

Inter-calibration of HY-1B/COCTS Thermal Infrared Channels with MetOp-A/IASI

Mingkun Liu^{1,2}, Christopher Merchant², Lei Guan¹, Jonathan Mittaz²

1. Ocean University of China 2. University of Reading

GHRSST XIX Science Team Meeting

➢ HY-1B COCTS

- HY-1B satellite was launched in April 2007, operated by the National Ocean Satellite Application Center (NSOAS) of the State Oceanic Administration (SOA) of China
- The satellite operated in a near sun-synchronous polar orbit.
- The main payloads on board HY-1B were the Chinese Ocean Color and Temperature Scanner (COCTS) and Coastal Zone Imager (CZI).
- COCTS has thermal infrared split window channels for SST observations.
- ➢ MetOp-A IASI
- The calibration accuracy of IASI is stable and accurate.
- Due to its hyperspectral nature and high-quality radiance measurements, IASI can serve as the reference for in-orbit re-calibration of other instruments.

Instrument characteristics of COCTS and IASI

	COCTS	IASI
Spectral coverage	 8 visible near infrared channels (0.41-0.865μm) 2 thermal infrared channels (10.30-11.40 μm, 11.40-12.5 μm) 	8461 channels (3.6-15.5μm with a spectral binning of 0.25 cm ⁻¹)
Spatial resolution	1.1km (near nadir)	12km (near nadir)
Scan angle	$\pm 55^{\circ}$ from nadir	$\pm 48.3^{\circ}$ from nadir
Cross track scan samplings	1664	30 footprints (each containing 4 IFOV)

GHRSST XIX Science Team Meeting

research region

- ➤ In this study, we use IASI radiance as the reference to evaluate and correct HY-1B COCTS radiance of thermal infrared channels from 2009 to 2011 in the northwest Pacific.
- ➤ The data we used include the COCTS Level 1B radiance data provided by NSOAS and IASI Level 1C radiance data provided by EUMETSAT.

— Inter-calibration method —

Calculation of IASI-convolved radiance

- Generation of matchups
- Filtering of matchups

GHRSST XIX Science Team Meeting

– Inter-calibration method –

1. Calculation of IASI-convolved radiance

GHRSST XIX Science Team Meeting

GHRSST XIX Science Team Meeting

— Inter-calibration method –

3. Filtering of matchups

• Radiance nonuniformity within the IASI IFOV increases the spatial uncertainties of matchups.

• relative standard deviation \rightarrow quantify the homogeneity.

perimeter region → reduce the likelihood of time variable components.

the variations of COCTS minus IASI radiance difference against relative standard deviations of COCTS radiance

GHRSST XIX Science Team Meeting

(a)

Comparison of COCTS radiance with IASI-

b

-3

collocations number

0

2 number

tions

130

110

Channel 9

35

GHRSST XIX Science Team Meeting

4th - 8th June 2018, Darmstadt, Germany

- Comparison of COCTS radiance with IASI-

112

There is distinct striped noise with a pattern approximately repeating every four scan lines in COCTS radiance image, due to the inconsistency between four parallel detectors

COCTS channel 9 radiance COCTS channel 10 radiance

GHRSST XIX Science Team Meeting

- Comparison of COCTS radiance with IASI—

Difference among COCTS four detectors

Channel 9

Channel 10

GHRSST XIX Science Team Meeting

4th – 8th June 2018, Darmstadt, Germany

- Comparison of COCTS radiance with IASI-

time series plot of COCTS minus IASI radiance difference from 2009 to 2011

GHRSST XIX Science Team Meeting

- Comparison of COCTS radiance with IASI-

time series plot of COCTS minus IASI radiance difference from 2009 to 2011

GHRSST XIX Science Team Meeting

Linear robust regression:

$$L_{COCTS} - L_{IASI} = a \times L_{IASI} + b$$
$$L_{COCTS'} = \frac{L_{COCTS} - b}{a+1}$$

Different coefficients for 4 different detectors

> Different coefficients for 2 different periods

> 2/3 matchups for coefficients calculation and 1/3 matchups for validation

GHRSST XIX Science Team Meeting

-Validation of COCTS corrected radiance-

	Channel 9 radiance difference (mW m-2 cm sr-1)	Channel 9 BT difference (K)	Channel 10 radiance difference (mW m-2 cm sr-1)	Channel 10 BT difference (K)
	Bias Std.Dev	Bias Std.Dev	Bias Std.Dev	Bias Std.Dev
Before correction	-6.37 0.95	-4.08 0.50	-7.57 0.62	-4.76 0.39
After correction	-0.02 0.51	-0.01 0.33	-0.01 0.57	-0.01 0.35
CoCTS channel 9 minus IASI radiance (mW m ⁻² cm sr ⁻¹)	Channel 9	0 ¹ collocations number ⁴ ⁴ ⁴ ⁵ ⁶ ⁴ ⁴ ⁵ ⁴ ⁵ ¹	Channel 10 Channel 10 Channel 10 1 1 2 3 30 90 100 110 12 10	5 4 Jaquinu 2 angle 2 2 angle 2 1 0 0 1 1 0

GHRSST XIX Science Team Meeting

— Striped noise analysis ——

Channel 9

GHRSST XIX Science Team Meeting

— Stripe noise analysis ——

Channel 10

COCTS channel 10 corrected radiance (mW m⁻² cm sr⁻¹)

GHRSST XIX Science Team Meeting

— Stripe noise analysis —

Histogram statistics of local standard deviation (LSD) over 3by3 box

LSD peak values: Source radiance: 0.18 mW m⁻² cm sr⁻¹ Corrected radiance: 0.13 mW m⁻² cm sr⁻¹

LSD peak values: Source radiance: 0.41 mW m⁻² cm sr⁻¹

Corrected radiance: 0.11 mW m⁻² cm sr⁻¹

GHRSST XIX Science Team Meeting

COCTS source radiance: lower than IASI with relatively large biases strong radiance-dependence in the case of channel 9

The inter-calibration coefficients: linear robust regression individual detectors separately two periods separately

➤ COCTS corrected BT: channel 9 0.01K±0.33K channel 10 0.01K±0.35K radiance-dependence difference pattern is corrected stripe noise is reduced

> The calibration accuracy of COCTS is improved.

Thank you!

GHRSST XIX Science Team Meeting