
Improving the Accuracy of Early Exits in
Multi-Exit Architectures via Curriculum Learning

Arian Bakhtiarnia, Qi Zhang and Alexandros Iosifidis
DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Denmark

{arianbakh,qz,ai}@ece.au.dk

Abstract—Deploying deep learning services for time-sensitive
and resource-constrained settings such as IoT using edge com-
puting systems is a challenging task that requires dynamic
adjustment of inference time. Multi-exit architectures allow
deep neural networks to terminate their execution early in order
to adhere to tight deadlines at the cost of accuracy. To mitigate
this cost, in this paper we introduce a novel method called Multi-
Exit Curriculum Learning that utilizes curriculum learning,
a training strategy for neural networks that imitates human
learning by sorting the training samples based on their difficulty
and gradually introducing them to the network. Experiments on
CIFAR-10 and CIFAR-100 datasets and various configurations
of multi-exit architectures show that our method consistently
improves the accuracy of early exits compared to the standard
training approach.

I. INTRODUCTION

Deep learning models have been successful in solving
many problems in various domains of science and technol-
ogy, ranging from autonomous vehicles to drug discovery
[1]. However, a general drawback of deep neural networks
is that, by definition, they are built from many layers of
interconnected neurons. This results in models containing
millions of parameters that need to be deployed on powerful
processors due to their high computational cost. This restric-
tion has sparked a great deal of research targeting neural
network compression in recent years, thus many methods
have been developed for the purpose of making deep learning
models more lightweight; including pruning [2], quantization
[3], regularization [4] and knowledge distillation [5] to name
a few.

The high computational cost of deep learning models
becomes even more problematic in computationally restricted
environments, such as mobile and IoT devices. Yet, deep
learning has many use cases in such settings, including but
not limited to video surveillance, voice assistants, network
intrusion detection and augmented reality [6]. Many of these
use cases are time-sensitive and require applications to run
with respect to strict time limits, for instance, in the cases of
cooperative autonomous driving and augmented reality [7].

To enable time-sensitive Internet of Things applications,
computationally expensive tasks, such as deep learning ser-
vices, are sometimes offloaded from end-devices to edge
servers using edge computing systems in order to decrease
the overall execution time [8]. However, these systems of-
ten have a distributed and multi-tiered network architecture

where the time required for the transmission of data between
various devices is variable and depends on the communica-
tion channel state and the data size. This calls for novel neural
network designs that can dynamically adapt their inference
time to account for these variations in transmission time.
Among lightweight deep learning methods, the concept of
early exits [9] is a promising solution that particularly fits
these settings, which is sometimes also referred to as multi-
exit architectures or auxiliary classifiers in the literature.

In multi-exit architectures, branches composed of just a
few layers of neurons are added at intermediate layers of
a deep network called the backbone network. Such branches
are trained to perform the same task as the backbone network
and produce an output similar to that of the final layer of
the network, albeit they are inevitably less accurate. These
branches can then be used to make inference time more
dynamic at the cost of accuracy. For instance, when there
is a strict time budget and it is suspected that the deadline
will be missed if the entire network is traversed, the output
of these early exit branches can be used instead. Another
way of utilizing early exits for dynamic inference is to use
the output of early exit branches for “easier samples” and
only compute the output of later branches or the final output
of the backbone network when the input sample is difficult.
There are various methods for detecting where to exit, one
of the easiest and most intuitive ones being to determine the
confidence of the output of a branch. For instance, a strategy
that is used for classification problems is to set a threshold
on the entropy of the classification result [10].

As previously mentioned, early exit branches are typically
less accurate compared to the final output of the corre-
sponding backbone network, therefore it is vital for them
to be as accurate as possible to maintain the reliability of
the output. Since the architecture of early exit branches
is often very shallow in order to avoid introducing high
additional overhead, increasing their accuracy is generally
a challenging task. Phuong et al. [11] recently showed that
knowledge distillation-based training can be used to improve
the accuracy of early exits.

In this paper, we propose a new approach for improving
the accuracy of early exit branches based on curriculum
learning. Curriculum learning [12] is a training strategy for
neural networks that has been shown to improve the final
accuracy of a network in certain cases. The idea behind



curriculum learning is similar to how humans learn new
tasks: a well-informed teacher can be used to initiate the
training with the simplest material and gradually introduce
more difficult subjects to the student. For neural networks
however, sometimes the opposite approach of introducing
the hardest subjects first, called anti-curriculum, can be
beneficial as well. To the best of our knowledge, curriculum
learning has not yet been explored in the context of multi-
exit architectures. We tested our proposed approach in 16
different scenarios involving multi-exit architectures for the
problem of image classification, and found that it consistently
increases the accuracy of early exits in every case. These
scenarios involve two different datasets, namely CIFAR-10
and CIFAR-100 [13], four different backbone networks and
two different branch locations for each backbone. We also
show that the proposed approach works regardless of the
optimization algorithm used during training1.

The remainder of the paper is structured as follows.
Section II provides an overview of relevant literature. The
proposed approach, called Multi-Exit Curriculum Learning,
is described in Section III. Experimental results are provided
in Section IV. Finally, Section V concludes the paper and
briefly discusses future research directions.

II. RELATED WORK

In this section, we provide more detailed explanations
regarding multi-exit architectures as well as curriculum learn-
ing, which are the foundations of our method. We start by
describing the mathematical model for multi-exit architec-
tures and listing popular training strategies proposed for such
architectures. Subsequently, we elaborate on the curriculum
learning strategy, including the concepts of sorting and pacing
functions, and recount various approaches to these functions
that exist in the literature.

A. Multi-Exit Architectures
Following the notation of Scardapane et al. [9], ba-

sic neural networks are formulated as function f(x) =
fL(fL�1(:::f1(x))) where L is the number of layers and fi
denotes the operator at layer i, which can be a convolution
layer, a dense layer, batch normalization or any other differ-
entiable operator. The output of the i-th layer is denoted by
hi = fi(hi�1) where h0 = x, and �i signifies all trainable
parameters of layer i.

In order to extend this framework to multi-exit architec-
tures, first, a set of branch locations B ⊆ {1; ::; L} are
selected. For each branch location b, a classifier or regressor
cb(hb) = yb is defined, where yb is the hypothesis of the
early exit branch at location b. The schematic illustration of
a multi-exit architecture is depicted in Figure 1.

The training of a neural network can be formulated as
tuning its parameters by applying an optimization algorithm
on a loss landscape:

f� = arg min
�

NX
n=1

l(yn; f(xn)); (1)

1Our code is made available at https://gitlab.au.dk/maleci/
MultiExitCurriculumLearning.

Fig. 1. Schematic illustration of a multi-exit architecture.

where � =
SL
i=1 �i is the set of all parameters of the neural

network, {(xn; yn)}Nn=1 is the set of training samples, and
l(·) is a loss function.

However, due to the attached early exit branches, the
training of multi-exit architectures is not as straightforward.
Three main approaches were proposed for training a multi-
exit architecture [9], [14]:
� End-to-End Training: Training is formulated as a single

optimization problem where the total loss is defined as a
combination of the losses of early exit branches and the
final layer. In this case, the contribution of each of the
early exit branches to the total loss is expressed with
a weight value (a hyper-parameter) that causes trade-
offs and can have a significant impact on the accuracy
of the early exit branches as well as the final layer. For
instance, a certain weighting scheme for the contribution
of branches may result in an increase in the accuracy
of early exit branches but a decrease in the accuracy of
the final layer.

� Layer-Wise Training: Initially, the entire network up
to and including the first early exit branch is trained.
Subsequently, the trained weights are frozen, meaning
that they are not allowed to be modified anymore, and
the rest of the network up to and including the second
early exit branch is trained. This operation is repeated
until the entire network has been trained. Note that with
this strategy, there is no guarantee that the accuracy of
the final layer will be similar to the case where the
network does not have any early exit branches.

� Classifier-Wise Training: The entire backbone network
is initially trained. Then, the parameters of the backbone
network are frozen and each branch is trained separately
since it does not affect the training of other early
exit branches. Note that no trade-offs are introduced
in this strategy, and since the parameters of the back-
bone network are not modified, its accuracy remains
unchanged. However, the early exit branches have less
parameters available for training compared to the other
two strategies.

In this work we follow the classifier-wise training strategy
for training the multi-exit architectures because of its practi-
cal importance. This is due to the fact that it can be easily
added on top of existing networks (as a “plug-and-play”
solution) without the need for re-training a high-performing
backbone network, or computationally expensive and te-
dious experimentation for determining the optimal hyper-
parameters that lower the effect of trade-offs introduced by
combined training of the parameters of the early exit branches

https://gitlab.au.dk/maleci/MultiExitCurriculumLearning
https://gitlab.au.dk/maleci/MultiExitCurriculumLearning


with those of the backbone network. Furthermore, one of
the issues with multi-exit architecture is choosing the right
number of early exit branches and their placement. With end-
to-end and layer-wise training strategies, the choice of the
total number of branches as well as their placement in the
backbone network becomes important and can cause further
trade-offs. On the other hand, with the classifier-wise training
strategy, since the branches are independent of each other and
the backbone network, early exit branches can be placed at
any intermediate layer. However, we need to keep in mind
that early exit branches placed later in the network do not
necessarily achieve a higher accuracy, therefore some branch
placements may be irrational and unnecessary since there
are earlier branches which can potentially achieve higher
accuracy.

Another concern with multi-exit architectures is devising a
method that decides which exit should be used for each input
example. As previously mentioned, a simple solution is to use
the confidence of the network on its own prediction, although
many other methods have been proposed for this purpose [9].
However, since our goal is to develop a method in order to
increase the accuracy of all early exit branches regardless of
their placement, this issue is outside the scope of this paper.

B. Curriculum Learning

As previously stated, curriculum learning draws inspiration
from the way humans learn new subjects throughout their
formal education. For each topic of study, a knowledgeable
teacher often starts with explaining the simplest notions to
the students and gradually introduces more difficult aspects
of the topic during the course of the study. Curriculum
learning treats the problem of training neural networks in
the same manner by starting the training from a subset of
training samples it deems to be simple, and progressively
adding more difficult samples to the training process. Thus,
curriculum learning is composed of two main components: a
sorting function that takes training samples as input, assigns
a difficulty value to each of them based on some metric and
sorts them based on their difficulty values; and a pacing
function that determines the pace at which new training
samples are introduced to the network during the training
process.

Scoring functions can either be predefined, meaning that
the difficulty for each training sample is determined based
on some prior knowledge given by an expert, or automatic,
meaning that the difficulty of each sample is determined
based on an algorithm. Examples of predefined sorting func-
tions include sorting based on the length of the input text
in natural language processing problems, or based on the
number of objects in an image in object detection problems.
A comprehensive list of predefined sorting functions for
various types of data can be found in [16].

Most automatic sorting functions can be categorized into
the following three groups [16]:
� Self-Paced Learning: In this approach, the student net-

work itself determines the difficulty of each sample
based on its current loss. It is important to note that

Hacohen et al. [17] found that self-paced learning can
lead to a decrease in the final test accuracy.

� Transfer Teacher: In this strategy, the loss of a pre-
trained network called teacher is used to measure the
difficulty of training samples. A variant of transfer
teacher where the teacher network is the same as the
backbone network is called self-taught (not to be con-
fused with self-paced learning). The main difference
between self-taught and other teacher transfer methods
is that the self-taught method can be applied repeatedly,
meaning that initially the network is trained normally
and its losses are used to sort the examples and train
the same network with curriculum learning. Afterwards,
the losses of the new and improved network are used to
re-sort the training samples and train the same network
yet another time, and this process can be repeated until
there are no further improvements.

� Reinforcement Learning Teacher: Curriculum learning
can also be formulated as a reinforcement learning
problem where the action is to decide which samples
should be used for training, the state is the loss of
the student for each sample, and the reward is the
performance of the student.

Several other less common automatic sorting functions can
be found in [16]. In this work, we use the transfer teacher
method with two different teacher networks as scoring func-
tion. As previously mentioned, unlike human learning, the
opposite approach of training the network starting from
the most difficult samples to the easiest samples, called
anti-curriculum or harder-first, has been shown to be more
effective than curriculum learning in some cases [16].

Typically, a pacing function �(t) : N → (0; 1] takes the
index of the current iteration as an input and outputs the
fraction of the sorted training samples that should be used for
training. Pacing functions can be categorized into two groups:
discrete pacing functions and continuous pacing functions.
The most popular discrete pacing function, called baby step,
partitions sorted training samples into several buckets and
gradually adds buckets of harder samples to the pool of
training samples introduced to the network. A less common
discrete pacing function called one-pass partitions the sorted
training samples into several buckets, but discards the the
samples of the previously introduced easier bucket from the
training pool after adding the samples of a new harder bucket.

Popular examples of continuous pacing functions include
linear, root, root-p and geometric progression, which are
described by Equations (2)-(5) respectively:

�linear(t) = min

�
1; �0 +

1− �0

Tf
· t
�
; (2)

�root(t) = min

 
1;

s
�2

0 +
1− �2

0

Tf
· t

!
; (3)

�root-p(t) = min

 
1;

s
�p0 +

1− �p0
Tf

· t

!
; (4)



�geom(t) = min

�
1; 2

(log2 �0� log2 �0
Tf

�t)
�
: (5)

In the above equations, t is the index of current iteration, �0

denotes the initial fraction of training samples introduced to
the network and Tf is the iteration at which the entire dataset
is used for the first time.

Putting it all together, Figure 2 shows the random mini-
batch process in curriculum learning. Each epoch is com-
posed of N

Nb
batches where N is the total number of training

samples and Nb is the batch size. Batch number t is sampled
uniformly at random only from the first �(t) portion of the
sorted data.

Fig. 2. Random Mini-Batch Process in Curriculum Learning.

As a final note, there are several theoretical analyses in the
literature explaining why curriculum learning can improve
the training procedure. Bengio et al. [12] point out that
curriculum learning can be viewed as a continuation method.
Continuation methods [15] are optimization strategies for
non-convex problems that start with a smooth objective and
gradually introduce less smooth versions in the hopes of
revealing the global picture in the process [16]. Additionally,
Hacohen et al. [17] reached the conclusion that curriculum
learning modifies the optimization landscape to amplify the
difference between the optimal parameter vector and all
other vectors that have a small covariance with the optimal
solution, including uncorrelated or negatively correlated pa-
rameter vectors.

III. MULTI-EXIT CURRICULUM LEARNING

In this section, we will explain the details of our method.
We assume that an already trained high-performing deep
neural network is given in the beginning. Due to time restric-
tions, this neural network must be converted to a multi-exit
architecture, as it is preferable to provide an output within the
strict time budget, even though it can be less accurate, rather
than not providing an output within this time limit at all.
Thus we augment this backbone network with a set of early
exits. As previously stated, the parameters of the backbone

network will not be fine-tuned, that is, if the backbone
network represents function f(x) = fL(:::f1(x)) with a
set of parameters � =

SL
i=1 �i, � will remain unchanged

throughout the training process and only the parameters of
early exit branch functions ci(hi) : i ∈ B will be tuned.
As the entire backbone network is frozen during classifier-
wise training of the added early exit branches, and thus is
not allowed to “help” the early exit branches by tuning its
parameters, it is more difficult to increase the accuracy of
the early exit branches compared to other training strategies
listed in Section II. We use curriculum learning to train the
early exit branches, in order to improve their accuracy.

For the purpose of sorting the training samples based on
their difficulty, we use the categorical cross-entropy loss of
a pre-trained teacher network. We use two different teachers,
InceptionV3 [18] which is the same teacher used in Hacohen
et al. [17], and the more recent EfficientNetB7 [19]. We
take versions of these networks pre-trained on the ImageNet
dataset [20] and use transfer learning to train them for
the CIFAR-10 and CIFAR-100 datasets by removing the
top layer, adding two dense layers with a Dropout layer
[21] in between and retraining the network for the intended
dataset. By using two dense layers, we are taking the output
of pre-trained networks as feature vectors and training a
multilayer perceptron classifier based on these features. In
addition, since we freeze the first five blocks of the Ef-
ficientNetB7 backbone to overcome the limitations of our
hardware resources, utilizing two dense layers instead of just
one provides additional flexibility.

Figures 3 and 4 illustrate the easiest and most difficult
training samples, respectively, in the CIFAR-10 dataset based
on the loss values of InceptionV3 teacher. It is not difficult
to interpret why the network finds some of these images
particularly hard. For instance, a close-up from the front
of the airplane might be very different from the usual
perspective of other images with the same label, or it may
be difficult to distinguish between dogs, cats and deer with
certain colors and patterns of fur.

We use two variants of the baby step pacing function, the
fixed exponential pacing function shown in Fig. 5 and the
single step pacing function depicted in Fig. 6, both introduced
by Hacohen et al. [17]. Similar to our work, Hacohen et al.
[17] also investigate the effectiveness of curriculum learning
on the problem of image classification (although not in multi-
exit architectures) and document the pacing functions that
lead to improvements in the final accuracy. These pacing
functions introduce the entire dataset fairly quickly, meaning
that curriculum learning effectively takes place only in the
first few epochs. We found that such pacing functions are
effective in our case as well. Fixed exponential pacing
starts with only a small percentage of the training data and
exponentially increases the amount of data after every fixed
number of batches, whereas single step pacing starts with a
higher percentage of data and introduces the entire dataset
after a certain number of batches have been processed. The
details of fixed exponential pacing and single step pacing
functions are shown in Equations (6) and (7) respectively,




	Introduction
	Related Work
	Multi-Exit Architectures
	Curriculum Learning

	Multi-Exit Curriculum Learning
	Results
	Discussion and Future Directions
	References

