Additional Materials

Seminar on Image Registration 26 July 2021

Arts and

Humanities Research Council

Part of the Towards a National Collection Initiative – Practical Applications of IIIF Project PI: Joseph Padfield, The National Gallery

The National Gallery | The British Library | The University of Edinburgh | The National Portrait Gallery | Royal Botanic Garden Edinburgh | Stanford University Libraries | Science Museum Group | Digirati | Victoria and Albert Museum | IIIF Consortium

Nathan Daly Catherine Higgit & Maria Melchiorre The National Gallery

Seminar on Image Registration 26 July 2021

Arts and

Humanities Research Council

Part of the Towards a National Collection Initiative – Practical Applications of IIIF Project PI: Joseph Padfield, The National Gallery

The National Gallery | The British Library | The University of Edinburgh | The National Portrait Gallery | Royal Botanic Garden Edinburgh | Stanford University Libraries | Science Museum Group | Digirati | Victoria and Albert Museum | IIIF Consortium

Why?

To create images of an entire painting if capture region is restricted

- To create high resolution composites (including focus stacking)
- To precisely align different image or data modalities
- [Automatically identifying locations of high magnification details / Image comparison]

Detailed study of images and spectroscopic imaging data underpins all of the Gallery's art historical, scientific and conservation work and how we understand how a painting was created, the materials used and how it has changed over time

How?

Currently use various approaches depending on imaging (or spectroscopic imaging) modality involved and intended use of the resulting images (or datacubes)

All are feature-based methods and either rely on:

piece-wise mosaicking

Issue that errors can perpetuate when done piecemeal

TITIAN, NG6420, lead XRF map

How?

Currently use various approaches depending on imaging (or spectroscopic imaging) modality involved and intended use of the resulting images (or datacubes)

All are feature-based methods and either rely on:

piece-wise mosaicking
 Or

registering to a target image

TITIAN, NG6420, lead XRF map

2D images Manual

(semi)-automatic

NIP2/VIPS

- Mosaic and register
- 4 point registration
- Entirely manual, very slow and can perpetuate errors as done piecemeal
- Changes resolution of images
- Cannot currently handle data cubes

GIMP or Photoshop

- Mosaic and register
- Entirely manual
- Often used as a pre-step before using PTGui or for rough alignment
- File size issues
- Cannot handle data cubes

PTGui

- Mosaicking only
- Really designed for panoramas
- Use approximately 300 control point to align two images (required human intervention)
- Used routinely for visible and X-ray images
- Focus stacking possible
- Cannot handle data cubes

3D datacubes / 2D images

Fig. 5 a Matching control-point pairs between the color image (top) and infrared image (bottom) and **b** horizontal disparity map. Blue points and *lines* shows control points and pairs that have been removed, although they have good correlation peaks. Red points and *lines* show control points that are used in the transformation. The black points show the best-fit function. The points are fit to a bilinear function

NGA's HSI Register tools

- Automatic but requires skill to use and suitable computer hardware
- Registers and mosaics in one step
- Can ingest, join and explore datacubes (e.g. HSI or XRF)

Art Register and X-ray Register also available for 2D images but have been less used at National Gallery, London

(Semi)-automatic

L3HARRIS GEOSPATIAL

ENVI

- Automatic but requires skill to use and suitable computer hardware
- Mosaicking of datacubes possible
- Expensive proprietary software

Registration of datacubes also possible but not tried at National Gallery, London

https://sourceforge.net/projects/datamuncher/

Datamuncher/PyMCA

- Ingests XRF datacubes and "mosaics" so large element maps can be produced
- Not really registering at datacube level e.g. not suitable for further data processing
- Automatic but requires skill to use and suitable computer hardware

Intrinsic difficulties

- Paintings are not flat
- Variable resolution of different imaging modalities
- Various types of distortion intrinsic to capture methods + inaccuracies in positioning of camera/painting
- Paintings are 3D objects: different features may be revealed with different imaging modalities (and at different depths) making alignment challenging
- Scale/frequency of detail needed for feature-based methods e.g. flat planes of colour

© 2019 - Boeijink, Boekel, Van der Knaap

Leonardo da Vinci, *Virgin of the Rocks*, (NG1093), sample from Virgin's robe, mounted as a cross-section

Other difficulties

- How to deal with the regions of overlap?
- How to balance sub-images or sub-datacubes when combining?
- File sizes (and formats in some cases)
- Computing power requirements
- How to record information about image or datacube processing including mosaicking/registration steps and how to associate image sets etc.
- Need to register/mosaic images by different means or against different target images depending on intended use of the images, etc.

What does the future of image registration look like?

Ideally able to ingest set of sub-images or datacubes and align these to a target image
 but what resolution target is best?

- Automated but with high degree of user and ability to extract the transforms applied

- i.e. useful to be able to look into the black-box and make choices if you wish!
- manually roughly align and then computer refines or computer to handle whole process?

– Able to deal with really large images

Control of how to deal with resolution variations / resolution matching
 e.g. interpolation, super-resolution or resolution reduction, etc.

- Ability to mosaic and register datacubes for further processing/extraction of spectra etc.

- Need for range of methods for different imaging modalities and depending on desired use of resulting images/datacubes vs standardised workflows?
- Improved viewers to compare/share/display results
 - how best to store/share the large numbers of image sets generated often with multiple annotated sets for a single painting being produced in different ways to demonstrate or record specific features?
 - how best to share/display datacubes?
 - how to record information about image or datacube processing including mosaicking/registration steps and how to associate image sets etc?

Maria Villafane The National Gallery & Imperial College

Seminar on Image Registration 26 July 2021

Arts and

Humanities Research Council

Part of the Towards a National Collection Initiative – Practical Applications of IIIF Project PI: Joseph Padfield, The National Gallery

The National Gallery | The British Library | The University of Edinburgh | The National Portrait Gallery | Royal Botanic Garden Edinburgh | Stanford University Libraries | Science Museum Group | Digirati | Victoria and Albert Museum | IIIF Consortium

Setup images: Scale and estimated location

Setup images: Scale and estimated location

Approx. location of datacube

SimpleElastix Registration

SEARCH 1

Search Area (for each selected slice)

Best transformation = Highest Metric at alignment

SimpleElastix Registration

SEARCH 1

Search Area (for each selected slice)

Best transformation = Highest Metric at alignment

Poor Alignment ↓ Low Metric

Good A	Alignment
	Ļ
High	Metric

SimpleElastix Registration

SEARCH 1

Transformations to test: Translation x,y (every 10 pixels) rotation scaling

SimpleElastix Registration

SEARCH 1

Transformations to test: Translation x,y (every 10 pixels) rotation scaling

SimpleElastix Registration

SEARCH 1

SimpleElastix Registration

SEARCH 1

SimpleElastix Registration

SEARCH 1 => SEARCH 2

SimpleElastix Registration

SEARCH 2

SimpleElastix Registration

SEARCH 2

SimpleElastix Registration

SEARCH 2

SimpleElastix Registration

SEARCH 2 => SEARCH 3

SimpleElastix Registration

SEARCH 3

3 searches

NATIONAL GALLERY Imperial College London

Search # 1 - 41x41, step=10 (spacesize=> search in 5x5 locations)

Search # 2 - 19x19, step=3 (spacesize=> search in 7x7 locations)

> Search # 3 - 7x7, step=1 (spacesize=> search in 7x7 locations)

NATIONAL GALLERY Imperial College London

SimpleElastix Registration

SEARCHES → REPEAT FOR ALL DATACUBES

XRF DATACUBES TO REGISTER

d02 = 941 x 959 pixels

d03 = 1289 x 391 pixels

d09 =

pixels

596 x 967

d08 =

411 x 966

pixels

pixels

d13 = 710 x 832 148 x 963 pixels

DATACUBES AT FINAL LOCATION WITHIN VISIBLE IMAGE OF THE PAINTING

NG6420 Titian - Death of Actaeon. Ensemble of registered XRF images showing (inverted) presence of Fe-Ka within the painting.

Thank you for your attention

Maria Eugenia Villafane – Collaborative Doctoral Partnership PhD research project Supervised by Prof. Pier Luigi Dragotti (Imperial College London) and Dr. Catherine Higgitt (The National Gallery)

3D datacubes / 2D images

Fig. 5 a Matching control-point pairs between the color image (*top*) and infrared image (*bottom*) and **b** horizontal disparity map. *Blue* points and *lines* shows control points and pairs that have been removed, although they have good correlation peaks. *Red points* and *lines* show control points that are used in the transformation. The *black points* show the best-fit function. The points are fit to a bilinear function

NGA's HSI Register tools

- Automatic but requires skill to use and suitable computer hardware
- Registers and mosaics in one step
- Can ingest, join and explore datacubes (e.g. HSI or XRF)

Art Register and X-ray Register also available for 2D images but have been less used at National Gallery, London

(Semi)-automatic

L3HARRIS GEOSPATIAL

ENVI

- Automatic but requires skill to use and suitable computer hardware
- Mosaicking of datacubes possible
- Expensive proprietary software

Registration of datacubes also possible but not tried at National Gallery, London

https://sourceforge.net/projects/datamuncher/

Datamuncher/PyMCA

- Ingests XRF datacubes and "mosaics" so large element maps can be produced
- Not really registering at datacube level e.g. not suitable for further data processing
- Automatic but requires skill to use and suitable computer hardware

How?

Currently use various approaches depending on imaging (or spectroscopic imaging) modality involved and intended use of the resulting images (or datacubes)

All are feature-based methods and either rely on:

piece-wise mosaicking

Issue that errors can perpetuate when done piecemeal

TITIAN, NG6420, lead XRF map

How?

Currently use various approaches depending on imaging (or spectroscopic imaging) modality involved and intended use of the resulting images (or datacubes)

All are feature-based methods and either rely on:

piece-wise mosaicking
Or

- registering to a target image

TITIAN, NG6420, lead XRF map

Why?

To create images of an entire painting if capture region is restricted

- To create high resolution composites (including focus stacking)
- To precisely align different image or data modalities
- [Automatically identifying locations of high magnification details / Image comparison]

Detailed study of images and spectroscopic imaging data underpins all of the Gallery's art historical, scientific and conservation work and how we understand how a painting was created, the materials used and how it has changed over time

Luca Carini The V&A

Seminar on Image Registration 26 July 2021

Arts and

Humanities Research Council

Part of the Towards a National Collection Initiative – Practical Applications of IIIF Project PI: Joseph Padfield, The National Gallery

The National Gallery | The British Library | The University of Edinburgh | The National Portrait Gallery | Royal Botanic Garden Edinburgh | Stanford University Libraries | Science Museum Group | Digirati | Victoria and Albert Museum | IIIF Consortium

Luca Carini

A Collaborative Effort: Raphael Reassembled by Luca Carini and Giovanni Benigni (Vatican Museums)

A Lightning Talk prepared for the 2021 IIIF Conference

https://youtu.be/IOPZ5Gx-sH8?t=3240