Improved Diurnal Variability Forecast Of Ocean Surface Temperature through Community Model development (DIVOST-COM)

Ioanna Karagali¹, Jun She², Jacob Høyer²

 $^1\mathsf{DTU}$ Wind Energy, Technical University of Denmark, Risø Campus, Roskilde, Denmark

 2 DMI, Danish Meteorological Institute, Copenhagen Ø, Denmark

 $P = \frac{1}{2} \rho A v^{3} C_{p}$ $A v^{3} C_{p}$ $A v^{2} V^{2}$ $A v^{3} C_{p}$ $A v^{3} C_{p}$

DTU Wind Energy Department of Wind Energy

Outline

- Introduction
- Observations
- Modelling
- DIVOST-COM

Introduction Diurnal Warming

Figure: Example of SEVIRI SST changing during the course of a day.

Observations Spatial patterns of SST diurnal variability in the Baltic

Figure: Maximum of monthly averaged ΔSST_{day} , i.e. the mean $SST_{day} = SST_{foundation}^{1}$.

 ¹Karagali I. & J.L. Høyer (2014), Characterisation and quantification of regional diurnal SST cycles from SEVIRI, Ocean Sci., 10, 1–14.
4/14 DTU Wind Energy GHRSST XIX 2018 June 5

Observations Characteristics of SST diurnal variability in the Baltic

Figure: a) Monthly averaged daily cycle (hourly averaging grid cells with δ SST \geq 0.5 K at least once during a day). b) Monthly distribution of δ SST \geq 1, 2 and 3 K for 2006-2011, normalised over the total number of quality 5 retrievals ¹.

DTU

Modelling Modelling SST diurnal variability in the Baltic

Spatial extent of averaged daily dSST max (February 2009 to January 2010) from (a) SEVIRI, (b) FMKLB, (c, d) ZB, & (e) CC schemes ².

DTU

²Karagali I. & J.L. Høyer (2013), Observations and modeling of the diurnal SST cycle in the North and Baltic Seas, *J. Geophys. Res. Oceans*, 118, 4488–4503. 6/14 DTU Wind Energy GHRSST XIX 2018 June 5

Modelling Modelling SST diurnal variability in the Baltic

Spatial extent of warming $\geq 2 \text{ K}$ (February 2009 to January 2010) from (a) SEVIRI, (b) FMKLB, and (c and d) ZB schemes².

Modelling GOTM at Arkona Becken

GOTM top layer temperature (solid), with in situ (black) or ECMWF (gray) forcing fields with options III.1 and VI.7, and SEVIRI (circles) sub-skin SST, 9–14 July 2013 ³.

³Karagali I, Høyer JL & Donlon CJ (2017), Using a 1-D model to reproduce the diurnal variability of SST, J. Geophys. Res. Oceans, 122 (4), 2945–2959.

DTU

Ħ

Modelling GOTM at Arkona Becken - profile

Vertical temperature from the measurements (circles), GOTM with ECMWF forcing elds (lines) and SEVIRI on 13 July 2013, 13:00 ³.

Mercator Ocean Solution

Solutions & Expertise

Science & Publications

66-SE-Call2 Projects

Home > Welcome to your projects page > Service Evolution's Intranet 66-SE-CALL2 > 66-SE-Call2 Projects

Information on the 18 Service Evolution projects

[page under construction]

DIVOST-COM Rationale, support & impact

DIVOST-COM aims to develop and integrate a diurnal variability model with the Baltic MFC 3-D physical-biological model and the SST TAC level 4 analysis thus improving the CMEMS modelling and satellite products for the Baltic Sea.

Supported CMEMS Service Evolution overarching themes:

- Better describing the ocean biogeochemical parameters.
- Providing consistent ocean-atmosphere products.
- Contributing to a better monitoring and description of the ocean state and its variability.

Impact on CMEMS production systems and products:

- MFC PHY-BIO forecasting system (improved upper ocean temperature representation -> detection of algal blooms, improvement on heat and gas exchange with atmosphere)
- SST TAC (diurnal SST field to complement L4 product)

11/14 DTU Wind Energy

DIVOST-COM DIVOST-COM structure

DTU

WP1 Model Set-Up and Validation Datasets - GOTM2Grid - GOTM_{DMI} pretesting @ Arkona Becken

WP2

Model System Development & Experiments

- Reference Run
- Sensitivity Tests

WP3

Updated run & Impact Assessment

- Temperature
 - Heat flux
- Diurnal warming
 - Algal blooms

WP4 Recommendations

DIVOST-COM Team

• Ioanna Karagali (DTU Wind Energy, Researcher, Project PI)

• Jun She (DMI, Senior Researcher, BAL MFC)

• Jacob Høyer (DMI, Senior Researcher, SST TAC)

• Jens Murawski (DMI, Senior Researcher)

13/14 DTU Wind Energy

Ioanna Karagali DTU Wind Energy, Technical University of Denmark (DTU)

Building 125, Room S36 4000 Roskilde, Denmark http://www.vindenergi.dtu.dk ioka@dtu.dk. +45 4577 5026

Aknowledgements

Copernicus MERCATOR-OCEAN European Union European Space Agency (ESA)