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ABSTRACT
Modern computer games typically have a huge interaction spaces
and non-deterministic environments. Automation in testing can
provide a vital boost in development and it further improves the
overall software’s reliability and efficiency. Moreover, layout and
game logic may regularly change during development or consecu-
tive releases which makes it difficult to test because the usage of
the system continuously changes. To deal with the latter, tests also
need to be robust. Unfortunately, existing game testing approaches
are not capable of maintaining test robustness. To address these
challenges, this paper presents an agent-based approach for robust
automated testing based on the reasoning type of AI.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Interactive games.
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1 INTRODUCTION
Software testing, or more generally Quality Assurance (QA), plays
an important role in software development for ensuring that a pro-
duced system meets different requirements including functional,
performance, reliability, and realises a high quality product. In the
hugely competitive market, delivering high quality software can
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attract users and gain loyal clients which can have a dramatic im-
pact on the software success. However, testing is mostly a manual
process, time-consuming, and intensive that moreover has to be
repeated for every modification to the system, therefore, makes it
expensive. A recent industry [1] indicated that the IT budget allo-
cated to QA, including testing, is estimated to be about one-quarter
of the total budget. Test automation can yield significant savings in
costs, lead time, and improve consistency and performance.

The computer games industry has seen the emergence of ad-
vanced 3D games. These are frequently complex software systems
due to their high level interactivity and increased realism. Interac-
tive entities of a 3D game are often very hard to test in isolation
(unit test). For example, suppose new interactive entities have been
added into the game and we want to verify that they interact cor-
rectly with the world of the game. Entities’ behavior is often context
dependent; the context is often hard for testers to recreate without
the help of the visualization provided by the game world itself.
Therefore, system-level testing is a critical phase in game testing
because it is then where we would test the overall interaction of
components (how the components interact with one another and
with the system as a whole).

The huge interaction space makes automated testing for such
games very challenging. Additionally, changes during development-
time makes testing even harder. For example, the world layout and
the game logic may be altered regularly during the development or
between consecutive releases. This complicates testing because the
usage of the system continuously changes. Therefore, in addition
to automation, ’test robustness’, that is, how flexible a test is in
coping with constant development-time changes, is another key
measure for the engineering of modern games. In previous work
we have addressed test automation in game testing [28]. This paper
will focus on the robustness problem.

In this work, we build on the BDI agent-based testing framework
iv4XR [28]. The choice for an agent-based approach is appropriate
to deal with the high-level of interactivity and complexity of com-
puter games. Properties such as autonomy and reactivity [9] allow
agents to perform actions independently in an environment over
which they have control and observability. Goal-based behavior
and the possibility to do autonomous planning and react to environ-
mental changes make the approach capable of dealing with highly
interactive systems. Autonomous planning is achieved through rea-
soning, e.g. by implementing the so-called Belief-Desire-Intention
(BDI) model [31]; which is a model of rational agents. In this model,
the agent has their own motivation (goals, desire in the model) and
a set of actions, to compose a plan (intention) towards the goals.
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This paper performs a two-stage study addressing the robustness
of agent-based automated game testing against typical development-
time changes. In the first stage, we conduct an empirical study
towards the robustness of agent-based game testing. Robustness is
conjectured by [26], but it was not further studied or experimented.
In this paper, we show that the approach is indeed robust against
location and layout changes, though not against logic changes. At
the second stage, we extend the iv4XR’s previously static goal struc-
ture with new constructs allowing agents to dynamically calculate
and add new sub-goals as they go about, trying to solve a given task.
This leads to higher test robustness, allowing them to deal with
logic changes. This makes the task more flexible in the presence of
development changes.

Paper structure. This paper is organized as follows. Section 2
briefly introduces iv4XR agent-based testing approach. Section 3
discusses how our agents can facilitate robust testing. Section 4
explains how we extend the iv4XR framework to achive a higher
level of robustness by adding dynamic goals. Section 5 discusses
experiments we conducted to evaluate the robustness and effec-
tiveness of our approach. Section 6 and 7 cover related and future
work, respectively.

Figure 1: Architecture of typical iv4XR agents deployment.

2 PRELIMINARY: AGENT-BASED TESTING
We use iv4XR1 a Java multi-agent programming framework for
game testing. Figure 1 illustrates its architecture. Every iv4XR agent
is typically used to control one in-game entity. For example, an
agent can take the role of a player character in the game which
can react to the game. The framework is inspired by the popular
BDI concept of agency [15], where agents have their belief which
represents information the agent has about its current system under
test (SUT) and their own goals representing their desire. The agent
can decide which current goal to pursue (’intention’ in BDI) and
which action to perform on the basis of its current goal. To achieve
a goal, the agent can perform various actions. An action is typically
a primitive function provided by the game to change its state. For
example, an action could be moving a player character in a certain
direction for some small distance.

To test something the agent must be given a testing task. Ab-
stractly, a testing task can be formulated as follow:

𝜙︸︷︷︸
situation

⇒ 𝜓︸︷︷︸
assertion

(1)

where 𝜙 is a state predicate describing a set of game states con-
sidered as a goal situation that the agent should establish to check
its correctness, e.g. that it is standing close to a door; and𝜓 is a state
1https://github.com/iv4XR-project

predicate that is expected to hold on all of the states that satisfy 𝜙 ,
e.g. that the said door should be open. The term "assertion" refers
to a property in a game world that we want to assert on.

We treat a testing task, more specifically the 𝜙-part, as a goal
that a test agent wants to automatically achieve (and thus providing
test automation). An example of a goal is to approach an in-game
entity with the given 𝑖𝑑 until the latter becomes visible; Fig. 2. Since
solving or achieving a goal can be non-trivial for an agent, we also
accompany the goal with a ’tactic’ as shown in Fig. 2 specified with
𝑡𝑜𝑆𝑜𝑙𝑣𝑒; we abstract away some technical details.

1 IsVisible(id) = goal("This entity is visible")

2 .toSolve (( BeliefState B) → check entity is

visible)

3 .withTactic(

4 FIRSTof(

5 navigateTo(id),

6 explore (),

7 ABORT()))

8 .lift();

Figure 2: Defining a parameterized goal to approach an in-game entity with
the given 𝑖𝑑 , until the entity becomes visible to the agent.

A tactic is a way to hierarchically combine actions, which is more
powerful, as a means to achieve a goal. For example, if we consider
𝑇1, ...,𝑇𝑛 as actions or tactics, the composition𝑇 = ANYof (𝑇1, ...,𝑇𝑛)
is a tactic that executes one of the enabled 𝑇𝑖 randomly. ANYof is
also called a tactic-combinator, used to impose high-level control
over a set of actions/tactics. FIRSTof (𝑇1, ...,𝑇𝑛) is another tactic
combinator, expressing a priority over𝑇1, ...,𝑇𝑛 : it invokes the first
enabled one in the sequence. For example, the tactic shown in Fig.
2 to solve its goal (line 2) uses this combinator (line 4) to combine
other tactics. One of the used tactics is navigateTo(𝑒) (line 5), in-
tended to drive the agent to move towards the given entity 𝑒 , guided
by some path finding heuristic we will explain later.

Figure 3: A screenshot of a level in a game called Lab Recruits. The level’s
objective is to reach a treasure door. In order to achieve this objective, a correct
sequence of interactions with buttons should be done to open the right doors;
this sequence is indicated by thewhite numbers. Toggling a buttonwill toggle
the state of all doors connected to it; indicated by green lines. The red crosses
show that interacting with a button 𝑏 closes a door 𝑑 .

A testing task can be very hard for an agent to achieve/solve
directly. Consider a simple ’game level’ shown in Fig. 3, taken from
a maze-like 3D game called Lab Recruits 2. The buttons and doors
in the level form a puzzle. It would be a bug to have a puzzle in the
game that can not be finished. Let us then consider:

Example 2.1. Testing task𝑇1: to verify that the level in Fig. 3 can
indeed be finished; so, essentially, verifying that the treasure door
can be opened.
2https://github.com/iv4XR-project/labrecruits



Using an Agent-Based Approach for Robust Automated Testing of Computer Games A-TEST ’21, August 23–24, 2021,

Table 1: Domain specific language of iv4XR framework. Consider 𝐺1, ...,𝐺𝑛

as a goal given to an agent. Using goal combinator 𝑆𝐸𝑄 requires the subgoals
to be solved sequentially. When given to the goal combinator 𝐹𝐼𝑅𝑆𝑇𝑂𝐹 , the
agent will start from the first goal 𝐺1 to achieve it and it will go to the next
goal if the current one fails.

goal structure ::= SEQ(goal structure, goal structure,...)
| FIRSTof(goal structure, goal structure,...)
| WHILEDO(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑔𝑜𝑎𝑙 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)
| goal.lift()

goal ::= goal(name).toSolve(predicate).withTactic(tactic)

tactic ::= SEQ(tactic,tactic,...)
| FIRSTof(tactic, tactic,...)
| ANYof(tactic,tactic,...)
| ABORT()
| action.lift()

action ::= action(name).do(action expression).on(predicate)
| action(𝑛𝑎𝑚𝑒) .addAfter(𝑔𝑜𝑎𝑙𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)

To do this, the agent needs to follow the sequence of steps indi-
cated by white numbers in Fig 3. Without this knowledge, directly
solving the testing task will be exponentially expensive. We can
however set intermediate goals (subgoals) for helping the agent
to solve a given goal. Each subgoal, e.g. approaching a button, is
simple enough to be solved automatically. More generally, rather
than providing a single goal, an agent can be given a goal struc-
ture expressing a complex goal, e.g. it can be a set of goals that
have to be achieved sequentially. More generally, it is a tree with
goal-combinators as nodes and goals as leaves, similar to Goal-Plan
tree [39]. The goals at the leaves are an ordinary goals that specify
a set of desired states. Table 1 shows an overview of iv4XR Java-
embedded domain specific language (DSL) [28] for formulating the
aforementioned concepts: actions, tactics, goal, and goal structures.

3 ROBUST TESTING
During development-time, changing the design of a game is very
common. For example, level designers may change the physical
locations of entities in the game, or even the layout of a game.
Imagine in Fig. 3, the location of button1 is changed. It is essential
to execute related testing tasks again to be sure that the change
does not break any correctness assertion. In the traditional record
and replay testing [37], the tests would take the form of recorded
sequences of primitive actions to get to button1’s old location; when
replayed, they would obviously now break. Developers then need
to re-construct their tests based on the new design; which means
more overall effort and costs.

Below are typical development-time changes; for each we will
mention the feature we study and introduce to make tests robust
against these changes. The features will be discussed further in the
subsections that follow, in Section 4.

Location Change. Entities location may be changed by the develop-
ers, such as in the previous example with button1. To prevent tests
from breaking, routes to entities are not fixed upfront. Instead, we
employ automated world exploration and navigation to entities as
tactics.

When a test is re-run the agent first looks at its belief; if a path
leading to the current goal entity can be calculated, it will navigate
towards the entity. Otherwise, if it cannot find the entity because

the location has changed, it will instead explore the environment
to find a new path to the entity and update its belief. The test
will not break as long as the entity remains spatially reachable, by
improving the robustness of the test. Subsection 3.1 gives further
elaboration of these tactics.

Layout change. This refers to changes to the shape of the game
world. Imagine the designers of the level in Fig. 3 decided to add an
obstacle between button1 and door1; the latter has to be opened to
reach the level’s final goal. When executing the testing task𝑇1 from
Example 2.1 again, if after interacting with the button the agent just
executes the same sequence of actions as it did before, it will not
be able to move toward door1 because of the newly added obstacle.
However, since routes to entities are not fixed upfront, the same
solution to deal with location change above (i.e, auto navigation
and exploration) will allow the agent to find a new route around
the obstacle; thereby, adapting to the new layout.

Logic change. The game’s logic may also be changed by level de-
signers. For example, a button 𝑏 in Fig 3 which was connected to a
door 𝑑 can be changed to connect to 𝑑 ′ instead. Robustness against
such a change cannot be obtained through pure navigation based
tactic. We introduce a feature to let the agent dynamically extend
its own goal structure. Section 4 will explain how this is employed
to deal with logic changes in the system under test.

Additionally, we also want to formulate testing tasks at a high-
/abstract level. This makes it easier for the tester, but additionally,
from the agent’s perspective, a more abstract test depends on less in-
formation and hence also imposes less constraint for on underlying
tactics in adapting the agent behavior to make the test robust.

The sections below elaborates the above mentioned features
which we implemented to improve test robustness.

3.1 Auto-Navigation and Exploration
As pointed out above, the ability to find, and navigating to, an entity
in a game, door1 in the task 𝑇1 in Example 2.1 is crucial for test
robustness against location and layout changes. However, this could
be quite complicated for a test agent because it simulates an actual
human user, typically has limited visibility and interactability.

Limited visibility means that information which the test agent
receives from the game depends on its visibility range and phys-
ical constraints such as that the agent can not see through solid
obstacles. Note that this also implies that when an entity’s state
changes, the agent may not immediately observe the change (and
may not even be able to ever observe it). Also, what the agent does
can affect the information that it can sense from the game. For ex-
ample, by closing a door, the agent can no longer see what happens
behind the door. So, if the agent needs that information, it would
first need to explore, e.g. to find an alternate path to get behind that
door. Another type of physical constraints is limited interactibility:
for interacting with an entity the agent typically should be close
enough to the entity. It will also not be able to interact with the
entity if there is a solid obstacle between them.

We employ tactics to enable agents to cope with these limitations.
As an example, imagine a task 𝑇2 where a test agent has to check
the state of door1. Although the task is simple, it can not actually
be directly solved; the test agent would need to navigate from its
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initial position to door1. However, the agent cannot initially see
where the door is located (its sight is blocked by a wall, see Fig. 3)
therefore has no clue how to get there. To solve this, the agent first
needs to explore the level to learn the game’s spatial layout to find a
path to door1. This is done by the tactic ’explore()’ in the example in
Fig. 2 (line 6). The tactic will locate the nearest reachable navigation
node which the test agent has not discovered yet, and drive the
agent to go there. In each step, the agent will update its belief with
what it observes and it will continue to explore, in principle, until
there is no undiscovered (and currently reachable) node.

The tactic navigateTo(id) in line 5 in Fig. 2 handles the situation
when the target entity is present in the agent’s belief, and further-
more the agent believes that there is a path to the entity. The tactic
uses a path finding algorithm (A*) to guide the agent towards the
entity. The agent uses this tactic in combination with the aforemen-
tioned ’explore()’, using the FIRSTof combinator (Fig. 2 line 4) to
first explore when it cannot immediately navigate, until navigation
becomes possible. Note that exploration and navigation should not
assume that the position of entities are fixed upfront, since this
would make the resulting test fragile with respect to development
time changes. So instead, we assume that only the entities’ ids are
known, and that they are unique.

As mentioned above, the tactic navigateTo(id) needs ’path find-
ing’. Although some games may have an implementation of a path
finding algorithm, e.g. to control non-player mobile entities, re-
purposing this implementation for testing may be difficult as it may
lack the needed flexibility; e.g. avoiding obstacles in a fixed pat-
tern could already be hard wired in the game’s native path finding.
Therefore, to maximize its flexibility, our agents have their own
path finding module.

Figure 4: A mesh, and the resulting navigation graph (right)

Some of the basic terms that are frequently used in the descrip-
tion of path finding are navigation-mesh, navigation graph and path
finder. A path finder is a chosen graph-based path finding algorithm,
e.g. A* [14, 19]. A navigation-mesh represents surfaces in a 3D en-
vironment that are walkable by agents. An example is shown in Fig.
4, along with the corresponding navigation graph 𝐺 obtained from
the mesh. To navigate between locations in the walkable part of the
world, e.g. from 𝐴 to 𝐵, firstly, vertices in𝐺 , e.g. 𝑎 and 𝑒 , which are
closest to these positions should be found. Then,𝐺.pathfinder(𝑎, 𝑒)
can be invoked to give an agent a path.

Dealing with dynamic obstacles. In many computer games, there
are also obstacles that may dynamically change the navigability of
the environment, e.g. a dynamic obstacle such as a fence between
two locations 𝐴 and𝐶 , as shown in Fig. 4. Closing this fence would
block some paths from 𝐴 to 𝐶 . We propagate the state change by
marking the edges that intersect with the fence; in Fig. 4, these are
shown by the red crosses. These edges are thus blocked. A subgraph
𝐺 ′ can be (dynamically) obtained by removing the marked edges.

We then can invoke 𝐺 ′.pathfinder() to obtain an unblocked path.
The test agent should always check the state of dynamic obstacles
to update the 𝐺 ′ [26].

3.2 High-Level Testing
Our agent-based approach provides an implementation of a testing
task at a high level, where testers do not need to be aware of the
underlying programming of the tactics. Below we will explain how
our approach enables high level formulation of testing tasks.

In a traditional setup, e.g. using a game testing framework like
the Unity Test-Framework3, the test agent would have to be guided
to the goal entity step by step, which means much programming
effort and time. In contrast, in iv4XR, we have navigation and
exploration tactics (Subsection 3.1) to automatically guide the test
agent to travel from any position 𝐴 to 𝐵. Programming such details
are thus detached from the testers’ concern, who then can focus
on formulating such testing tasks in terms of goals. In particular,
tactics are hidden from the testers’ concern.

More complicated testing tasks can be formulated purely at the
goal level. To show this, consider again the task 𝑇1 in Example
2.1. This task can be formulated as shown in Fig 5. The agent
cannot directly solve 𝑇1, so we break this task into subgoals. This
decomposition can be directly translated into iv4XR testing task
as shown in Figure 5. Although in this example we do give the
agent the solution for solving the task, notice that the testers do
not have to manually program the underlying 3D navigation; the
latter approach is not only time consuming, but also very fragile.

We have shown that testers can formulate testing tasks in terms
of goals. Tactics are hidden from them, but indeed someone needs
to provide the tactics, with which goals will be solved. Tactics are
likely to be quite game specific, so we can’t provide a library that
would work for all. However, once defined, the tactics can be used
over and over again for solving goals and goal structures.

1 var testingTask = SEQ(

2 isInteracted("button1"),

3 isChecked("door1"),

4 isInteracted("button3"),

5 isChecked("door3"),

6 ...

7 isChecked("treasureDoor"),

8 isOpen("treasureDoor")

9 );

These are subgoals
to solve the 𝜙 part
in Eq.(1).

assertion part in
Eq.(1).

Figure 5: A testing task to verify that the level in Fig 3 can be finished.
isInteracted(𝑏𝑢𝑡𝑡𝑜𝑛1) constructs a goal structure that would be solved if the
agent manages to interact with the button1; indeed, it first needs to move to
the button. Line 3 checks the state of the door, whether it is open. isOpen
checks the assertion that the treasure door should be open.

4 DYNAMIC GOAL STRUCTURE
In the previous section we discussed how to deal with location
and layout changes to obtain robust automated testing. We will
now show an extension that would enable our agents to handle
logical change during development-time as well. As an example,
suppose a door 𝑑 in the level in Fig. 3, which was connected to a
button 𝑏, is now connected to another button in the new version
of the level. Consequently, the logic of the level also changes, as
3https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
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interacting with 𝑏 will not open 𝑑 anymore. Suppose the change
is intentional (so, not an error). To prevent the original test from
breaking we will extend it with a fragment of adaptive logic, e.g.
through appropriate (parameterized) goal structure: if interacting
with a preset button 𝑏 does not open the corresponding door, the
agent should now look around to find another button 𝑏 ′ that can
open the door. This 𝑏 ′ is not known upfront though, so this involves
dynamically introducing new goal structures to search for it.

In the initial setup of iv4XR, an agent can dynamically insert a
new goal structure to the given testing task by invoking the action
addAfter. In our example, this new goal would be a new target
button that the agent should try. Note that if this new button still
can not open the door 𝑑 , the addition of the new goal needs to
be repeated. To do this, a new goal-combinator is introduced to
iv4XR’s DSL calledWHILEDO; Fig 1.

Algorithm 1 Dynamic Search Strategy
1: 𝑒𝑛ℎ𝑎𝑛𝑐𝑒 (𝑏,𝜙𝑑 ) =
2: FIRSTof(
3: SEQ(𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑑 (𝑏), 𝜙𝑑 ),
4: WHILEDO(there is an untouched interactable 𝑏′,
5: SEQ(
6: FIRSTof (
7: addAfter the goal ”𝑖𝑠𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑒𝑑 (𝑏′)” ) ,
8: 𝜙𝑑 )
9: ))

In the testing task shown in Fig 5, if interacting with the asso-
ciated button can not open the door 𝑑 , the test fails. However, to
enhance robustness, the goal combinator WHILEDO is invoked in
Algorithm.1 (line 4). Inserting a new goal will be repeated until
the agent can open the door 𝑑 , or until it has tried all currently
reachable buttons. The number of goals to be added is not known
upfront. Hence, the first subgoal of this combinator is a predicate
to check whether the agent is allowed to continue adding a new
goal. The predicate is checked in each iteration of this combinator.

To get some insight on the algorithm, consider again the above
mentioned example. To open door 𝑑 , button 𝑏 first needs to be
toggled; this is specified by the sequencing combinator SEQ in line
3 in Algorithm 1, where 𝜙𝑑 is here the goal that the door 𝑑 is open.
If that fails, the WHILEDO combinator is invoked with a predicate
to check buttons’ status to know is there any untouched button
to interact with; line 4. Based on the predicate’s result, it decides
to insert, dynamically, a new goal structure; or to terminate the
repetition; lines 5-8. The action addAfter adds a new goal to look for
a new button 𝑏 ′ to interact; line 7. Until achieving the goal 𝜙𝑑 , or
until all buttons have been touched the sequence will be repeated.
The algorithm may indeed tolerate a logical change that is actually
unintended (error). However, since it is an extension of the original
testing task, it would still know if the logical change breaks the
base task and can mention this as a warning.

5 EXPERIMENT
To evaluate robust automated testing in the proposed framework, a
set of experiments are required.We use the Lab Recruits game as the
case study. Fig. 3 showed a screenshot of this game; as mentioned, it
is a maze-like 3D game4. The game is also an AI-gym (in our case we

4https://github.com/iv4XR-project/labrecruits

want to evaluate testing AI), comparable to OpenAI Gym or Unity
Obstacle Tower gym.The latter two are more suitable for vision-
based AI, whereas our approach is based on structural observation
on the game world, which they do not provide. Lab Recruits allows
game-levels to be custom made, allowing us to create controllable
environments for experiments.

ResearchQuestion. Can our agent-based approach be used to im-
prove the test robustness of computer games?

Towards answering this RQ, we created Lab Recruits levels of
various complexity (Table 2, we will explain them later) and set our
agent to test them. The testing task’s objective posed for all these
levels is to check whether a door marked as the treasure door can be
opened and reached. Similar to the task𝑇 1 in Example 2.1, reaching
the treasure door requires the agent to do a certain sequence of
interaction with buttons and checking doors. We first assume the
solving sequence is known to the developers. Later, when the levels
are mutated, the agent will have to find the new solution by itself.

We consider two different types of automated tests;
In 𝑇𝑒𝑠𝑡base we turn the solving sequence into the corresponding

testing task. This is similar to the code in Fig 5. So, 𝑇𝑒𝑠𝑡base would
contain subgoals for checking the state of relevant doors. In each,
the agent first interacts with a preset button known to be connected
to a door 𝑑 . Then it checks 𝑑’s state. If it is open the agent proceeds
to the next subgoal, which is opening the next door by interacting
with the associated button. Otherwise, it fails.

𝑇𝑒𝑠𝑡dynamic extends 𝑇𝑒𝑠𝑡base by incorporating extra robustness.
In section 4, we discussed how dynamically adding a new goal
structure can help an agent to cope with logical changes.

Levels. Three different levels of the game Lab Recruit are created,
with the same underlying design; Fig. 2. The underlying design has
two rooms, connected with doors in between. Each level has dif-
ferent complexity for an agent towards solving the corresponding
testing task. 𝐿𝑒𝑣𝑒𝑙2 and 𝐿𝑒𝑣𝑒𝑙3 have more buttons than in 𝐿𝑒𝑣𝑒𝑙1;
more effort in finding a new solution when executing 𝑇𝑒𝑠𝑡dynamic
would be spent by the agent. Also, they have a backtracking sce-
nario: after entering the second room the agent needs to back to the
first room for the purpose of interacting with a button connected
to the treasure door. 𝐿𝑒𝑣𝑒𝑙1 has a move forward scenario: the agent
can open the doors by interacting with the buttons in the same room.
We also say that 𝐿𝑒𝑣𝑒𝑙2 has ’backtrack depth’ 1, whereas 𝐿𝑒𝑣𝑒𝑙1 has
depth 0. In 𝐿𝑒𝑣𝑒𝑙3, the developers incorporate some obstacles so
that some buttons may not be immediately visible to the agent
which affect the level’s complexity.

Evaluating robustness. To evaluate the robustness of our tests, a
mutation test [13] is applied against the aforementioned 𝑇𝑒𝑠𝑡base
and 𝑇𝑒𝑠𝑡dynamic. Mutations are applied to the above mentioned
three levels of Lab Recruits, simulating three different types of
development changes discussed in Section 3. After that, we re-
execute the aforementioned tests on the generated mutants and
inspect the results of the tests. Since wewant to evaluate robustness,
these mutants represent intended changes. Importantly, note that
they do not represent bugs.

The robustness of a test will be assessed by the number of mu-
tants that the test can ’survive’ (that is, it manages to complete
without failing). Since developers can change multiple things in a
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Table 2: The features of each level. Each contributes to the level’s complexity.
BD is the backtracking depth of the corresponding level.

level room-size button door obstacle BD

𝐿𝑒𝑣𝑒𝑙1 10×10 8 4 - 0
𝐿𝑒𝑣𝑒𝑙2 10×10 12 4 - 1
𝐿𝑒𝑣𝑒𝑙3 10×10 12 4 4 1

Table 3: Mutation test result, showing howmanymutants in 50 mutated sam-
ples can survive in each level, and the p-value of this result.

Mutation Type Level 𝑇𝑒𝑠𝑡base 𝑇𝑒𝑠𝑡dynamic
success (p-val) success (p-val)

Location change
𝐿𝑒𝑣𝑒𝑙1 50/50 (0.0003) 50/50 (0.0003)
𝐿𝑒𝑣𝑒𝑙2 49/50 (0.0029) 49/50 (0.0029)
𝐿𝑒𝑣𝑒𝑙3 48/50 (0.0142) 48/50 (0.0142)

Location and logic change
𝐿𝑒𝑣𝑒𝑙1 - 50/50 (0.0003)
𝐿𝑒𝑣𝑒𝑙2 - 50/50 (0.0003)
𝐿𝑒𝑣𝑒𝑙3 - 50/50 (0.0003)

single commit, we let each mutant to have multiple mutations. The
first group of mutants only applies location changes to the buttons
and doors in the target levels. The second group additionally applies
logic changes. We do not explicitly do layout mutation. However,
𝐿𝑒𝑣𝑒𝑙3 has obstacles. So, when the location of e.g. a button is mu-
tated, then relative to the button the layout appears to change. E.g.
if before the button could be directly reached, after the mutation
the agent may have to get around one or more obstacles to reach it.

Evaluating performance. The time needed by a test to solve a testing
task is a measure for computing performance. Preferably, we want
testing tasks to be solved within reasonable time. To gain some per-
spective on the relative performance of our approach, we compare
our 𝑇𝑒𝑠𝑡dynamic strategy with two other search strategies: Genetic
Algorithm [20], Q-learning; and a random-testing tool; T3 [29]. In
order to investigate these three approaches in our case study, a
model of the levels is constructed to simulate them at the logical
level (geometric details are abstracted away). After that, the non-
agent algorithms are run on the simulator. As a simulator, it runs
much faster than the actual Lab Recruits. Note that in this setup, the
non-agent algorithms are set to search at the logical/subgoal-level.
So, we allow them to operate at a high level of search rather than
to literally search over the interaction space of Lab Recruits. In
contrast, 𝑇𝑒𝑠𝑡dynamic does not use such a model.

All experiments were run on amachine equipped with an Intel(R)
Core i7-8565U processor and 32GB of RAM.

5.1 Result on Robustness
For each level (Table 2) mutants are randomly created. To achieve
statistical significance 50 mutants are created per level and per type
of mutation. We then exercise our automated tests (so, 𝑇𝑒𝑠𝑡base
and 𝑇𝑒𝑠𝑡dynamic) to these mutants. Due to engineering factors, it is
inherently difficult to deterministically control a game under test.
Because of that, we executed each test on each mutant three times.

The outcome of a test on a mutant is a "success" if it manages
to complete on all its three runs on the mutant, and else it is a
"failure". This can be modeled by a binomial distribution. In this
experiment, the hypothesis is 85%, that is to say, the probability of

individual test success is 𝐻0:85%. 𝑃−𝑣𝑎𝑙 (𝑥) predicts the probability
that the test would succeed on 𝑥 mutants out of a total of 𝑛 mutants
with respect to 𝐻0 hypothesis. A rejection level is considered as
0.05 (a traditional level used) which confirms the hypothesis if the
𝑃−𝑣𝑎𝑙 (𝑥) outcome is less than 0.05. Table 3 shows the result.

The table shows that 𝑇𝑒𝑠𝑡base can survive almost all location
changes on all levels in the experiment, indicating that it is indeed
robust against such changes. Furthermore, the levels’ complexity
has little influence on the robustness. We do not execute 𝑇𝑒𝑠𝑡base
on the mutants that involve logic changes; it will not survive such
a change as its scenario is already fixed. The result for 𝑇𝑒𝑠𝑡dynamic
shows that it is just as robust, and additionally can survive the
introduced logical changes in all levels. We also investigated the
failure-cases, and observed that the fails is caused by the agent’s
failure to see some object that is subtly positioned behind another.

The experiment confirms the hypothesis that the tests have
’robustness’ of at least 85%, suggesting that we can reduce the
developer’s manual effort that would otherwise have to be spent
for inspecting and fixing broken tests by the same amount. We also
want to note that if we consider𝑇𝑒𝑠𝑡dynamic as a general algorithm,
rather than as three separate instances for each of the levels in
the experiment, then its failure rate is 3 out of 300 samples, which
corresponds to robustness level of 95% with the p-value of 0.0001.

Indeed there are some mutants that the tests fail to survive.
Upon closer investigation this is caused by the agent’s failure to
see a button because it is hidden behind another button or behind a
corner. On the other hand, the agent has seen all navigation vertices.
So it reasons that the button must thus be absent. This can be solved
by implementing a heuristic, which we did not do, arguing that this
might be a usability issue that should be reported to the developer.

Effectiveness. Table 3 also shows the effectiveness of our automated
test. The effectiveness of a test will be assessed by the number of
different "scenarios" that a test can automatically solve within rea-
sonable time. This only makes sense for 𝑇𝑒𝑠𝑡dynamic since 𝑇𝑒𝑠𝑡base
is fixed towards the particular scenario it is meant for.

To automatically solve a testing task 𝑇 , the more challenging
part is finding an execution that can solve its scenario part5. Recall
that the set testing task 𝑇 for each level in our experiment is to
check if the treasure door can be opened. The mutants generated
during the mutation test also randomise the scenario part of 𝑇 (in
the case of logical mutation), or maintain the same scenario but
the required solving executions are different (when only location
mutations are applied). So, the results in Table 3 also give us insight
about the effectiveness of the used tests.

As remarked before, 𝑇𝑒𝑠𝑡base follows a fixed scenario; it will not
be able to solve other scenarios. However,𝑇𝑒𝑠𝑡dynamic can, because
it incorporates a search strategy to deal with the situation that the
logic connecting buttons to doors is changed. Notice that the results
in Table 3 also implies that 𝑇𝑒𝑠𝑡dynamic can thus solve all but a few
of the randomly generated alternate scenarios on all three levels. So,
𝑇𝑒𝑠𝑡dynamic is not only robust, but also effective; whereas, 𝑇𝑒𝑠𝑡base
is only limitedly robust. Some effort must be expended to write the

5To compare this with unit testing a function, to automatically test an assertion within
the function the hard part is not the checking of the assertion itself, but rather, finding
inputs that would trigger an execution that exposes the assertion.
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Table 4: The performance of various algorithms to solve a 𝐿𝑒𝑣𝑒𝑙1 mutant.
𝑇𝑒𝑠𝑡dynamic is run on-line on the Lab Recruits. The others are run off-line on
a model. #attemps is the total number of subgoals tried until 𝐿𝑒𝑣𝑒𝑙1’s testing
task is solved. The run time is given in seconds; those marked with * are the
projected run time if the corresponding algorithm would run on-line on Lab
Recruits. This is obtained by multiplying #attemps with the average execu-
tion time per subgoal of𝑇𝑒𝑠𝑡dynamic.

Algorithm Minimum Maximum Average
#attemps time #attemps time #attemps time

𝑇𝑒𝑠𝑡dynamic 6 8 54 75 30 42
Genetic algorithm 214 300* 50292 70409* 6872 9621*

Q-learning 90 126* 32198 45077* 5641 7897*
T3 52 73* 53790 75306* 44925 62895*

search strategy used by𝑇𝑒𝑠𝑡dynamic, but a strategy only needs to be
written once, and then it can be used in for different testing tasks.

5.2 Result of Performance
To get some insight on the relative performance of our automated
test, we compare 𝑇𝑒𝑠𝑡dynamic with two other algorithms: genetic
algorithm, Q-learning, and T3. For the genetic algorithm, the used
fitness function incorporates information about the state of the
buttons and doors (e.g. opening a door increases the fitness). Com-
parison with T3 is included because it is a testing tool [27]. Its
algorithm is mainly random-based.

Table 4 shows their performance comparison on a randomly cho-
sen logic-mutant of 𝐿𝑒𝑣𝑒𝑙1. Given the magnitude of the difference
in their performance, the choice of the mutant or level does not
matter much. As mentioned before we run the other algorithms on
a logical model created based on 𝐿𝑒𝑣𝑒𝑙1. This allows them to run
much faster (else their run time would be prohibitively long) and
to solve the testing task at the higher level, whereas 𝑇𝑒𝑠𝑡dynamic
has to solve it on-line on Lab Recruits, without a model.

The table shows the minimum, maximum, and average of the
total number of subgoals each algorithm tries, until it solves the
given testing task. A ’subgoal’ here is for example ’interact with
button 𝑏’ or ’go to door 𝑑’. The needed time to solve the testing
task, for non-𝑇𝑒𝑠𝑡dynamic algorithms, is the projected time if they
would be executed on-line on Lab Recruits.

As shown in Table 4, it is evident that 𝑇𝑒𝑠𝑡dynamic has much
better run time compared to others. Q-learning algorithm has the
best average compared to the other non-𝑇𝑒𝑠𝑡dynamic algorithms
used, but its projected run time is still in the order of several hours
compared to less than a minute of 𝑇𝑒𝑠𝑡dynamic.

Result of scaling up. To evaluate how the size of a game level affects
the test performance, we progressively increase the rooms’ size.
Table 5 shows the result of the agent’s performance on 𝐿𝑒𝑣𝑒𝑙1. As
it is shown, the time needed and the number of tried subgoals in-
creases, roughly, linearly with respect to the rooms’ size. It indicates
that increasing the size of a game environment (in our case levels)
would not unproportionally degrade the test performance using
our dynamic strategy.

6 RELATEDWORK
In the last decades, various automated testing techniques have been
developed and extensively studied [3, 10, 16, 23, 32]. Search-based
testing (SBT) [2, 11, 12, 18] has shown its effectiveness. However,
SBT lacks the ability to reason, hence severely hampering its ability

Table 5: The performance of 𝐿𝑒𝑣𝑒𝑙1 when the number of rooms is increased
exponentially.

2-rooms 4-rooms 8-rooms 16-rooms 32-rooms

time 18 69 81 298 539
attemps 289 1007 1465 4835 7344

to handle the vastness and the complexity of typical games’ inter-
action space. Another alternative approach is model-based testing
[10, 35, 36]. The approach uses models of software systems to de-
rive test cases from the models. In order to achieve accurate results,
high-quality models are extremely important. Iftikhar et al. [17]
developed a UML-based model to support automated system-level
game testing of platform games. However, models often have to be
manually constructed. which requires a lot of efforts.

Recently, testing has become an increasingly important instru-
ment to improving the quality of computer games [33, 34]. Research
has provided variousmethods [17, 21] towards automated game test-
ing, but they still require substantial manual work, e.g. to prepare
models [17] or to redesign and re-record test sequences when the
game is changed. Hence, researchers have been investigating ways
to combine automated testing and the application of techniques
from machine learning [4, 40, 41] in the context of game testing.
E.g. Pfau et al. [25] developed ICARUS to test and detect bugs in
an adventure game. However, this type of AI also requires much
training, which could make it impractical to be deployed during
the development time where SUT would undergo frequent changes.
The approach proposed in this paper is different in that it relies on
agent-based AI (e.g. reasoning) instead of machine learning. So, it
does not require training. It does mean that some programming
effort will be needed, but we would argue that this can be done at
the high level, and results in tests that are robust.

Agent-based approach was thought to be better in reducing
the complexity of systems under the test but the idea is not well
investigated. E.g. researchers in [6, 24, 30] developed an agent-based
approach for testing services and web applications. Askarunisa
et al. [5] proposed a multi-agent framework for automating the
testing process of a database application. The common idea behind
these works is to use agent properties mentioned before to handle
complicated situations, but neither work actually investigates how
to exploit agent reasoning. In our work, agent reasoning is utilized
to make an intelligent test agent that can perform more effectively
to deal with the complexity of the game as well as improving the
robustness of the tests that it does.

Recently, researchers have also been trying to combine artificial
intelligence techniques into existing automated testing techniques
to improve the latter. E.g. researchers in [7, 22], apply Reinforcement
Learning for user interface level testing and automated testing
of Android applications. Approaches discussed in [8, 41] extend
automated approach with Reinforcement Learning. Zheng et al.
[41] developed an on-the-fly framework called Wuji for automated
game testing using a combination of evolutionary algorithm, Deep
Reinforcement Learning, and multi-objective optimization. Vuong
et al. [38] apply Q-learning to leverage both random and model-
based testing. Although these approaches are not agent-based, they
shed some light on how they could be applied to agents. Having
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test-agents that are able to learn would reduce the amount of work
required to program them and might even improve their robustness.

7 CONCLUSION
This paper focused on the problem of automated testing in modern
computer games as a significant enhancement for quality assurance.
In this regard, we proposed an agent-based approach based on the
iv4XR framework to produce robust automated tests. The approach
is suitable for testing games that are played in a 2D/3D virtual
world. Our framework provides an ability to program tests in high-
level, regardless of the underlying details such as 3D navigation
and geometric reasoning. Path finding is applied to provide auto-
navigation and exploration skills to test agents that detaches testers’
concern, when programming tests, from such details.

To evaluate our approach we considered different types of de-
velopment changes that might be applied by level designers. It was
observed that our tests could survive the changes. This implies that
we can reduce the developer’s manual effort that otherwise would
have to be spent to edit tests according to the last changes. We also
investigated our test performance by comparing the proposed auto-
mated test strategy with two other search strategies and a random
testing tool, T3. We found that our automated testing strategy has
superior run time to find a solution to solve a goal.

In the future, we would like to study how to apply learning
techniques to our agent-based framework in order to improve our
level of automation. Also, we would like to investigate our approach
on more case studies.
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