studies



On the SMR-radical configuration :

- Accounting for BLI effect in propulsive performance
 - Set up of a low fidelity toolchain, based on parallel compressor approach and power balance methods

Design of ducted thrusters under BLI effect

- Preliminary parametric exploration of top level sizing parameters (fan pressure ratio, rotational speed ...) to be linked with electric machine performances
- Inclusion of airframe integration constraints (available space, integration of high lift devices ...) and electrical chain design features (motors rotational speed ...).
- Parametric inlet geometry models for numerical optimization in order to achieve best coupling between S-duct BLI inlet and ducted thruster

Electric architecture

Scope : Electric architecture definition and management

- Components selection and interfaces
- Power management & fault analysis
- Thermal management
- EMC and discharges

Achieved during Loop 0 ("conceptual design")

- Collection of technology assumptions
- Preliminary architecture design for turboelectric propulsion chain
- Specifications for electric components

On going:

- Thermal management architecture definition
- Failure cases analysis (in connexion with configuration design)
- Detailed SMR architecture analysis, extension to REG architectures

Electric architecture

Architecture for Conservative SMR

Identification of critical failure cases

1 EPU bus inoperative and one engine inoperative

 Sizing of components for max normal operation requirement + oversizing margin

• Safety & reliability analysis :

- stochastic model for reliability, availability and repair, mainly for supply failure
- Low probability of aggregate EPUs failures, in line with safety requirements.
- Individual failures of a single EPU might not be uncommon

Hybrid electric power train

> Technology investigation of all the components of the power train

Energy sources

- Turbogenerator : turbine architecture and sizing, generator design, integration & dynamic aspects
- Batteries: coin-cell demonstrator and modelling of all-solid-state Li-metal anode battery
- Fuel cells: investigation of fuel cell technologies for a commercial aircraft environment

Electric machines

- Topology studies and pre-design
- Interaction of electric machines and power electronics

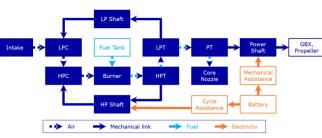
Power electronics

- Investigation of Power Electronics topologies and pre-design of inverters and converters
- Inverter control concepts for optimized motor application
- Power distribution : choice of DC voltage, high voltage components and thermal release
- Superconductivity: exploration of potential benefits on electric machines, power electronics and distribution

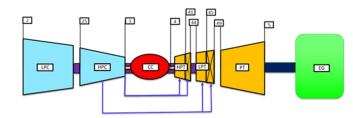
Energy generation

Turbomachinery

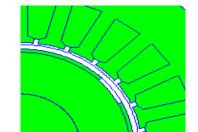
Component sizing and performance maps for the 4 concepts

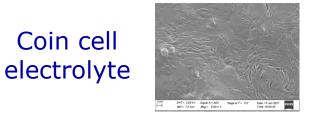

Electric generator

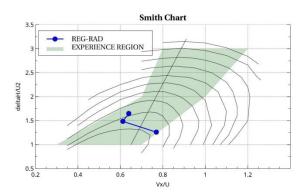
- Surface mounted Permanent Magnets Synchronous Machine
- For regional : 1.25 MW power class, 25000 rpm
- For SMR : 11 MW power class, 8-10000 rpm


Batteries

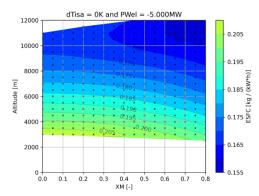
- Characterization of coin cell electrolytes
- ASSB parameters optimization

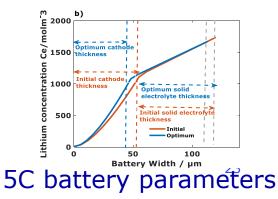

REG-CON assisted turboshaft (1.2 MW class)




SMR-CON turboshaft (10 MW class)

Generator modelling


Coin cell



REG-RAD turbine operating domain

SMR-RAD off-design studies

Electric power unit

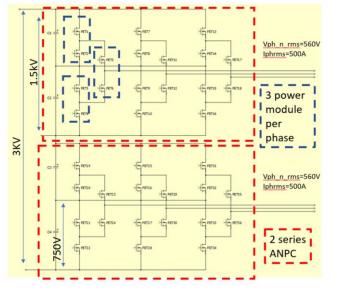
- Requirement identification and refinement from aircraft and electrical system concept
 - First applied to SMR turboelectric concept
- Preliminary requirement allocation to the different electrical component that compose the powertrain
 - Electric machines, EWIS, power electronics
- First evaluation of the electrical components key characteristics
 - Initial sizing to be fed back to aircraft level
 - Superconductivity initial evaluation

Integration of the electrical components predesign in preliminary EPU concept

University of

Nottingham

IK | CHINA | MAI AYSIA


Backiron

Tooth

Slot

Slot channe

cooling

SAFRAN

20p24s

f=1kHz

CoFe,SmCo

UNIVERSITÉ DE LORRAINE

> 220.0 203.8

187.5

171.3

155.0

138.8

122.5

106.3

Conclusion : the ambition of IMOTHEP

A consolidated estimate of HEP potential

- Aircraft concept & performance built on consolidated technology data for power train components
- Harmonised technology assumptions and design methodology
- Key enablers & techno gaps identified from components' performance integration at aircraft level

• A holistic approach of electric systems integrated in a propulsion architecture

- Preliminary solutions for components in the targeted range of performances
- Consolidated components' model
- Integration in a whole electric architecture
- Analysis of failure cases, EMI, electric discharge

A roadmap for HEP development

- R&T priorities with timely objectives and milestones
- Needs for tools, facilities and demonstrations for HEP maturation
- Preliminary analysis of needs for certification adaptation

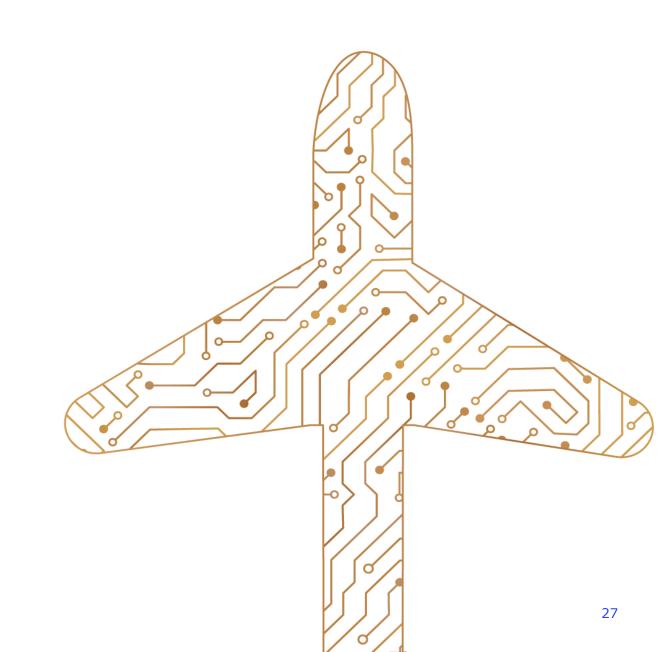
The IMOTHEP team

G E T T I N G * H Y B R I D * E L E C T R I C

THANK YOU !

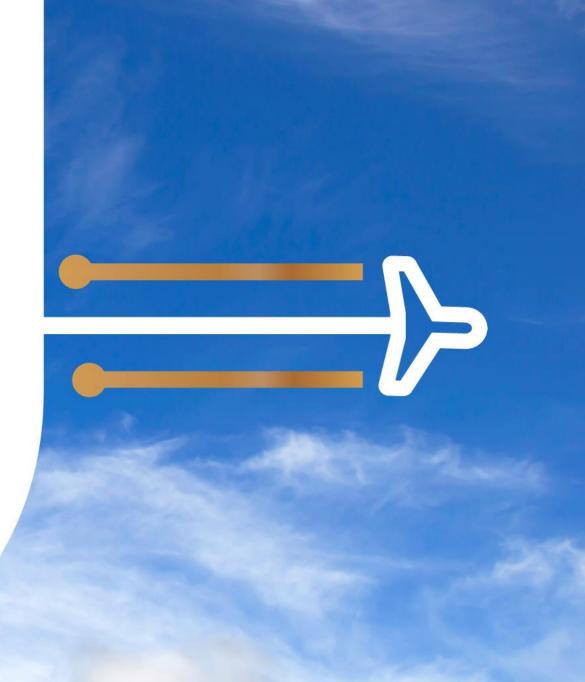
Contact points for any question:

Project Coordinator


- Philippe NOVELLI (ONERA)
- Email: philippe.novelli@onera.fr
- Office: +33 1 80 38 69 14

PMO

- Peggy FAVIER (L-UP)
- Email : <u>peggy.favier@l-up.com</u>
- Office: +33 4 78 41 44 47
- Solution Mobile: +33 6 75 64 10 78


www.imothep-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

