
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

 

 

 

 

 

 

 

 

Recognize, Annotate, and Visualize Parallel Content 

Structures in XML Documents 
 

Marco Beck  

Data & Knowledge Engineering  

University of Wuppertal 

Wuppertal, Germany 

beck@gipplap.org 

Norman Meuschke 

Data & Knowledge Engineering 

University of Wuppertal  

Wuppertal, Germany 

meuschke@uni-wuppertal.de

Moritz Schubotz 

Mathematics  

FIZ Karlsruhe 

Berlin, Germany 

moritz.schubotz@fiz-karlsruhe.de 

Bela Gipp 

Data & Knowledge Engineering 

University of Wuppertal  

Wuppertal, Germany 

gipp@uni-wuppertal.de 

Vincent Stange 

OriginStamp AG 

Kreuzlingen, Switzerland 

vincent.stange@originstamp.com 

 

Abstract— We present a four-phase parallel approach for 

capturing, annotating, and visualizing parallel structures in 

XML documents. We designed a highlighting strategy that first 

decomposes XML documents in various data streams, including 

plain text, formulae, and images. Second, those streams are 

processed with external algorithms and tools optimized for 

specific tasks, such as analyzing similarities or differences or 

differences in the respective formats. Third, we compute 

comparison metadata such as annotations and highlighting 

marks. Fourth, the position information is concatenated based 

on the original XML's computed positions document. 

Eventually, the resulting comparison can then be visualized or 

processed further while keeping the reference to the source 

documents intact. While our algorithm has been developed for 

visualizing similarities as part of plagiarism detection tasks, we 

expect that many applications will benefit from a well-designed 

and integrative method that separates between addressing the 

match locations and inserting highlight marks. For example, our 

algorithm can also add comments in XML-unaware plaintext 

editors. We also treat the edge cases, overlaps as well as multi-

match with our approach. 

Keywords— XML Documents, parallel structures, compare 

XML Documents, XML highlighting, XML annotating 

 

I. INTRODUCTION 

XML is an important and widely used format (e.g., HTML, 
ODT, and docx are all based on XML) for representing, 
storing, and exchanging data in the form of documents for 
numerous use cases. In science, TEI (digital humanities) and 
JATS (MINT disciplines) are important XML-based 
document formats. The Text Encoding Initiative (TEI) has 
also become a de facto standard within the humanities, [1] 
where it is used, for example, to encode printed works (edition 
science) or to mark up linguistic information (linguistics) in 
texts. Examining documents for similarities or differences, 

storing these corresponding results, and visualizing them for 
users is expected in document processing. Important use cases 
would be, for example, tracking changes in collaboratively 
edited documents (Microsoft Word / Open Office) or the 
detection of plagiarism in scientific publications. Particularly 
in the area of academic plagiarism [2], where it goes as far as 
the highly covert reuse of content, e.g., by paraphrasing or 
translating of the text, and finally, the reuse of data or reuse of 
data or ideas without proper attribution [3], investigation of  

 

similarities in documents are of elementary importance. 
Therefore, detecting hidden academic plagiarism in research 
publications is an urgent problem that concerns many 
stakeholders, including academic publishers, research 
institutions, funding agencies, and, of course, other 
researchers.  

Another area of data analyses relates to digital editions, the 
core area of digital humanities, investigations of similarities, 
and general comparisons in complex textual and 
semistructured datasets are helpful for further research 
questions and reuse [4]. Moreover, (semi-)automatic 
processing steps (e.g., text recognition in manuscripts and 
inscriptions, heuristic and inferential statistical detection of 
structural relationships in and empirical analyses of language 
and text corpora, etc.) and their systematic evaluation (e.g., 
image analysis, metadata enrichment, directed information, 
graphical models, word embeddings, interaction and social 
networks, etc.) are of elementary importance in digital 
editions. The approach of Rosselli et al. within the open-
source tool EVT - Edition Visualization Technology uses the 
Digital Vercelli Book as an example to show how digital 
editions can be searched, explored, and studied [5]. 

The XML format offers the advantage that hierarchical 
structures and user-defined tags allow flexible data 
representation [6]. However, this advantage is challenging 
when comparing for similarities or differences  [7, 8, 9] since 

M. Beck, M. Schubotz, V. Stange, N. Meuschke, B. Gipp, “Recognize, Annotate, and Visualize Parallel Content Structures 
in XML Documents”, in Proceedings of the ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), 2021.  

Preprint from: https://www.gipp.com/pub/ 



   

 

   

 

different content in XML documents must be analyzed using 
different algorithms. A second challenge arises when 
something within an XML document needs to be annotated, 
modified, or deleted and the relation to the originals must be 
preserved.  This is the case, for example, when comparing two 
XML documents for similarities and then highlighting the 
similarities. 

 

II. COMPARISON TO THE STATE OF THE ART 

Many tools support the highlighting of differences 
between documents (so-called diff tools). Mostly, these tools 
focus on comparing native source code and managing code 
changes. These tools can also be integrated into common 
source code management systems, for example. As a rule, 
such tools also make the presupposition that the documents 
must be essentially similar and therefore not fundamentally 
different, since the output or the comparison result then also 
becomes very difficult to interpret. There are three standard 
layouts for the different tools (uniform, double and triple). 
Also, the positions of the different text fragments are 
highlighted in the scrollbars of the individual documents. 
Figure one shows an example of the double layout by 
displaying a diff comparison in the tool Code Compare. 

 

Fig. 1. File comparison and merging using Code Compare by Devart 

Also, specialized solutions exist, which compare files in 
the same format, such as images or plain text files. Still, no 
tools can highlight similarities of different types (such as 
image and text), which is an important prerequisite for 
visualization of multimodal diffs. 

However, there are two main differences between different 
tools to merge different texts in particular source code and 
highlight a parallel structure in XML documents. First, XML 
documents contain structural, textual, and information 
predefined presentation standards such as SVG images or 
MathML formulae. In case to highlight those non-textual 
elements or fractions of it, special treatment is necessary. 
Second, in source code outputs, overlapping highlighting is 
less problematic. This is because there are only three types of 
annotations, insert delete, and move. For XML documents, 
corresponding sections might be determined by several 
analytics algorithms, and thus the overlapping of highlights is 
more complex. In particular, the highlighting can span through 
different formatting instructions. 

Third, the analytical tasks are more diverse. While for 
source code, the task is usually to resolve conflicting change 
proposals or understand a change in the source code, 
investigating similarities in documents is more diverse. The 
overview first paradigm is more important in this context.  

 

 

III. OUR APPROACH 

We present a four-stage approach for identifying, 
annotating, and highlighting parallel content structures in 
XML documents. Our approach address scenarios in which 
two documents shall be analyzed for similar content, 
specifically similar text, images, and formulae. This scenario 
is particularly relevant for scientific document processing use 
cases, such as plagiarism detection or editorial theory. 

In the first stage, an XML or HTML document is 
decomposed into plain text, formulae, and images. These 
elements are processed with appropriate external algorithms 
for text similarity or difference analysis. Then, these elements 
can be concatenated with the positions of the original XML 
document to form minimal, non-overlapping elements and 
insert, for example, the type-specific highlight marker. To 
avoid highlighting constraints, matching groups are 
introduced, the corresponding tags are moved, and the part to 
be highlighted is split accordingly.  Thus, many applications 
will benefit from a well-designed method that separates 
addressing matching locations from inserting highlighting. In 
our approach, we also consider edge cases, overlapping 
matches, as well as multi-match. Our approach and tool is a 
further development of HyPlag [10, 11], which provides a 
template or command-line tool for extracting different data 
streams from the XML document, annotating them, and then 
reassembling the original XML tags with the plain text, 
images, and formulae using our algorithm.  

 

    

Fig. 2. Overview of highlighting parallel structures in XML documents 

Phase 1 Decomposition of the elements of the XML 
document and notation of the respective positions from the 
XML document 



   

 

   

 

 

Fig. 3. Extract from the input XML document 

The XML/HTML document is decomposed into plain text, 
mathematical expressions, and images in the preprocessing 
phase. In the next step, all XML/HTML formatting 
instructions, links, and tags are removed. However, we note 
and store the resulting plaintext string positions where each 
XML/HTML tag was removed during this extraction. After 
doing this for both XML/HTML documents, we have two 
plaintext files and a list of the tags removed from these text 
files and their location in the original XML document. 

 

Fig. 4. Extract from extracted plain text 

 

Phase 2 Find common elements in the documents and 
identify changed positions. 

In this second phase, the plaintext can then be identified 
using a standard text similarity or difference algorithm (e.g., 
Encoplot [12], Boyer-Moore [13]), and the formulae and 
images can be identified using appropriate algorithms using 
specialized partially XML unaware tools (e.g., also Frequency 
Histograms of Mathematical Identifiers (Histo), Longest 
Common Subsequence of Identifiers (LCIS), [14] Perceptual 
hashing (pHash), Positional text matching, [10]Bibliographic 
Coupling (BC), Longest Common Citation Sequence (LCCS), 
Citation Chunking (CC)[ [15], [16]]) are processed. 
Alternatively, characters or words can be added, modified, or 
deleted manually in the extracted plain text. After processing 
the respective elements with external algorithms or manual 
modifications, we evaluate the returned positions' changes to 
the input strings' integer position. Using our position list 
generated in the first phase, we can relate these matches to the 
positions of the respective XML/HTML tags in the original 
documents.  

 

Fig. 5. Extract from the record of the positions of the XML-tags 

Phase 3 Splitting common elements into minimal, non-
overlapping elements.  

However, we need to ensure that no XML tags are in the 
matched span to implement highlighting correctly. Otherwise, 
the highlighting could interfere with other formatting 
instructions, such as <b>bold</b>. Therefore, we introduce 
matching groups and split the range to be highlighted into as 
many fractions as leaf nodes are affected in the XML/HTML 
document and assign the same group tag to the splits. We 
repeat this method for all algorithms and all content types to 
be compared. In addition to the split tag problem, we now face 
the challenge of overlapping groups in leaf elements. To avoid 
this, we split the groups into non-overlapping highlights and 
adjust the mathematical group information accordingly. Note 
that this means that identical highlights are merged into one. 
Also, contextual information, such as highlighting or 
additional comments, is stored in the group and not in the 
highlighting itself.  

 

Phase 4 Recombine match groups and insert highlight 
tags. 

Based on the group information, we now add the 
highlighting tags to the sheet elements. The highlighting 
depends on the content type of the sheet. We keep an 
expandable list that assigns a highlighting method to each 
sheet type. For example, for the HTML tags head, title, base, 
link, meta, style, body, article, header, footer, div, figure, data, 
ruby, span, we use the em-tag for highlighting. 

 

Fig. 6. Extract from the composite output XML document 

 

IV. DISCUSSION AND FUTURE WORK 

Our results show that it is possible to extract the plain text, 
random images, and mathematical expressions separately 
from an XML document. Then, these separate types can be 
compared using various external tools, and the comparison 
results can be merged back with reference to the original 
document. In addition to pure comparison, this makes it 
possible to modify the text in human-readable form, delete and 
add characters, and then insert the XML tags and formatting 
instructions into this modified pure text. In addition, our 
suggested approach allows for a much better and more 
informed analysis of XML documents. Analysis can now be 
done at the level of individual elements, such as plain text, 
images, or mathematical expressions. 

One challenge in extracting and compiling the plain text 
and XML tags is dealing with whitespace. By default, no 
whitespace is inserted between text and the respective XML 



   

 

   

 

tags in an XML document. So if we remove the XML tags as 
part of the suggested approach, there will be no whitespace 
between each word in the plain text output file. 

The following example 

<postCode>66123</postCode><settlement>Saarbrücke
n</settlement><country key="DE">Germany</country>  

illustrates that as soon as the XML tags are removed, the plain 
text is written together as in a continuous text. 

66123SaarbrückenGermany 

Of course, space can also be inserted or output during 
extraction, but then the calculated positions would not be 
correct when the changed text and the XML tags are later 
assembled. It might be helpful to note the position where the 
space is inserted during extraction so that this position can be 
determined again during composition. The position of the 
XML tags is finally corrected for the inserted spaces. Even if 
the algorithm is implemented that appropriate blanks are 
inserted, the problem can occur if the XML tag is set within a 
word that thereby the word is pulled apart based on the blank. 

Another challenge is when words are inserted in plain text 
at the edge of an XML tag that the algorithm so far cannot 
detect in which XML tag the new or changed word should be 
inserted.  Further considerations are required at these points. 

 

V. CONCLUSION 

We have presented a proposal for capturing, annotating, 
and visualizing parallel structures in XML documents. An 
XML document can first be decomposed into plain text, 
formulas, and images and processed and analyzed with 
external algorithms for text similarity or difference analysis.  
After processing the elements with external algorithms and 
inserting annotations, such as plain text or highlight marks, 
these elements can be concatenated based on the positions of 
the original XML document. To this end, we have also 
proposed a solution approach for highlighting constraints, 
edge cases, overlaps, and multiple matches. Our standalone 
software package, we have created can be integrated into 
various applications to split XML documents into different 
data streams for analysis, for example, and then reassemble 
the modified data streams into one XML document using the 
calculated positions in case of changes or highlighting.  

Our Code is available as open-source at: 

https://github.com/ag-gipp/parallelXmlHighlighting 

 

ACKNOWLEDGMENT 

This work was partially supported by the German 
Research Foundation (DFG) grant no. GI 1259/3-1. 

REFERENCES 

 

[1]  M. L. Jockers and R. Thalken, Text Analysis with R: For Students of 

Literature (= Quantitative Methods in the Humanities and Social 
Sciences), Cham: Springer International Publishing, 2020.  

[2]  T. Fishman, ""We know it when we see it"? is not good enough: 

towarda standard definition of plagiarism that transcends theft, fraud, 
and copyright. I," Proc. Asia Pacific Conf. on Educational Integrity., 

2009.  

[3]  D. Weber-Wulf, False Feathers: A Perspective on Academic 
Plagiarism, Berlin Heidelberg: Springer-Verlag, 2014.  

[4]  A. Busch, Visualisierung textgenetischer Phänomene in digitalen 

Editionen, A. Bosse and W. Fanta, Eds., Berlin: De Gruyter, 2019.  

[5]  R. Rosselli Del Turco, G. Buomprisco, C. Di Pietro, J. Kenny, R. 

Masotti and J. Pugliese, "Edition Visualization Technology: A 

Simple Tool to Visualize TEI-based Digital Editions," TEI - Journal 
of the Text Encoding, vol. Issue 8, 2014.  

[6]  T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler and F. 

Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth Edition)," 
26 11 2008. [Online]. Available: https://www.w3.org/TR/xml/. 

[Accessed 01 04 2021]. 

[7]  G. Barabucci, "diffi: diff improved; a preview," DocEng '18: 
Proceedings of the ACM Symposium on Document Engineering 

2018, pp. 1-4, 2018.  

[8]  A. Oliveira, G. Tessarolli, G. Ghiotto, B. Pinto, F. Campello, M. 
Marques, C. Oliveira, I. Rodrigues, M. Kalinowski, U. Souza, L. 

Murta and V. Braganholo, "An efficient similarity-based approach 

for compari," Information Systems, no. 78, pp. 40-57, 2018.  

[9]  C. Thao and E. V. Munson, "Using versioned tree data structure, 

change detection and node identity for three-way XML merging," 

DocEng '10: Proceedings of the 10th ACM symposium on Document 
engineering, pp. 77-86, 2010.  

[10]  N. Meuschke, C. Gondek, D. Seebacher, C. Breitinger, D. Keim and 

B. Gipp, "An Adaptive Image-based Plagiarism Detection 
Approach," Proc. ACM/IEEE Joint Conf. on Digital Libraries 

(JCDL)., 2018.  

[11]  Data & Knowledge Engineering Group of Prof. Bela Gipp, 

"HyPlag," 2021. [Online]. Available: https://www.hyplag.org. 

[Accessed 25 03 2021]. 

[12]  C. Grozea, C. Gehl and M. Popescu, ENCOPLOT: Pairwise 

Sequence Matching in Linear Time Applied to Plagiarism Detection, 

Proc. PAN Workshop, 2009.  

[13]  R. S. Boyer and J. S. Moore, "A fast string searching algorithm," 

Communications of the ACM, 1977.  

[14]  N. Meuschke, M. Schubotz, F. Hamborg, T. Skopal and B. Gipp, 
"Analyzing Mathematical Content to Detect Academic Plagiarism," 

Proc. Conf. on Inform. and Knowl. Manage. (CIKM), 2017.  

[15]  B. Gipp, Citation-based Plagiarism Detection - Detecting Disguised 
and Cross-language Plagiarism using Citation Pattern Analysis, 

Springer, 2014.  

[16]  B. Gipp and N. Meuschke, "Citation Pattern Matching Algorithms 
for Citation-based Plagiarism Detection: Greedy Citation Tiling, 

Citation Chunking and Longest Common Citation Sequence," Proc. 

ACM Symp. on Doc. Eng, 2011.  

 

 
 

 


