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Mapping wheel-ruts from timber harvesting operations using deep 

learning techniques in drone imagery 

Wheel ruts, i.e. soil deformations caused by harvesting machines, are especially 

harmful because they can impact growth conditions of future forest generations 

and should therefore be avoided or ameliorated. However, the mapping of wheel 

ruts that would be required in monitoring harvesting operations and planning 

amelioration measures is a tedious and time-consuming task. We used a deep-

learning image-segmentation method (ResNet50 + UNet architecture) that was 

trained on drone imagery acquired shortly after harvests in Norway, where more 

than 160 km of wheel ruts were manually digitized. The leave-one-out cross-

validation of 20 harvested sites resulted in F1-scores of 0.45-0.83 with an average 

of 0.67. The highest accuracy was obtained for severe wheel ruts (average user’s 

accuracy (UA) = 0.74), and the lowest accuracy was obtained for light wheel ruts 

(average UA = 0.62). Besides rut severity, the accuracy was also affected by the 

spatial resolution and noise present at the site. In combination with the ubiquitous 

availability of drones, the results of our study have the potential to greatly reduce 

the environmental impact of final felling operations by enabling the automated 

mapping of wheel ruts. 

Keywords: UAV, soil  displacement, image segmentation, CNN, Neural 

networks 

Introduction 

Mechanized harvesting of forests is an integral part of sustantiable forest 

management and required to supply society with the required timber through efficient 

and safe forest operations.  However, mechanized harvesting operations can constitute 

considerable environmental impacts. Besides the inevitable but temporary loss of 

habitat for forest-dwelling animal and plant species, harvesting operations can result in 

soil damage (Ampoorter et al. 2010). Wheel ruts are a form of soil displacement caused 

by wheels or crawler tracks of forest machines that compress and shear upper soil 

layers. Despite considerable technological developments to reduce the impact on soils, 

wheel ruts can occur when forest operations cannot be conducted under suitably low 



soil moisture conditions. The porosity of soils affected by wheel ruts is  may be 

reduced, resulting in anaerobic processes, and reducing the stability and growth of 

future forests. Therefore, wheel ruts should be avoided as far as possible, and forest 

certification schemes and regulations includes thresholds for acceptable levels of wheel 

rutting. Hence, it is important to have efficient ways to monitor the amounts of wheel 

rutting following harvests.  

Because of the large areas involved, rugged terrain, and presence of harvest 

residues, it is challenging to map wheel ruts in the field, and the use of remotely sensed 

data may present a feasible alternative (Talbot and Astrup 2021). Drones or unmanned 

aerial vehicles (UAVs) have become popular for capturing images in many forest-

related applications (Puliti et al. 2015, Ighlaut et al. 2019, Kentsch et al. 2020, Banu et 

al. 2016). In the field of forest operations, drone images and derived 3D products 

provide a useful source of information to assess the environmental performance of the 

harvesting operation (Talbot and Astrup 2021). In particular, drones have been used to 

measure wheel rut depth (Pierzchala,Talbot and Astrup 2014, 2016, Haas et al. 2016, 

Talbot et al. 2018, Marra et al. 2021). These studies provided insights in the obtainable 

accuracy of the rut depth measurements from drone imagery. 

Nevertheless, all the above studies required manual intervention in either 

identifying the trail network or localizing specific measurement points or profiles for 

further analysis. In an effort to automate such measurements, Nevalainen et al. (2017) 

developed a method to delineate wheel ruts and measure their depth based on UAV 

imagery. While providing a certain degree of automation, such a method is limited since 

it heavily relies on the presence of trees around the wheel ruts, which are used to mask 

out the track area. Such conditions are rarely met in clear cut areas, characterized by a 

mix of open ground and harvest residuals.  



A more widespread operational deployment of UAV based post-harvest 

assessment would require the partial or full automation of wheel rut detection and 

measurement (Talbot and Astrup, 2021). Popular techniques for the analysis of drone 

data comprise support vector machines (SVM) (Boser et al. 1992) and random forest 

(Breiman 2001), but these also require human intervention for feature extraction and 

therefore rely heavily on domain knowledge (Liu & Lang 2019). Deep learning (DL) 

algorithms automatically learn the features from the data (lazy learning), enabling 

automation for broad applications, and often outperform traditional algorithms (Zou et 

al. 2015; Wurm et al. 2019; Bhatnagar et al. 2020). This is also aided by more 

sophisticated DL libraries and complementary hardware to process the data. For remote 

sensing applications, convolution neural networks (CNNs) have become a popular 

choice (Ma et al. 2019). CNNs are utilized mainly for classification in two ways – scene 

annotation and semantic segmentation. In the case of scene annotation, the output of the 

CNN is the 1-dimensional (1D) vector defining the probability of the image belonging 

to a particular label. Whereas in semantic segmentation, every pixel is labelled, i.e., the 

output is not a 1D probability but a 2-dimensional (2D) score map. Therefore, in 

semantic segmentation, some fully connected layers are replaced by fully convolutional 

layers. There are multiple new and off-the-shelf architectures present, which have been 

successfully applied in remote sensing for image classification already (Shin et al. 

2016).  

While we are not aware of studies on the automated detection of wheel ruts 

using DL, CNNs have been applied for urban mapping (Audebert et al. 2018), like the 

identification of roads (Bayoudh et al. 2021), cracks in surfaces (Kim et al. 2021; Ali et 

al. 2021), tracks (Giben et al. 2015), and pavements (Ma et al. 2021). In addition, 

studies like Kanakaraddi et al. (2021), Patil & Jadhav (2021), Sofia et al. (2021) have 



depicted the usage of CNNs to detect roads using satellite imagery. Zhang et al. (2018) 

describe the benefit of combining ResNet with UNet to extract roads from aerial 

images.  

This study aims to automate the detection and segmentation of wheel ruts caused 

by cut-to-length harvesters and forwarders in drone images of previously tree-covered 

sites acquired shortly after final harvests. We use CNN models to segment wheel ruts 

and cross-validate our results using 20 independent harvested sites with areas between 

0.5-21.5 ha in south-eastern Norway.  

Material and methods 

The processing workflow (Figure1) consisted of the five steps 1) Capturing the 

drone imagery. 2) Manual annotating the drone images (digitized as polyline vectors). 

3) Pre-processing of the images, which includes rasterization of the wheel ruts vectors, 

and splitting the imagery for feeding into the DL system. 4) Semantic segmentation to 

detect wheel and non-wheel rut areas in all images per site. 5) Post-processing of the 

predicted results, including mosaicking the images and applying morphological 

operations on the mosaicked images. Steps 4 and 5 were repeated for all sites in the 

leave one out cross-validation format.  

Study sites and drone data 

A total of 20 study sites were available that were imaged from a drone after clear 

cutting (Figure 2a). The flights were conducted over a span of four years (2016 – 2019) 

as part of a long-term effort to monitor the environmental performance of modern 

harvesting practices. A full description of the manually annotated data is provided by 

Heppelmann et al. 2021. All sites were productive forest areas in south-eastern Norway. 

The availability of the sites was determined in cooperation with forest owners 



commissioning harvests in several research projects for which the drone data were 

collected. 

The drone data acquisitions varied with respect to several parameters, including 

the camera used for the image acquisition, flight altitude, season, date and time of the 

day (Table 1).  

The sites captured in the initial part of the acquisition period were done so using 

a DJI Phantom 2 UAV fitted with a GoProTM Hero 4 12 mega-pixel camera (p2GoPro) 

(DJI 2013), which was later replaced with a DJI Phantom 4 Pro UAV, with DJI’s 

factory fitted 20 mega-pixel camera (p4pro) (DJI 2020). Survey flights with given 

altitudes and overlap were conducted using DJI’s Ground Station Pro software (DJI 

2021) in most cases, although UgCS software (www.ugcs.com) was used on steeper  

sites to reduce variation in GSD within the same model. UgCS allows for flight paths to 

be set to follow the terrain form from a given digital terrain model resulting in a 

constant flight height above ground. For the lower resolution p2GoPro, a flight altitude 

of approximately 50 m above the ground was targeted, while this was increased to 

between 60 and 100 m on the p4pro, both depending on terrain and obstacles. Despite 

only low-to-ground objects being of interest, a high forward overlap of 80% and lateral 

overlap of 70% was targeted in the flight plan. On each site, 5-7 ground control points 

(GCPs) were installed before image capturing. The GCP position was recorded at 

centimetre accuracy using a TopCon GR-5 real-time kinematic (RTK) GNSS with live 

correction via the GSM network. 

Agisoft Photoscan was used in processing all UAV based image data (Agisoft, 

2019). This process includes feature detection, image alignment, depth mapping, the 

generation of sparse and dense point clouds, a textured mesh, and finally, digital 

elevation model (DEM) and ortho-mosaic creation. Depth mapping and the accuracy of 



that is carried out using structure-from-motion (SfM), as described by Iglhaut et al. 

(2019). The GCPs, which were clearly visible in the imagery, were used in optimizing 

camera pose estimates during the SfM procedure in Agisoft, resulting in DEMs with an 

RMSE typically < 5 cm on average. The finest common resolution on each site was 

used in generating the orthomosaics and DEMs, which was typically the same as the 

GSD of 1-3 cm.  

Data annotation 

The ortho-mosaics for all 20 sites were manually annotated in a GIS 

environment to register the location, frequency, and severity of wheel ruts (Figure1, step 

2). Due to the removal of most trees (i.e., clear cut) during the harvesting operations, the 

tracks were clearly visible in the RGB ortho-mosaics. In addition to the RGB 

information, the UAV DEM were also used to aid the annotation of the UAV data 

(Heppelmann et al. 2021). The tracks were digitized as polylines, and each polyline was 

classified into the following three severity classes (Figure 2c).  

• Light: visible tracks with no identifiable soil displacement or rut-formation.  

• Moderate: tracks that showed rutting with minor soil displacement and deeper 

indentations but no visible loss of water drainage functions.  

• Severe: all tracks with either substantial soil displacement, deep indentations, 

loss of water drainage functions, or a combination of various of these factors.  

Preparation of the annotated data for deep learning 

The aim of the study was the segmentation of wheel ruts independent of their 

severity category (Figure1, step 3). The input reference observation for modelling was 

thus a binary annotated image with wheel ruts as one class and unaffected area as a 

second class. Such an image was generated by applying a three meters buffer around the 



annotated line shapefile, dissolving the results, and converting the resulting polygon 

into a binary raster with a value of one in correspondence to tracks and zero to non-

tracks (Figure 3 b,c). The three-meter buffer around the annotated line shapefile was 

selected after a visual assessment of the affected area. Additionally, any non-forest area 

was masked out from the further analysis.  

The input to the deep learning model (next section) is RGB images in portable 

network graphics (png) format with a size of 210 × 210 pixels. Therefore, the RGB 

GeoTIFF raster and the annotated data were split into tiles of 210 × 210 pixels and 

converted to png format. The metadata containing the geotags of the tiles were stored 

and used later for mosaicking the predictions. All images were manually checked for 

quality before feeding the images into the model, and completely blurred or distorted 

images were removed. That is, from the total of 1909 images, 12 were removed such 

that a total of 1897 images were available for model training. However, for testing the 

model, all the images were used, resulting in a total of 1909 predicted images. This was 

done such that continuous mosaicked can be formed without any gaps. Depending on 

the size of the sites being used for training and testing, the amount of training data 

varied. The smallest site (site A) consisted of 96 images, and 1801 images were 

available for training. The biggest site (site T) consisted of 423 images, and 1474 

images were available for training (Table 1, Section 3.2).  

Semantic segmentation using CNN 

For semantic segmentation (Figure1, step 4), the choice of architecture is 

generally application-specific, and each architecture has advantages and disadvantages 

in accuracy, memory consumption, operation counts, inference time and parameter 

utilization (Canziani et al. 2016). Preliminary analysis on a subset of this study’s data 

revealed that among several combinations of network architectures, the combination of 



ResNet50 and UNet provided the best result, and we thus selected this combination for 

further analysis.  

Figure 4 shows the architecture used in this study. The ResNet50 architecture is 

well resilient to overfitting due to its residual learning concept (Yang et al. 2020), which 

states that each layer will feed to next layer and also to the activation layer directly. The 

layers are considered residual blocks to facilitate the network's training (Ardakani et al. 

2020). For decoding the information from ResNet50, UNet architecture is used. The 

UNet retains information while upsampling to circulate context from lower to a higher 

resolution layer (Alam et al. 2021). Due to the availability of limited data, a transfer of 

pre-trained weights from ImageNet was applied on ResNet50, and UNet (decoder) was 

trained from scratch. Image augmentation (flipping, rotation) was also used to increase 

the number of input images. 

The ResNet50 is a deep network having 50 layers, including batch normalization 

layers. Such layers normalize the nodes before inputting them into the following 

activation function. The architecture uses skip connections to impart information 

between the layers. The convolutional layer is matrix multiplication over the images 

using a filter of size 3 x 3 with stride = 2 (Figure 4).  

The activation function (A) is used to introduce nonlinearity in the input images, 

which is done to make the model more expressive and sensitive to distinguish minute 

features. The Rectified Linear unit (ReLu) activation function we used in this study is 

one of the most used activation functions due to its high computational effectiveness 

and computing speed (Lu et al. 2017, Bircanoğlu & Arıca 2018). ReLu removes all the 

negative parts from the input (image f), as described in ‘Equation (1)’. 

 A(f) = 0; f < 0 (1) 

       A(f) = f; f ≥ 0 



where A(f) is a picture element of f. Apart from ReLu, for classification, a 

Softmax classifier for calculating probabilities was used as a top layer for pixel-wise 

prediction. To extract the most important features (e.g. sharp and smooth features), 

pooling layer was used. Here, we use max pooling layer, where only the local maxima 

of the region under the filter was carried forward.  

Apart from the choice of architecture, the choice of hyper-parameters also plays 

a vital role in the performance of the CNN model. Only a subset of data was used for 

tuning the model for efficient and faster processing. The aim of optimization is to 

minimize the cross-entropy loss this was done using adaptive momentum (ADAM) 

optimization. To ensure augmentation does not change the quality of the test results, the 

L2 (or ridge) regularisation method was used. An initial learning rate (the rate at which 

weights are updated) of 0.01 was selected by the hit and trial method. The batch size 

was set to 20. For upsampling, the UNet architecture trained from scratch was applied. 

UNet uses both transpose convolution and skip connections to sync the feature maps 

from the encoder and decoder.  

The proposed methodology was run using a 16 GB Precision 5820 Tower 

Workstation with Intel® XeonTM processer and Ubuntu® Linux operating system. The 

deep learning model was run in a leave-one-out cross-validation scheme for all 20 sites 

by omitting one site at a time to test. The model training took approximately 50 hours 

for 20 epochs per site. Hence, the entire process for 20 sites was finished in approx. 45 

days. An increase in the number of epochs did not markedly improve the precision (see 

Section 3). 

Post-processing  

The predictions were made for all the images from all the sites, including the 

images which were discarded for training the model, such that the ortho-mosaic can be 



calculated for the entire area. The predictions were further enhanced to locate the wheel 

ruts using multiple morphological operations. In the post-processing, the noise elements 

were removed without distorting the original results. First, a binary opening was 

performed. Opening in mathematical morphology is defined as an erosion followed by 

dilation using the same structuring element (SE) or kernel on the image (f), shown in 

‘Equation (2)’. The aim was to enhance detected wheel ruts. As a result, all the spurious 

regions smaller than ~5 m2 were removed.  

 F(f, SE1) = (f ⊖ SE1) ꚛ SE1   (2) 

where F was the opened-binary image, ⊖ is erosion, and ꚛ dilation (Serra 1979). The SE1 

was a circular disk of a radius of 2 m. 

Second, grayscale erosion was performed after binary opening. This step 

replaces each pixel with the local minimum of the defined SE (SE2) around the pixel. 

This was done to define the wheel ruts accurately and remove overestimation along the 

boundaries of the ruts. The circular disk also uses erosion in this study was set to 20 cm. 

For the example of a spatial resolution of 1cm, SE2 was a matrix of size 10 x 10. 

Validation  

We used leave-one-out cross-validation, and in each iteration, the following 

steps were implemented:  

(1) Splitting the data into training (number of sites minus one = 19) and testing data 

(one site). 

(2) Training the model on the training data. 

(3) Applying the model to the testing site to classify wheel ruts. 

(4) Computing the confusion matrix of the manually annotated vs the model 

predictions.  



Additionally, the training overall accuracy (OA - accuracy of CNN model 

applied on training data; ‘Equation (3)’), testing OA (accuracy of CNN model applied 

on the testing data), F1-score and proportion of wheel rut detected ‘Equation (4)’ user’s 

accuracy (UA) and producer’s accuracy (PA) were calculated ‘Equation (5)-(6)’. 

    (3) 

    (4) 

    (5) 

  (6) 

where, TP = true positives, TN = true negatives, FP = false positives, FN = false 

negatives. An overall confusion matrix was calculated by adding the TP, TN, FP and 

FN pixels from every site. Relative confusion matrices were calculated by dividing each 

cell (TP, TN, FP, FN) by the total number of pixels.  

Results and discussion 

A comprehensive post-harvest assessment of soil disturbance for compliance 

with management objectives is a resource-demanding exercise, hardly justifiable under 

current economic or regulatory conditions. Talbot et al. (2018) show how manual in-

field measurement would require between 10 and 20 transects of 50 m each (depending 

on rut prevalence) per hectare to estimate rut lengths with a mean error below 10%. 



Therefore, the use of UAV derived data is an attractive option for forest regions 

applying clear cutting or shelterwood regimes where the ground is partially or fully 

unobscured, including most of the managed boreal forest and all forms of plantation 

forestry. However, none of the studies carried out with UAVs to date has presented 

possibilities for fully automating the data analysis process. Hence, a study using deep 

learning to detect wheel ruts in a harvested forest automatically was performed. For this, 

ResNet50+UNet architecture was used, and the study was verified for 20 forest sites in 

Norway. For every site, training OA, testing OA, and other results achieved at the end 

of the 20th epoch, are described in Table 2. 

On average, the cross-validation test OA was 73%, with an F1 score of 0.67 for 

the wheel ruts. Morphological operations such as area opening and erosion were 

performed in the predicted ortho-mosaics, leading to more refined wheel ruts’ maps. 

The post-processed imagery was compared against the original labels. Table 3 gives an 

overall confusion matrix (containing data from all pixels in all of the 20 sites), and the 

confusion matrix for all locations is shown in supplementary data (S.1). Compared to 

original CNN predictions, the testing OA increased by an average of 1.2% after post-

processing. Due to the area-opening technique, spurious regions were removed, 

increasing FN for wheel ruts. The next step, erosion of the wheel ruts, made the wheel-

ruts more defined, increasing the TP (for the wheel ruts), leading to an increase in 

testing OA.  

The severe wheel ruts were best detected with an average UA of ~74% (Figure 

5). Since the predictions were made only for wheel rut and non-wheel rut, and the 

severity was not predicted, the PA is not provided. The moderate and light wheel ruts 

were often confused with the background and were detected with ~67% and 62% 

average UA, respectively. The light wheel ruts, representing 63.6% of annotated tracks, 



were mostly shallow and spectrally similar to the background, resulting in poorer 

detection accuracy. This category poses little harm to the soil, and therefore, a lower 

detection probability is not alarming. 

The moderate wheel ruts consisted of 24.6% of annotated tracks. The wheel ruts 

are also different in various locations; for example, mainly moderate ruts were present 

in site J, and no severe. Moderate wheel ruts show no visible water drainage but can still 

have noticeable soil displacement. Therefore, they are detected better than light wheel 

ruts. For some sites, like site C, the severe and moderate wheel ruts look similar, 

increasing FP for moderate wheel ruts (S.2).  

The severe wheel ruts generally have reduced water drainage functions and 

considerable soil displacement, making them unique and identifiable. We found that 

despite the severe class was representing only 11.8% of the total length of the annotated 

tracks, it was the one detected with the largest accuracy. Even though severe ruts often 

represent a small portion of the area in a clear cut, they are key in determining the 

environmental performance of harvest operations for certification purposes. In this 

sense, our results are encouraging as they show that the most important class is the one 

that is best predicted.  

The average spatial resolution of the images was ~2 cm, and for sites with finer 

or coarser resolution, the detection was poorer. For example, only 20% of the wheel rut 

was detected in site N, with a spatial resolution of 7.1 cm. For the sites with a spatial 

resolution of approx. 2cm (7 of 20 sites), the wheel ruts were detected with an average 

accuracy of 71%; whereas, for the sites with a spatial resolution of 1cm (5 of 20 sites), it 

was 66%.  

Figure 6 shows two test cases, site O being one of the best detected sites with an 

F1 score of 0.83, and site N, one of the poorest, with an F1 score of 0.45. Maps of 



detected and annotated wheel ruts, including confusion matrices for all sites, can be 

found in the Supplementary material (S.1 and S.2).  

Apart from the actual wheel rut, the noise present in the form of residual logs, 

branches, harvest residues, and shadows can also increase the FP leading to over-

estimation of wheel ruts. For example, the site I and E has low testing OA (66% and 

54% respectively) mostly due to the noise present on the site.  

There are also two types of sensors that were used to capture the drone images. 

Although the images from p4pro and p2GoPro had differences in the technical 

specifications (example: shutter mechanism, sensor size, focal length) and the size of 

the training data (75% p4pro, 15% p2GoPro), there was no notable difference in the 

accuracy of detecting wheel ruts for the sites from either sensor (p4pro testing OA 

~64%, p2GoPro testing OA ~73%). The proposed model was also robust and applicable 

across the different sensors regardless of their different RGB colour profile (S.3) and 

sensor specifications. 

To check if there is any bias due to imbalance of data between cameras, a 

separate model was run only on images from p4pro. Figure 7 depicts the accuracy 

metrics for the CNN model using images from only p4pro, tested on site P. The testing 

site was chosen randomly, and the total number of training images used was ~900. This 

test was carried out for 50 epochs to see the effect of increasing epochs on the testing 

OA (Figure 7). 

At epoch 20, in comparison to site P (trained using all data), site P trained using 

only p4pro data has slightly better testing accuracy but a lower wheel rut F1 score 

(Table 2). At the end of 20th and 50th epochs, the training accuracy was 99.3% and 

99.8%, respectively. This process took ten days to run. Compared to the 20th epoch, 

there is 2% rise in training accuracy and an increase of 0.04 in F1 score for predicting 



wheel rut. This means, by increasing the number of epochs, there is a slight 

improvement in the model’s performance. However, it is important to consider the time 

constraint, and therefore running the model for 20 epochs was deemed acceptable.  

Lastly, removing the data from p2GoPro made no notable difference in the 

model's performance. This also implies that, due to the usage of transfer learning, the 

proposed model works well even with a smaller amount of training data. This is 

particularly helpful when working in a new area with limited images, which is often the 

case in practical applications. 

Conclusions 

In this study, ResNet50+UNet architecture was deployed to identify wheel ruts 

in drone images of harvested forest sites. The research was conducted on 20 sites, and 

an average of 73% of testing OA was achieved, with the highest testing OA of 80%. 

Based on the results obtained, the following conclusions were drawn:  

(1) Drone-based photogrammetry and deep learning are valuable techniques for 

detecting the presence of wheel ruts.  

(2) Severe wheel ruts were most accurately identified due to their prominence in 

appearance compared to light wheel ruts that are homogenous to the 

surroundings.  

(3) The proposed model is robust and can be used to identify wheel ruts from 

multiple sensors captured at different times.  

The application of the proposed method can provide an efficient avenue for 

monitoring and mapping the environmental impact of harvest operations which in turn 

may lead to better overall environmental performance of harvest operations.  The final 

CNN trained with all 20 sites and programming code are available at [after acceptance 

of the paper].  
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Table 1. Details about the harvested forest sites under consideration. Drone and camera 

type: p4pro = DJI phantom 4 Pro with DJI camera (20 megapixel), p2GoPro= DJI 

Phantom 2 with GoProTM Hero 4 camera (12 megapixel). 

Site Approx. location  
Drone and 

camera type 

Spatial 

Resolution 

(cm) 

Date of 

acquisition 

(DD.MM.YYYY) 

Time of 

acquisition 

(hh:mm) 
Area (ha) 

Wheel rut 

length 

(m/ha) 

A 10.69°E, 85.76°N  p4pro 3.2 13.07.2019 16:02 0.5 1,540 

B 13.08°E, 82.53°N p2GoPro  2.0 08.05.2016 13:47 1.2 1,698 

C 10.92°E, 85.88°N p4pro 3.3 11.07.2019 18:24 1.4 2,092 

D 10.93°E, 85.88°N p4pro 3.1 11.07.2019 18:00 1.6 1,720 

E 12.13°E, 83.16°N p4pro 2.0 11.07.2018 09:11 2.2 1,519 

F 13.09°E, 82.52°N p2GoPro 2.0 11.05.2016 19:36 2.4 1,507 

G 11.68°E, 83.18°N p4pro 1.5 08.09.2017 15:00 2.5 1,164 

H 11.93°E, 83.26°N p2GoPro 1.0 26.05.2016 20:20 2.7 2,693 

I 11.97°E, 83.28°N p4pro 2.9 27.04.2019 14:06 3.0 1,782 

J 10.82°E, 86.12°N p4pro 2.7 12.07.2019 19:30 3.4 614 

K 11.88°E, 83.02°N p4pro 1.0 18.05.2018 16:43 3.5 1,288 

L 11.96°E, 83.21°N p4pro 2.0 01.05.2017 18:57 3.9 1,698 

M 11.19°E, 83.71°N p4pro 1.0 09.07.2019 12:15 4.3 1,579 

N 11.98°E, 83.19°N p4pro 7.1 23.04.2017 13:27 4.5 1,887 

O 11.93°E, 83.27°N p4pro 2.0 30.08.2016 12:00 6.8 2,149 

P 10.64°E, 86.36°N p4pro 2.9 12.07.2019 16:37 6.8 2,120 

Q 11.97°E, 83.19°N p4pro 3.5 01.05.2017 19:07 7.9 1,583 

R 12.10°E, 82.97°N p2GoPro 1.9 29.05.2016 18:13 9.5 2,118 

S 12.02°E, 82.90°N p2GoPro 1.4 28.05.2016 18:04 11.0 1,436 

T 10.48°E, 85.85°N p4pro 2.4 19.05.2018 15:00 21.5 1,141 

 

 

 

 

 

 



 

Table 2 Wheel rut detection accuracy metrics. Except for Training OA, all metrics are 

based on post-processed data. 

Testing site Training OA (%) Testing OA (%) F1 score  

(wheel rut) 

Wheel rut 

detected (%) 
A 98.5 70.4 0.71 76.4 

B 96.8 78.2 0.70 79.5 

C 98.7 80.4 0.75 86.0 

D 97.3 78.0 0.72 70.0 

E 98.1 58.6 0.64 57.5 

F 96.5 73.7 0.67 72.4 

G 96.4 73.2 0.56 56.5 

H 95.4 70.0 0.71 82.2 

I 93.2 66.2 0.52 56.7 

J 95.4 75.1 0.47 49.0 

K 97.6 76.7 0.65 64.4 

L 98.2 72.7 0.52 69.4 

M 98.5 67.4 0.53 60.2 

N 92.3 64.0 0.45 20.0 

O 98.5 80.7 0.83 77.2 

P 98.0 79.3 0.73 75.6 

Q 97.6 73.0 0.75 66.0 

R 98.1 75.6 0.79 74.5 

S 94.3 72.0 0.70 59.1 

T 97.4 76.0 0.54 66.2 

 

 

 

 

 

 

 



 

Table 3 Averaged confusion matrix for wheel rut detection of all 20 harvested sites after 

post-processing  

  Reference  

P
re

d
ic

ti
o

n
 

 Wheel rut Non wheel rut 
User’s 

Accuracy 
F1 score 

Wheel rut 27% 13% 68 % 0.67 

Non wheel rut 14% 46% 77 % 0.77 

Producer’s 

accuracy 
66 % 78 % Testing OA = 73.1% 
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Figure1. Methodology flowchart for detecting wheel ruts using drone imagery 

Figure 2. (a) Harvested sites across Norway, (b) drone-image ortho-mosaic of one study 

site, (c) manual wheel rut annotated shapefile overlaid the ortho-mosaic (Heppelmann et 

al. 2021). 

Figure 3. Study site S (a); Overview (b), highlighted area with manually annotated 

wheel ruts (polylines); (c) 3 m buffer around wheel ruts 

Figure 4. ResNet50 + UNet architecture for automatic detection of wheel ruts using 

drone imagery. 

Figure 5. User’s accuracy for light, moderate, and severe wheel ruts 

Figure 6. Site O with (a) annotated severity labels and (b) predicted wheel ruts; Site N 

with (c) annotated severity labels and (d) predicted wheel ruts 

Figure 7. Training and testing accuracy for 50 epochs, trained using p4pro data, tested 

on site P 

 

 

 

 

 

 

 

 

 

 

 



Appendices 

S.1 Confusion Matrices – all sites  

The columns in the confusion matrices are the Reference (original) annotated labels, 

and the rows are the Predicted labels. The values in the confusion matrices are the 

number of pixels of the ortho-mosaic of that site. The thumbnails depict the actual 

reference image (training) and the prediction done without using the training image 

(cross-validated prediction). 

1) A   

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 1529845 790154 66.0 ; 0.71 

Non-wheel rut 474217 1478270 75.7 ; 0.70 

 

PA (%) 76.4 65.2 OA = 70.41% 

 

2) B 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 8633868 5487601 61.2 ; 0.70 

Non-wheel rut 2226166 19012069 89.52 ; 0.83 

 

PA (%) 79.5 77.6 OA = 78.2 % 

 

 

 

 

training 

Cross-validated 

prediction 

training 

Cross-validated 

prediction 



3) C 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 3750840 1833261 67.2 ; 0.75 

Non-wheel rut 610547 6257768 91.1 ; 0.84 

 

PA (%) 86 77.3 OA = 80.4 % 

 

4) D 

 Wheel rut Non-wheel rut UA (%); F1 score 

 Wheel rut 4606508 1523630 75.2 ; 0.72 

Non-wheel rut 1988010 7533521 79.2 ; 0.81 

 PA (%) 70 83.2 OA = 78% 

 

5) E  

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 19611835 7979382 71.1 ; 0.64 

Non-wheel rut 14502883 12235319 45.8 ; 0.52 

 

PA (%) 57.5 60.5 OA = 58.6 % 

 

 

 

 

training 

training 

training 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 



6) F 

 Wheel rut Non-wheel rut UA (%); F1 score 

 Wheel rut 15850645 9480648 62.6 ; 0.67 

Non-wheel rut 6041919 27698119 82.1 ; 0.97 

 PA (%) 72.4 74.5 OA = 73.7 % 

 

7) G 

 Wheel rut Non-wheel rut UA (%); F1 score 

 
Wheel rut 19287261 14965715 56.3 ; 0.56 

Non-wheel rut 14894831 62108852 80.6 ; 0.81 

 PA (%) 56.5 80.6 OA = 73.2 % 

 

8) H 

 Wheel rut Non-wheel rut UA (%); F1 score 

 
Wheel rut 42357673 25668969 62.3 ; 0.71 

Non-wheel rut 9169087 35753791 79.6 ; 0.67 

 PA (%) 82.21 58.21 OA = 69.2 % 

 

9) I 

 Wheel rut Non-wheel rut UA (%); F1 score 

 
Wheel rut 6303886 6996423 47.4 ; 0.52 

training 

training 

training 

training 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 



Non-wheel rut 4811984 16726515 77.67 ; 0.74 

 

PA (%) 56.71 70.51 OA = 66.1 % 

 

10) J 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 4797929 5744843 46 ; 0.47 

Non-wheel rut 5018338 27682333 84.6 ; 0.84 

 

PA (%) 49 83 OA = 75.1 % 

11) K 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 61325832 32726062 65.2 ; 0.65 

Non-wheel rut 33911502 158851440 82.4 ; 0.83 

 

PA (%) 64.4 83 OA = 76.7 % 

 

12) L 

 Wheel rut Non-wheel rut UA (%); F1 score 

 
Wheel rut 11594722 16091911 42 ; 0.52 

Non-wheel rut 5111268 44931961 90 ; 0.81 

 

PA (%) 69.4 73.6 OA = 72.7 % 

 

 

training 

training 

training 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 



13) M 

 Wheel rut Non-wheel rut UA (%); F1 score 

 
Wheel rut 78352959 88907780 46.9 ; 0.53 

Non-wheel rut 51758511 212229730 80.4 ; 0.75 

 
PA (%) 60.2 70.5 OA = 67.4 % 

 

14) N 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 591411 710626 45.5 ; 0.3 

Non-wheel rut 2509780 5155920 67.3 ; 0.76 

 
PA (%) 20 87.8 OA = 64% 

 

15) O 

 Wheel rut Non-wheel rut UA (%); F1 score 

 Wheel rut 79554888 9329993 89.5 ; 0.83 

Non-wheel rut 23528182 58359235 71.3 ; 0.78 

 
PA (%) 77.2 86.2 OA = 80.7 % 

 

 

 

 

 

training 

training 

training 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 



 

16) P 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 21790020 8805543 71.2 ; 0.73 

Non-wheel rut 7022656 38690763 84.6 ; 0.83 

 

PA (%) 75.6 81.4 OA = 79.3 % 

 

17) Q 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 25308319 3550036 87.7 ; 0.75 

Non-wheel rut 13104014 19813372 60.2 ; 0.70 

 

PA (%) 66 84.8 OA = 73.04 % 

 

18) R 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 100139761 25939039 79.43 ; 0.79 

Non-wheel rut 34321776 86245417 71.53 ; 0.71 

 

PA (%) 74.47 76.9 OA = 75.6 % 

 

 

training 

training 

training 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 



 

19) S 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 168829197 29124795 85.3 ; 0.70 

Non-wheel rut 116924142 205397804 63.7 ; 0.74 

 

PA (%) 59.1 87.6 OA = 72% 

 

20) T 

 Wheel rut Non-wheel rut UA (%); F1 score 

 

Wheel rut 37090310 44173525 45.6 ; 0.54 

Non-wheel rut 18951185 162801876 89.6 ; 0.84 

 

PA (%) 66.2 78.6 OA = 76 % 

 

S.2 S, M, L, Non-wheel rut – Confusion matrix 

The columns in the confusion matrices are the Reference (original) annotated labels, 

and the rows are the Predicted labels. The values in the confusion matrices are the 

number of pixels of the ortho-mosaic of that site.  

 

1) A 

 L M S Non-wheel rut 

Wheel rut 1207829 309829 142758 474217 

Non-wheel rut 466467 316831 26481 1478270 

UA (%) 72.1 49.5 84.4 75.7 

training 

training 

Cross-validated 

prediction 

 

Cross-validated 

prediction 

 



2) B 

 L M S Non-wheel rut 

Wheel rut 7800787 1333896 303153 2226166 

Non-wheel rut 4506159 985817 136955 19012069 

UA (%) 63.4 57.5 68.6 89.5 

3) C 

 L M S Non-wheel rut 

Wheel rut 2044998 1175297 107285 611072 

Non-wheel rut 1051918 571360 77260 6276676 

UA (%) 66.0 67.3 58.13 91.1 

4) D 

 L M S Non-wheel rut 

Wheel rut 2665291 1215696 222632 1988013 

Non-wheel rut 1018070 331117 44220 7533528 

UA (%) 72.36 78.6 83.4 79.12 

5) E 

 L M S Non-wheel rut 

Wheel rut 18220567 303153 201333 14502883 

Non-wheel rut 7315663 136955 38386 12235319 

UA (%) 71.3 68.6 83.9 45.8 

6) F 

 L M S Non-wheel rut 

Wheel rut 10496071 699339 3813203 3539030 

Non-wheel rut 7535111 304986 499004 30174009 

UA (%) 58.21 69.6 88.43 89.5 

7) G 

 L M S Non-wheel rut 

Wheel rut 9194854 9707118 2587032 14894831 

Non-wheel rut 8577155 6825464 707321 62108852 

UA (%) 51.73 58.72 78.52 80.65 

8) H 

 L M S Non-wheel rut 

Wheel rut 4950434 1260315 387141 4811984 



Non-wheel rut 4705005 2245939 867003 16726515 

UA (%) 69.5 71.8 75.1 77.66 

9) I 

 L M S Non-wheel rut 

Wheel rut 4950434 1260315 387141 4811984 

Non-wheel rut 4705005 2245939 867003 16726515 

UA (%) 69.5 71.8 75.1 77.66 

10) J 

 L M S Non-wheel rut 

Wheel rut 4712009 61955  5018338 

Non-wheel rut 5618240 92006  27682337 

UA (%) 45.61 40.24  84.65 

11) K 

 L M S Non-wheel rut 

Wheel rut 44293173 22961188 1744765 33911502 

Non-wheel rut 24362024 10345849 787594 158851440 

UA (%) 64.52 68.94 68.89 82.41 

12) L 

 L M S Non-wheel rut 

Wheel rut 167434 2730205 7037546 5111599 

Non-wheel rut 915665 4838275 8627794 44944177 

UA (%) 15.45 36.07 44.92 89.78 

13) M 

 L M S Non-wheel rut 

Wheel rut 55499849 21877304 10167519 51758511 

Non-wheel rut 62977836 24064443 10217040 212229730 

 46.84 47.62 49.87 80.4 

 

14) N 

 L M S Non-wheel rut 

Wheel rut 1127039 549638 183860 1479249 

Non-wheel rut 1582496 498139 226291 3793158 

UA (%) 41.60 52.45 44.82 71.94 



15) O 

 L M S Non-wheel rut 

Wheel rut 41665439 21667942 6847033 23822737 

Non-wheel rut 6176954 2031039 606572 58366327 

UA (%) 87.1 91.4 91.8 71.0 

16) P 

 L M S Non-wheel rut 

Wheel rut 17546420 3107604 77737 7071099 

Non-wheel rut 7675275 903071 20050 38700101 

UA (%) 69.6 77.5 79.5 84.5 

17) Q 

 L M S Non-wheel rut 

Wheel rut 16619224 5658734 799157 13653553 

Non-wheel rut 2334265 846169 106264 19278209 

UA (%) 87.6 87 88.2 59 

18) R 

 L M S Non-wheel rut 

Wheel rut 30822943 29045706 40261112 34321776 

Non-wheel rut 11084846 12084546 24321670 86245417 

UA (%) 73.55 80.76 84.09 71.53 

19) S 

 L M S Non-wheel rut 

Wheel rut 91680578 42426956 40906071 45169390 

Non-wheel rut 34414254 9025241 10452102 280503298 

UA (%) 72.71 82.4 79.7 86.1 

20) T 

 L M S Non-wheel rut 

Wheel rut 25309113 8871241 5607622 18951185 

Non-wheel rut 18951185 7452074 4218113 162801876 

UA (%) 42.62 54.34 57.07 89.57 

 



S.3 Pattern between sites and parameters 

Figure 8. RGB profile for all sites (boxplots) 

 


