

Report from CMA

Sujuan Wang , Peng Cui, Miao Zhang Peng Zhang, Caiying Wei , Feng Lu, Jian Liu

National Satellite Meteorological Center, CMA

GHRSST XIX 4-8 June, 2018, Darmstadt

Introduction

 NSMC National Satellite Meteorological Center China Meteorological Administration

- National Satellite Meteorological Center (NSMC)
 - is one of the operational centers of CMA
 - is tasked to support nation-wide weather forecasts, climate research, and natural disaster monitoring with space-based EO data and derived products (include SST).
- CMA Fengyun Constellation current status
 - GEO satellites:

FY2E/F/G/H(op.), FY2H is ready to launch

- FY4A(R&D), new generation
- LEO satellites:

FY3A/B(R&D) FY3C(op.), AM

FY3D(op.), PM, Post Launch Test

http://www.nsmc.org.cn/en/NSMC/Home/Index.html

Geo SST

- FY4A was launched on 11 Dec. 2016. It has been put into operation since
- 1 May 2018. SST will be available soon (autumn 2018?).
- > NLSST(D/N) is chosen for the operational algorithm.
- Validation (1 April 2018 30 April 2018)
 - Compare SST against L4 CMC SST (by a bilinear interpolation approach) FY4 - CMC : -0.13K ± 0.86K
 - Validate SST against in situ(iQUAM) with Matchup window of (4km, 30min) FY4 - Buoy(Drifters&Tropical Moorings) : -0.21K± 0.8K
 FY4 - IMOS: 0.03K ± 0.86K

Leo SST

- FY3D was launched on 15 Nov. 2017. It's still in Post Launch Test phase.
- Multichannel regression, Validation against iQUAM & OISST \geq
- \geqslant The 3.8µm band of FY3D MERSI-2 is better than the counterpart of FY3 VIRR.

MCSST(split channel)

NLSST(split channel) 30-year daily OISST

GHRSST 19th, 4-8 June 2018, Darmstadt

- Operational

🗖 in situ data update

The in situ data used for FY3B/C matchup routine was updated from iQUAM V1 to V2.

□ Algorithm update

- ➢ FY3B VIRR SST algorithm was updated from MCSST(D) to NLSST(D/N). And the L3U specification was updated from 1km, 648 files per day to 5km, 2 files per day.
- > FY3C MWRI SST's quality control was updated.

optimal

□ FY3C VIRR SST Validation against OISST and OSTIA

- ➤ Nov.2017-Feb.2018, statistics of quality flag with optimal(0) and overall are shown as following
- FY3-OISST: -0.16±0.75K (D) -0.15±0.78K (N)
- FY3-OSTIA: -0.17±0.66K (D) -0.17±0.66K (N)

-0.33±1.25K (D) -0.38±1.30K (N) -0.34±1.21K (D) -0.41±1.26K (N) ALL

SST Quality Flag 0: Optimal 1: Sub_Optimal 2: Poor

FY3C Orbit maintained

Since 1 April 2018, after the orbit maintained, the cold bias of FY3C VIRR nighttime SST (from -0.15K to -0.05K, Vs OISST) is improved, the regression coefficients' update is underway.

FY3/VIRR monthly SST(FY-3 AM+PM)

PGS: Products Generation System

GHRSST 19th, 4-8 June 2018, Darmstadt

daytime

ghttime

FY3C VIRR SST Validation against OISST and OSTIA

The daily time series of anomaly statistics of FY-3C/VIRR operational SST from November 2017 to February 2018 for the quality flag with $optimal(0)_{\circ}$

The bias of FY3C VIRR nighttime SST has high correlation with the temperature of Block Body(BB_Temp_PRT1). Since 1 April 2018, after the orbit maintained, the cold bias of nighttime SST is improved. It has been fed back to the calibration team.

- Experimental

FY3C VIRR

- Reprocessing of SST from August 2016 to December 2017 based on operational L1 data with monthly coefficients. NL and MC retrieval against OISST were compared.
 - MCSST-OISST: 0.04 ± 0.83 K (D) 0.15 ± 0.85 K (N)
 - NLSST-OISST: 0.10 ± 0.76K (D) 0.06±0.76K (N)

optimal

-0.14 ± 1.23 K (D) -0.09 ± 1.3 K (N) -0.15 ± 1.14 K (D) -0.31 ± 1.2 K (N)

- The best algorithm is LP(D/N) *
- Regional retrieval: [10S-50N,80-180E] NL, monthly Coefs.
 - FY3C vs OISST:

optimal: -0.02 ± 0.79 K (D) 0.17 ± 0.80 K (N)

All: -0.28 ± 1.22 (D) -0.09 ± 1.23 (N)

• FY3C vs iQUAM: (by Lei Guan etc.)

optimal: $0.02 \pm 0.66 K(D) \ 0.15 \pm 0.64 K(N)$

All: -0.21 ± 0.92 (D) -0.15 ± 1.07 K(N)

Courtesy to Prof. Lei Guan

9

* |

Preparation of FY_SST in GDS 2.0 format

- Determine to register parameters(e.g. center name, product name etc.) to GDS2.0 Specification
- L2Pcore : Is our SSES suitable for L2Pcore?
 - sses_bias
 - sses_standard_deviation
- ► L2Paux: To Be Determined
 - dt_analysis:
 - wind_speed:
 - sea_ice_fraction:
 - aerosol_dynamic_indicator:

Summary and Future Work

- Ongoing development to improve FY_SST.
- Development of regional SST using FY3D/MERSI data.
- Discussion with Calibration Team to improve the input sensor data quality
- CMA would like to increase collaboration with GHRSST Advisory Council in working towards GHRSST specifications.

Acknowledgements

Thanks to NOAA/NESDIS/STAR for providing iQUAM in situ SST. Thanks to NOAA/NCEI for providing Reynolds OI v2. daily SST. Thanks to NOAA/ESRL for providing the long term monthly and daily means OISST. Thanks to JAXA for providing AHI SST. Thanks to OSI-SAF for providing METOP SST. Thanks to CMC for providing CMC daily SST. Thanks to UKMO&CMEMS for providing OSTIA daily SST. Thanks to ABOM for providing IMOS in situ SST.

Thank you!

Comparison of MIR's Contribution to SST retrieval

TCSST(N) $T_s = a_0 + a_1 T_{11} + a_2 T_4 + a_3 T_{12} + a_4 (T_4 - T_{12})(\sec \theta - 1) + a_5 (\sec \theta - 1)$										
T ₄ , T ₁₁ , T ₁₂ : brightness temperature in -3.8μ m, 11μ m, 12μ m bands										
Sat/Sensor	a0	a1	a2	a3	a4	a5	RMS (K)	R ²	NOBS	Month
NOAA-19/ AVHRR(NP)	-276.860	0.2700	1.1790	-0.4315	0.1462	1.1327	0.2441	0.999	9007	201005
FY-3B/VIRR	-281.806	3.1317	0.4158	-2.5214	-0.067	1.4118	0.5463	0.992	2105	201705
FY-3C/VIRR	-288.130	1.6741	0.8803	-1.6174	0.3035	1.2907	0.5895	0.990	3315	201705
FY-3D/MERSI	-276.844	0.2577	1.2235	-0.4658	-0.154	2.2701	0.2485	0.994	3631	201805

Comparison of nighttime TCSST Algorithm between FY3B /C and NOAA19

- **NOAA19:** |a2| is **bigger** than |a1| and |a3|
- **•FY3B/C:** |a2| is **smaller** than |a1| and |a3|
- **•FY3D:** |a2| is **bigger** than |a1| and |a3|

The performance of 3.8µm band of FY3D MERSI-2 is better than the counterpart of FY3 VIRR.