Model bias and its impact on computer-aided diagnosis: A data-centric approach
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Fig 4: Temporal analysis of the datasets employed in the selected 78 peer-review papers. Top-left: Number of papers indexed in Pubmed that reVieW)-
report a Machine Learning model for COVID-19 X-Ray imaging by month of their published date (from Pubmed database). Bottom-left: * New version, still not pub|ic_

- Garcia Santa Cruz, Beatriz, et at. Prognosis and Diagnosis models of Brain MRI using
Artificial intelligence: General overview and future directions”. (In preparation).

impaired performance in the target

population hampering generalizability. Fig 3: Overview of the relationships of popular COVID-19 and related non-COVID-19 datasets. number of papers using a given dataset per month. Bottom-right: total number of papers using each dataset. Note that only one dataset

among the classified as recommended were used (BIMCV), and only in one paper. The number of papers using exclusively Cohen/IEEE
8023 and UCSD-Guangzhou is 18, a particularly risky combination. More information [2].

Datasets in green present enough documentation to asses potentials bias. From [2].




