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OUTLINES

➢ PART A: Project Introduction – Investigating Wave Breaking Using Satellite SST Data

• Background

• Approaches

• Aims

• Challenges

➢ PART B: Cool Skin Signals from Infrared (IR) and Microwave (MW) SST Data

• Section 1: In Situ Validation of IR and MWSST Data + Quality Control

• Section 2: Cool Skin Signal Characteristics

o Section 2.1: Statistics

o Section 2.2: Dependencies on Environmental Variables
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➢ Wave breaking in air-sea coupled system [Cavaleri et al., 2012] and ocean/coastal engineering

Project Introduction - Background
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Project Introduction - Background

➢ Global increasing trends for extreme SWH (Significant Wave Height) and wind speed [Young et al., Science, 2011]
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Project Introduction - Approaches

➢ Link between SST cool skin and wave breaking [GHRSST website; Jessup et al.,

Nature, 1997]

➢ Both wave breaking probability and severity can be measured.
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Project Introduction - Approaches

➢ Physical processes affecting the cool skin layer

[Castro et al., 1997]

➢ Theoretically, if the cool skin is simultaneously

measured along with all other meteorological

variables, wave breaking information can be

extracted.
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➢ Aims:

▪ A new method to investigate wave breaking

▪ First global estimate of wave breaking probability & severity

▪ Global and regional trends for wave breaking for over two decades

➢ Challenges:

▪ The large uncertainty of IR and MW SST data, and other variables

▪ Collocation between IR and MW SST measurements

▪ ……

Project Introduction – Aims & Challenges
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➢ Data Sets (9 years: Oct. 2002 – Sep. 2011)

➢ IR SST: MODIS (Moderate Resolution Imaging Spectroradiometer) onboard Aqua

• Non-GSD formatted L3; 13:30/01:30 day/night local crossing time

• Institution: NASA Goddard Space Flight Centre, Ocean Ecology Laboratory, Ocean Biology Processing Group;

• Regression algorithm: University of Miami Rosenstiel School for Marine and Atmospheric Science group

• Cool skin correction: -0.17 K constant

➢ MW SST: AMSR-E (Advanced Microwave Scanning Radiometer for EOS, Earth Observation System) onboard Aqua

• L3U with spatial resolution of 0.25*0.25;

• Institution: Remote Sensing Systems; version v7a; physically retrieved

• AMSR-E wind & water vapor data

➢ In Situ SST data

• iQuam SST: drifting buoy, tropical/coastal moored buoy data

➢ NCEP (National Centres for Environmental Prediction) Re-analysis data

• Ta, latent heat, sensible heat, specific humidity

Section 1: In Situ Validation
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➢ Validation Statistics

➢ IR MODIS: larger cold bias (-0.37 K) for night-time MODIS than daytime bias (-0.22 K)

➢ MW AMSR-E: near zero biases between MW and in situ SSTs, as expected

Section 1: In Situ Validation

Num Bias SD RSD

MODIS - SSTinsitu

daytime 1631156 -0.22 0.52 0.39

night-time 2337201 -0.37 0.54 0.40

AMSR-E - SSTinsitu

daytime 1631156 0.02 0.45 0.38

nighttime 2337201 -0.05 0.46 0.38
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➢ In Situ validation against different environmental conditions – SST ranges & water vapor.

➢ AMSR-E: Daytime – warm bias for SSTinsitu < 10

degC and TCWV < 12 kgm-2; Night-time – warm bias

for TCWV < 12 kgm-2

➢ MODIS: cold biases for TCWV > 50 kgm-2, which

basically correspond to very warm waters (> 30 degC)

in the tropical areas.

Section 1: In Situ Validation

❖ Quality control before moving on:

❖ A. 12 < TCWV < 50 kgm-2;

❖ B. 10 < SSTamsre < 30 degC;
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➢ Distribution of IR – MW differences

➢ Day bias -0.19 K and night bias -0.29 K

➢ Peak values are both within -0.1 – -0.2 K

➢ More colder skin values in the night-time

Section 2.1: IR – MW Differences Characteristics – Statistics
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➢ Stronger winds leads to near-zero differences – more mixing and wave breaking

➢ Similar pattern with an empirical cool skin model in [Donlon et al., 2002]

➢ More complicated due to DV for calm winds in the day

Section 2.2: IR – MW Differences Dependency on U10

(b) Daytime

(a) Night-time
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➢ Day: negative latent heat (heat flux into the ocean) results in positive differences

➢ Night: relatively minor effect

(a) Daytime (b) Night-time

Section 2.2: IR – MW Differences Dependency on Latent Heat
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➢ Warmer air results in near-zero or even warm skin in the daytime

➢ Similar trend in the night but with smaller amplitudes

(a) Daytime (b) Night-time

Section 2.2: IR – MW Differences Dependency on Ta-Ts



16

➢ Areas with IR-MW differences < -0.5 K in the Tropical Warm

Pool – high TCWV, calm wind, warm SST, maybe also partly a

degraded IR SST quality

➢ Areas with biases < -0.5 K in the tropical Atlantic Oceans –

Saharan dust cooling effect.

Section 2.2: IR – MW Differences Spatial Distribution
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➢ Conclusions

▪ Statistically, cool skin signal can be observed from MODIS – AMSR-E data. MAYBE??

▪ Strong winds lead to near-zero skin-subskin difference – due mainly to mixing and wave breaking. MAYBE??

▪ Saharan dust cooling effect on IR SST retrievals over the tropical Atlantic ocean.

▪ Could there be warm skin in the day over the high latitudes, where LH and/or SH are negative & Ta-Ts positive?

➢ In the future

▪ Physically retrieved IR SST. Maybe try in situ IR and bulk SSTs??

▪ Try using a cool skin model, such as Castro et al. 1997, to extract wave breaking contribution.

Conclusions & Future Work
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THANK YOU!

Questions?
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➢ Spatial distribution

➢ Nighttime MODIS has a strong cold bias

for high TCWV conditions, i.e. in the

tropics.

Section 1: In Situ Validation
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➢ U10: two-fold effects in daytime – through mixing

and cooling; U10 < 6 or > 12 ms-1 all leads to near-

zero differences.

➢ Latent Heat: effects are relatively minor and the

pattern follows that of U10.

Section 2.2: Dependencies on Environmental Variables

(a) Daytime

(b) Night-timeMax: 276653; Min: 501

Max: 359857; Min: 502

➢ U10 + Latent Heat
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➢ Ta-Ts: warmer air results in near-zero

or even warm skin in the daytime

➢ Sensible Heat: negative latent heat (into

the ocean) results in warm differences;
effect is minor in the night-time.

(a) Daytime Ta-Ts (b) Night-time Ta-Ts

(d) Night-time 
SH

(c) Daytime SH

Section 2.2: IR – MW Differences Dependencies on Ta-Ts & SH
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Section 2.2: Dependencies on Environmental Variables

(a) Daytime

(b) Night-time

➢ Ta-Ts + Sensible Heat

Max: 276653; Min: 501

Max: 359857; Min: 502

➢ Ta-Ts: under fixed SH, warmer air typically leads to smaller

differences

➢ Sensible Heat: negative SH are seen for warmer air conditions;

effects are also secondary to Ta-Ts.
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➢ SST Ranges

➢ SST: biases are independent of SST ranges from 10 – 25 degC, when warmer SST starts to lead more

negative differences. This could also be a MODIS quality issue.

Section 2.2: Dependencies on Environmental Variables

(b) Night-time SSTamsre(a) Daytime SSTamsre
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➢ Specific Humidity

➢ Specific Humidity: large humidity leads to rapid cold skin, which corresponds to the warm waters

with high TCWV.

Section 2.2: Dependencies on Environmental Variables

(a) Daytime Specific Humidity (b) Night-time Specific Humidity
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Section 2.4: Seasonal Patterns

➢ Stronger/weaker cool skin in

summer/winter for both hemispheres,

more so for night-time.

➢ Could be partially due to the higher
TCWV in summer times.
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Section 2.4: Seasonal Patterns

➢ Saharan dust cooling effect from May to

August over the tropical Atlantic Oceans;

➢ More negative differences in summer in

the northern hemisphere.


