ﬁ Sensors

Article

SealedGRID: Secure and Interoperable Platform
for Smart GRID Applications *

George Suciu !, Mari-Anais Sachian !, Alexandru Vulpe 2, Marius Vochin 12*, Aristeidis Farao 3,
Nikolaos Koutroumpouchos ? and Christos Xenakis 3

Citation: George, S.; Mari-Anais, S.;
Alexandru, V.; Marius, V.;
Aristeidis, F.; Koutroumpouchos, N.;
Xenakis, C. SealedGRID: Secure and
Interoperable Platform for Smart
GRID Applications.

Sensors 2021, 21, 5448.
https://doi.org/10.3390/s21165448

Academic Editor: Antonino Laudani

Received: 9 July 2021
Accepted: 10 August 2021
Published: 12 August 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/).

1 R & D Department, Beia Consult International, 041386 Bucharest, Romania; george@beia.ro (G.S.);
anais.sachian@beia.ro (M.-A.S.)

2 Telecommunications Department, University Politehnica of Bucharest, 61071 Bucharest, Romania;
alex.vulpe@radio.pub.ro

3 Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece; arisfarao@unipi.gr (A.F.);

nikoskoutr@ssl-unipi.gr (N.K.); xenakis@unipi.gr (C.X.)

Correspondence: marius.vochin@upb.ro; Tel.: +40-214024817

t This paper is an extended version of our conference paper: Suciu, G.; Istrate, C.-I.; Vulpe, A.; Sachian, M.-A.;
Vochin, M.; Farao, A.; Xenakis, C. Attribute-based Access Control for Secure and Resilient Smart Grids. In
Proceedings of the ICS-CSR 2019, Athens, Greece, 10th-12th September 2019.

Abstract: Recent advancements in information and communication technologies (ICT) have im-
proved the power grid, leading to what is known as the smart grid, which, as part of a critical economic
and social infrastructure, is vulnerable to security threats from the use of ICT and new emerging vulner-
abilities and privacy issues. Access control is a fundamental element of a security infrastructure, and se-
curity is based on the principles of less privilege, zero-trust, and segregation of duties. This work ad-
dresses how access control can be applied without disrupting the power grid’s functioning while also
properly maintaining the security, scalability, and interoperability of the smart grid. The authentication
in the platform presumes digital certificates using a web of trust. This paper presents the findings of the
SealedGRID project, and the steps taken for implementing Attribute-based access control policies specif-
ically customized to the smart grid. The outcome is to develop a novel, hierarchical architecture com-
posed of different licensing entities that manages access to resources within the network infrastructure.
They are based on well-drawn policy rules and the security side of these resources is placed through a
context awareness module. Together with this technology, the IoT is used with Big Data (facilitating easy
handling of large databases). Another goal of this paper is to present implementation and evaluations
details of a secure and scalable security platform for the smart grid.

Keywords: smart grid; attribute-based access control; eXtensible Access Control Markup Language; Ab-
breviated Language for Authorization

1. Introduction

Electricity generation accounts for the second-highest amount of greenhouse gas emis-
sions and nearly 63 percent of electricity is generated by fossil fuel combustion, primarily coal
and natural gas [1]. Greenhouse gases absorb heat and boost global warming and almost all
greenhouse gas increase in the atmosphere over the last 150 years has been attributed to hu-
man activity. The evolution of information and communication technologies (ICT) has found
its way into the electrical grid and the smart grid represents an opportunity to use new com-
munication systems and information to reshape the traditional electrical power system. How-
ever, any significant change provided to the conventional power system involves careful jus-
tification and is costly given the size of investment made in it over the years and the vast size
of the power system. Thus, the smart grid [2] has been devised as representing an intelligent,
responsive, and efficient electrical system, using ICT to bring central monitoring, control, and

Sensors 2021, 21, 5448. https://doi.org/10.3390/s21165448

www.mdpi.com/journal/sensors

Sensors 2021, 21, 5448

2 of 24

optimization of the power grid. Smart grids inherit the security threats of the ICT world when
applied to economic infrastructure and real-life [3]. Lately, researchers have highlighted the
challenge of preserving the smart grid from security threats, which can have a considerable
impact on both the power system and human life. The smart grid infrastructure needs to be
defended against threats such as privacy issues, the increasing number of intelligent devices,
power systems lifetime, and implicit trust between traditional power devices, to name a few.
A potential attack against a smart grid system [4] can lead to failures, ranging from the de-
struction of other interconnected critical infrastructures (e.g., gas, water, and transportation)
to loss of human lives [5]. Moreover, the migration of ICT security solutions to the smart grid
is done over a long period of time. In this situation, new approaches are needed. Within
SealedGRID, security is achieved by combining trusted applications with authorization and
authentication components.

Trusted Execution Environment (TEE) [6] represents a sandbox which executes applica-
tions in a secure context named trusted applications. Normal applications are usually isolated
from the TEE providing a safe environment and thus malicious software won’t harm any sen-
sitive data stored on the device stored in the TEE or used by those of applications. ARM
TrustZone provides an implementation of TEE, whereas an ARM processor is often seen in
mobile phones.

Orne of the main research challenges for this work are the integration of authorization
and authentication components together with TEE. Further, their integration will be used in
the experiments based on following privacy requirements in order to make secure the connec-
tion and sensitive data in a smart grid System [7], such as:

e Identity privacy

e Location privacy

e Unlinkability

e Minimum data disclosure

e Privacy—preserving data aggregation.

This paper is organized as follows: Section 2 briefly describes the related work regarding
the SealedGRID platform and its envisioned achievements, introducing the challenges and
opportunities in smart grids. Section 3 describes the proposed SealedGRID architecture, intro-
ducing the main components and methods, and Section 4 presents the authorization compo-
nent. Section 5 presents the methodology for a trusted computing environment, Section 6 pre-
sents the results in evaluating the reference implementation of the Sealed GRID authorization
and policy enforcement framework and the TEE component, while Section 7 draws conclu-
sions.

2. Related Work

The electrical network [8] is an important economic aspect vulnerable to severe security
threats and new confidentiality issues and vulnerabilities appear related to smart network in-
frastructure.

2.1. Protocols for the Smart Grid

Many protocols have been nominated for the smart grid in the literature, especially for
communication over a public network. The most prominent ones are Message Queue Telem-
etry Transport (MQTT) [9], Constrained Application Protocol (CoAP) [10], Common Object
Request Broker Architecture (CORBA), Open Platform Communications United Architecture
(OPC UA) as well as a few less-used examples such as Data Distribution Services (DDS), and
Zero Message Queue (ZeroMQ). In addition, several protocols have been defined for dealing
with the demand response in the smart grid. Among these we can mention OpenADR, that is
an information exchange model for communicating price and reliability information to large
commercial and industrial facilities [11]. IEC 61850 can also be used both for demand response
and, more generally, for communication over a smart grid infrastructure.

Sensors 2021, 21, 5448

3 of 24

2.2. Access Control in the Smart Grid

The process of data acquisition and processing to conduct further control procedures
entails industrial and information technology equipment (which is integrated across the
entire infrastructure) as well as the correct usage of devices and resources by all the stake-
holders involved. At the same time, the increasing complexity of the smart grid architec-
ture for the retrieval of metering [12] information and the consequent control of the elec-
tricity generation has favored the appearance of cyber-security attacks that may jeopard-
ize the availability of resources and hence put the stability of the grid at risk.

In this complex environment, access control is essential to manage the permissions
of all users, processes and heterogeneous devices that continuously interact within the
infrastructure.

There are many ways of ensuring access control in ICT systems in general, including
smart grid systems. One of the simplest ways is to provide role-based access control
(RBAC) [13] which provides access to smart grid resources or information based on user
roles, specifically defined for smart grid operation. As opposed to RBAC, attribute-based
access control (ABAC) [14] draws on a set of characteristics called “attributes” which in-
clude user attributes, environmental attributes, and resource attributes, thus having a
much greater number of possible control variables than RBAC.

Several access control schemes have been designed in smart grid systems over the
last few years: they range from pure RBAC [15] or pure ABAC [16] to using combinations
of RBAC and ABAC [17]. It is noteworthy to mention that many works mention authenti-
cation together with access control and, while authentication is subject to more advanced
mathematical algorithms, usually access control is merely policy-based (such an example
can be found in [18]).

2.3. The SealedGRID Project
The Sealed GRID project copes with three significant smart grid challenges:

e Scalability: smart grid utilities can handle a variation of smart meters, but it is vul-
nerable to intruders, therefore the whole distribution system is in danger if someone
finds a breach.

e Interoperability: smart grid protection will handle inter-domain security issues exist-
ing between nodes responsibly, with more policies and services provided.

. Trust: Soon, smart grid nodes will be available to customers, protecting them from
malicious users that want to physically modify the hardware and software compo-
nents to intercept personal information or to modify the cost information and energy
measurements data.

SealedGRID aims to design, analyze, and implement a scalable, highly trusted and
interoperable smart grid security platform with an integrated and multi-disciplinary in-
terface which provides:

e Strong authentication.

e Attribute-based access control.

e Role-based access control.

e Anonymous attestation mechanism.
e Trusted execution environment.

e Digital certificates.

e Web of trust and blockchain.

Sensors 2021, 21, 5448

4 of 24

A

3. Architecture Description

The component entities of the proposed functional architecture behind the smart
grid, partially presented in Figure 1, are the following smart grid devices: smart meter,
aggregator, and utility, together with the adversary parties involved in the SealedGRID
scenario, which will affect the normal execution of access control procedures: the external
adversary and the insider adversary.

The smart meter [19] is responsible for collecting electricity consumption readings,
and their number in each building varies, depending on its size.

Aggregator nodes are placed between utilities and the smart meters, and they are
responsible for summing the individual readings received by the smart meters and then
transmitting the result to the corresponding utility. In this way, the processing is distrib-
uted among the aggregators and utilities without overloading any utility. In some cases,
because the architecture might not include explicit entities that perform intermediate ag-
gregation, smart meters can play this role.

The utilities accumulate high-frequency aggregated values. They can either use these
values to demand response (e.g., control the electricity consumption in a certain area) or
to sum these responses and add them to the total grid consumption. It is also responsible
for billing, by computing a customer’s total consumption at the end of a billing period
(e.g., one month) with the use of the low-frequency meter data method.

The external adversary to the SealedGRID domain aims to destroy the domain, and
to break through the customer’s privacy or endanger the system’s accountability, availa-
bility, integrity, or confidentiality.

e
//\\ The Cloud \

(SealedGrid architecture A
based on blockchain >

o

technology)
| Utilities R
‘ Control ’ ’ Utilities Billing
- . P \
-
-'_l_'- -'_l_'- —— — Aggregator

- . - - . - . Smart
2 A A A A A N N Niaker

v

A FA A

Figure 1. Sealed GRID conceptual functional architecture.

The insider adversary is part of the SealedGRID’s domain. It can complete the au-
thentication and authorization processes with the platform, and then it aims to violate the
customer’s privacy or to endanger the system’s accountability, availability, integrity, or
confidentiality.

In Figure 2, a detailed description with the required functionalities of each compo-
nent is provided.

In Figure 3, a detailed description of each Sealed GRID component, its modules, and
how they interact with other components is provided. Smart meter and aggregator

Sensors 2021, 21, 5448

5 of 24

connection is authorized. On the smart meter side, there is policy enforcement with which
the aggregator makes a decision. The smart meter and aggregator connect by federated
login. Within the SealedGRID authentication component, information about energy con-
sumption and billing updates are transferred. The trusted execution environment (TEE)
handles authentication. The aggregator sums the individual readings received by the me-

SealedGRID device
Smart Meter

Applications ‘

Federated Login

Policy
Enforcement

Authentication

ters and transmits the result to the collector.

=5 SW
Implementation

Key Management ‘

TEE

SealedGRID device

HW

}m plementation

SealedGRID
device
Aggregator

Federated Login

Policy Decision ‘
SW

S

Key Management Implementation ‘

Authentication ‘

TEE

} HW ‘
Implementation

SealedGRID device
Utility

Federated Login

Access Control
Policy Maker

Key Management

TEE

Figure 2. SealedGRID components and their functions.

SealedGRID device

Sw
™ Implementation

HW

}Implementation

SealedGRID device

- Smart Meter Aggregator < Utility
m:"r':':'d y Federated login s] N
Federated Login — Federated Login Federated Login
; < 4 > <
Billing presentation| e, Policy Decision Access Control
> < Authorization < i:)l:ch: "-lpd’a.ta, f
MASKER :
M | Energy consusption MASKER POllCY Maker
2 s / N /
Policy Enforcement e I A 4 N
> < SOMA MASKER
SOMA N /| N\, /|
> P Authestication / N huthentication 4 h
TEE TEE
ke TEE A / N /

Figure 3. The main architectural components with the modules that comprise each component.

4. Authorization Component Methodology
4.1. Security Policy Considerations

In the smart grid scenario when different domains are interconnected to each other
and collaborate, we decided to implement authorization frameworks based on the pres-
ence of policy information points (PIPs), policy enforcement points (PEPs) and policy de-
cision points (PDPs). These entities have different responsibilities in the authorization pro-
cedure (i.e., the decision of whether granting access to a resource that has been requested):

e Policy enforcement points (PEPs) [20] are used by devices or processes to request
different resources of the system, intercept and then forward an authorization re-
quest to the PDP.

e Policy decision points (PDPs) will make the decision of whether permitting or deny-
ing the access whose request has been received, and once the decision is taken, the

Sensors 2021, 21, 5448

6 of 24

PEP is able to permit or deny the access. Therefore, the PDP’s responsibility is to
design the access control policy and to manage authorization between domains.

All SealedGRID devices are considered as Policy information points (PIPs) in which
they associate a set of attribute values to the existing resources (e.g., smart meters) de-
pending on the context information.

The extensive use of the internet as a platform for accessing distributed services cre-
ates a significant amount of personal information, a corresponding uncertainty and de-
mand from consumers, and regulations for solutions that give users some control over
their data. In SealedGRID, we designed a transition from role-based access control (RBAC)
to attribute-based access control (ABAC). Thus, within SealedGRID, we considered the
use of eXtensible Access Control Markup Language (XACML) for devising RBAC policies.
XACML [21] is based on XML, which is a language for access control, standardized by the
OASIS consortium. The language supports most security policy languages and has stand-
ard extension points for defining new functions, data types, and policy combination logic,
amongst others. XACML specifies, in addition to the language, an architecture for policy
assessment and a communication protocol for message interchange. Although XACML is
widely used and regarded as a reference solution, it does not support privacy features,
accurate evaluation, or the credential specification constraints in policies. XACML pro-
vides a fine-grained authorization method as it specifies the requirements and variables
in an access control policy used to authorize access to a certain resource. Two main issues
need to be resolved: first, access control operates even if interacting parties want to reveal
less or no information about themselves. Second, data which have been collected or re-
leased during the access control process, as well as data which have been stored by vari-
ous parties may contain sensitive information to which privacy policies (data handling)
must be applied and should thus be protected. The objective is to establish a versatile
framework that addresses XACML's advantages regarding the access control and scala-
bility.

The challenge arises when mapping the entities of the SealedGRID system to the
components used to specify XACML policies, since in XACML [22], there are four catego-
ries defined:

e Subject: defines who or what demands access for an asset

e Resource: the information asset or object, determined through the action
e Action: represents the action the subject intends to do.

e Environment: defines the context related to the requested access.

For the actual formalization of the access-control rules, we based our work on the
IEC 62351 standard [23], in order to follow a common framework of policies applied in
the smart grid context. This is a reference in the sector to address the security of industrial
networks, since it provides useful guidelines for introducing aspects related to authentic-
ity, confidentiality, and integrity in the communication and control protocols of the smart
grid. It is composed of eleven parts, where part eight is especially applied to control access
mechanisms based on RBAC [8-23].

More specifically, this standard specifies a minimum set of roles to be supported in
an industrial scenario with pre-defined rights: viewer, operator, engineer, installer, secu-
rity administrator, security auditor, and RBAC manager (this latter can be considered as
a sub-role of the security administrator), together with a list of private roles defined by an
external agreement (e.g., used for certain SealedGRID purposes in specific) and another
reserved list for future roles to be defined by the IEC standards.

Within this project we made this exercise and defined the XACML entities, therefore
Table 1 presents a part of the entities defined, and the values for roles and actions have
been identified according to roles and rights belonging to IEC-62351-8. Our authorization
component utilizes the defined entities in Table 1 to implement XACML policies for the
SealedGRID platform.

Sensors 2021, 21, 5448 7 of 24
Table 1. Defined Entities.
Short Name Namespace Category Data Type Value Range
Operator, Auditor, Provider, Cus-
role eu.sealedgrid.user Subject String tomer, Administrator, Installer, Engi-
neer
View, Read, Dataset, Reporting, File-
actionld eu.sealedgrid.action Action String Read, FlleWr.lte, Fﬂ.e Management,
Control, Config, SettingGroup, Secu-
rity
objectType Eu.sealedgrid.object Resource String SmartMeter, Aggregator, Utility
criticality Eu.sealedgrid.context Environment String Low, Medium, High
anomalyLevel eu.sealedgrid.context Environment Double 0..0.01..1
communicationProtocol eu.sealedgrid.context Environment String Modbus, OPC UA, Ethernet/IP
domainld eu.sealedgrid.domain Subject String A,B,C D

4.2. Implementation
4.2.1. Authorization Component

This section describes an implementation of SealedGRID XACML-based policy en-
forcement points as well as policy administration points (PAPs), and in this case, both the
PDP and PAP implementations rely on the open source AuthzForce Server [24], which is
part of a FI-WARE system. AuthZForce provides a multi-tenant RESTful API (application
programming interface) to PAP and PDP which support ABAC and is fully compliant
with OASIS XACML 3.0 standard.

We made use of AuthzForce which is a FI-WARE Generic Enabler (GE) that provides
open interfaces to application developers (APIs) as well as support interoperability with
other GEs and we applied AuthzForce Server to comply with the SealedGRID purposes.
While it is possible to use the core (community edition) [25] or just the RESTful PDP [26],
we observe that it is only sufficient to provide further developments of the Sealed GRID
ecosystem and interoperate with other potential FI-WARE GEs.

The deployment of the AuthzForce XACML Server is detailed in this section: all ac-
cess control decisions are given by AuthzForce which will read the ruleset from a previ-
ously uploaded policy domain. Note that since all interactions between the elements are
initiated by HTTP (Hypertext Transfer Protocol) requests, the entities can be containerized
and run from exposed ports, and the AuthzForce container is listening on port 8080, where
it receives requests to make PDP decisions. A volume has been exposed to upload a pre-
configured domain so that a set of XACML access control policies has already been sup-
plied.

The following example shows the request of a decision based on a policy stating that
a user with the role Operator is allowed to control the resource smart meter.

Request: to request a decision from AuthzForce, an entity (which can be a simple curl
script, for now, but in the end will be a SW component) has to make a POST request to the
PDP endpoint. In this case, the user has to request the access to control the smart meter,
as show in Box 1:

Box 1. Request meassage.

curl -X POST \

http://X.Y.X.W:8080/authzforce-ce/domains/sZANABLLEeq_8QJCrBIBDA/pdp \

-H ‘Content-Type: application/xml" \

-d ‘<?xml version="1.0" encoding="UTF-8"?>

<Request xmIns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" CombinedDeci-
sion="false” ReturnPolicyldList="false”>

<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource”>

Sensors 2021, 21, 5448

8 of 24

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-id” In-
cludeInResult="false”>

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string”>smart-
meter</AttributeValue>

</Attribute>

<Attribute Attributeld="urn:sealedgrid:xacml:2.0:resource:sub-resource-id” In-
cludeInResult="false”>

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string”>opera-
tor</AttributeValue>

</Attribute>

</Attributes>

<Attributes Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action”>

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id” IncludeInRe-
sult="false”>

<AttributeValue = DataType="http://www.w3.0rg/2001/XMLSchema#string”>con-
trol</AttributeValue>

</Attribute>

</Attributes>

</Request>’

Response: as expected, the server returns a decision, as it can be seen in Box 2, in this
case of type: “Permit”:

Box 2. Response message.

<?xml version="1.0" encoding="UTF-8” standalone="yes"”?>

<Response xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" ...>
<Result>

<Decision>Permit</Decision>

</Result>

</Response>

4.2.2. Integration with Authentication Component

The authentication component provides a token for achieving authentication based
on a distributed and scalable authentication and key management scheme called SOMA.
The token provided by SOMA [27] must be validated by the authentication component,
therefore, the authentication component proceeds to send a request to the AuthZ server
containing the value of the Environment Category corresponding to the value of the
SOMA certificate validity (whether it is true or false).

The environment attribute is called is-soma-present and, if present, must be true, for
the request to be validated.

SOMA has been implemented in an isolated simulation environment; thus, it cannot
be directly connected to the present implementation. Therefore, instead of just providing
the authentication module with a certificate for verification, we indicatively include some
steps of the creation of the certificate in order to show the process performed at the SOMA
entities.

In this module we utilize the key pair of an Introducer node, and the public key of a
normal node. The attributes of the normal node, along with its public key are hashed be-
fore being signed with the introducer’s private key. At this point, the essence of a SOMA
certificate has been created and any node with access to the introducer’s public key will
be able to verify that the hashed public key and attributes of this specific node are en-
dorsed by an empowered entity in the network.

Depending on the verification outcome, the corresponding JSON request will be per-
formed, so it can be seen in the requests that are presented in more detail bellow. We have

Sensors 2021, 21, 5448

9 of 24

not provided the part of the XACML payload indicating the resource, action and subject
as they are identical to the example in Section 4.2.1.

In Box 3, a request sent to AuthZ server when the SOMA Certificate is valid can be
seen:

Box 3. Valid certificate request.

curl -X POST http://83.212.239.224:8080/authzforce-ce/do-
mains/sZANABLLEeq_8QJCrBIBDA/pdp -H ‘Content-Type: application/xml’ -d
‘<?xml version="1.0" encoding="UTF-8"?>

<Attributes Category="urn:sealedgrid:xacml:2.0:attribute-category:environment”>

<Attribute Attributeld="urn:sealedgrid:xacml:2.0:environment:is-soma-present” In-
cludeInResult="false”>

<AttributeValue Da-
taType="http://www.w3.0rg/2001/XMLSchema#string”>True</AttributeValue>

</Attribute>

</Attributes>

</Request>*

Box 4 shows the response received from the server:

Box 4. Valid certificate response.

<?xml version="1.0" encoding="UTF-8"”?>

<ns4:Response xmlns:ns4="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" ...>
<ns4:Result>

<ns4:Decision>Permit</ns4:Decision>

</ns4:Result>

</ns4:Response>

The above presented show that it is possible to integrate an authentication compo-
nent based on a key management scheme with a policy-based authorization component.

5. Trusted Computing Component

The SealedGRID authentication component described in Sec. 4 makes use of critical
data and performs processes upon which the network’s security is built. More specifically,
private keys and revocation certificates are securely stored inside a trusted environment
that cannot be tampered either physically or digitally. Moreover, operations related to key
management, like certificate signing and revocation, need to be performed in such a se-
cure environment to ensure that the private keys used in the process are not exposed and
taken advantage of by malicious parties. Remote attestation, which is a crucial part of
maintaining a secure and trusted authentication component, is also executed in a trusted
environment. Remote attestation is a powerful operation that, if misused, may result in
denial of service, or infecting the network with malicious nodes and affect the infrastruc-
ture’s security. Therefore, we implemented a solution that provides a threefold function-
ality with a component for cryptographic operations, a component for secure storage and
a component that will allow the integrity checking of binaries before they are allowed to
run, detailed next.

Based on [7] and [27], we have defined the requirements for the Sealed GRID trusted
component. The axes, as we have selected them, are the following:

e Applicability: The applicability of the technology is basically its ability to be
deployed seamlessly and organically within the SealedGRID smart meter. The core
considerations here, are the fundamental capability of the trusted computing
technology to be deployed in a low-powered device, typically composed of a small

Sensors 2021, 21, 5448

10 of 24

SoC similar to various IoT devices, with minimal architectural changes and the
smallest possible costs.

e Functionality: The functionality provided by the trusted computing technology is of
essence when it comes to building the functional entities of the SealedGRID trusted
component. This requirement axis is concerned with the ability of the technology
underlying the basic building blocks for the correct and functional orchestration of
the entire trusted component.

e Performance: The performance requirements will provide insights for the
considerations made when it comes to the performance overhead of the selected
solution. These requirements will mostly consist of timings and computational
restrictions made by the underlying hardware of the SealedGRID smart meter.
Although the performance requirements are essential, they are not as binding as the
applicability and functionality requirements since performance overheads that are
not crippling the functionality of the device could be accepted so as to satisfy both of
these crucial requirements.

We decided to utilize the TrustZone TEE [28] for the SealedGRID platform, since it
provides a wide range of functionality in isolated environments. Also, TrustZone is suit-
able for the use in low powered devices (IoT, smart meters etc.). It is also available in the
latest ARM-M architectures (Cortex-M23 and above), meaning it offers the newest bene-
fits. We note that the current work does not aim to compare the available trusted compu-
ting implementations. Moreover, TEE offers safe execution of authorized security soft-
ware, known as trusted applications. It provides end-to-end security and execution isola-
tion by enforcing protected execution of securely verified code, confidentiality, authentic-
ity, privacy, system integrity, and data access rights. Hence, TEE will provide a secure
platform for storing and handling sensitive user information on the smart meter device.
It also defines a distinction between the ‘normal world’, where common OS and applica-
tions are executed, and the ‘secure world’, which hosts trusted OSs and applications. In
the proposed platform, only a subset of the smart meter functionality will be executed
inside the secure world (such as storing secret keys in TEE secure storage), while the rest
of the operations will remain in the normal world to maintain a minimal trusted compu-
ting base and maintain the least possible attack surface which could expose the sensitive
data stored within the TEE. The communication between the normal world and the secure
world will be achieved by utilizing the TEE client APJ, as it is defined in the GlobalPlat-
form specification.

5.1. Trusted Execution Environment Architecture in Sealed GRID

TEE provides an isolated environment in which specific operations can be offloaded
to and executed in a secured manner separated from the possibly compromised normal
OS. Essentially, the TEE is a separate world (equipped with its virtual CPU and memory)
in which these sensitive operations can reside with minimal capabilities. Given this, it is
of utmost importance to maintain the minimum possible code running within this world
to avoid threats and problems that follow large applications as code-based vulnerabilities
and performance issues. It is measured with a term called ‘trusted code base’ (TCB), which
is practically a measure of how much code is running in the secure world either in the
form of secure world applications (trusted applications—TAs) or of the secure world op-
erating system (Secure OS). The concept of TCB minimization is further defended by most
TEE implementations that provide a small library set for the TAs to utilize cryptographic,
arithmetic, and secure storage operations.

In this work, we aim to align with this practice by provisioning TAs that implement
only the required and most sensitive components of the platform functionality. We aim to
develop functionalities that can and will be reused at different points in the different com-
ponents of the SealedGRID entities [29,30]. This way, we aim to provide a minimal, effi-
cient, and as-secure-as possible trusted computing component implementation that can

Sensors 2021, 21, 5448

11 of 24

provide only the essential functionalities. More specifically, we aim to utilize secure stor-
age and cryptographic operations, and we also aim to implement a secure execution en-
vironment which it will check the integrity of an entire binary before it is allowed to be
executed. The above-introduced functionalities are further analyzed below:

Secure Storage, provided by the TEE, utilizes measures of cryptography and virtual
separation (bit flagging by the memory management unit so to provide separate address
space for the normal and the secure world). In SealedGRID, we utilize it to securely store
sensitive data, certificates, and cryptographic keys that will only exist within the secure
world and never leave it. Through this, we maintain the highest possible level of security
for this sensitive data and prevent attackers from attempting to eavesdropping it if it were
to ever leave the secure world.

Cryptographic Operations, provided by the TEE, uses internal libraries to implement
a wide variety of cryptographic primitives and key generation functions to provide a
seamless operation of normal world applications that utilize TAs to perform these sensi-
tive functions. Additionally, the cryptographic functionality is interconnected with secure
storage, so it enhances our scheme of having sensitive keys never leaving the secure world
and being safely handled within it. Essentially, we provide an API to the normal world
which will be able to specify the cryptographic operation to be executed and/or the key
ID to be used with shared memory objects and attributes that will allow us to essentially
provide a drop-in replacement for every cryptographic operation that would otherwise
be executed in the normal world application.

Secure External Execution is a system for secure integrity checking of core applica-
tions that either use or do not use the provided previously mentioned functionalities. It
builds an added layer of security for core functions of SealedGRID as the authentication
and authorization component and any other native binary identified to be of higher sen-
sitivity. The way it will work is the following: it will allow the execution of the pre-speci-
fied binaries only if they are first checked for their integrity using the TEE. Integrity check
will be achieved by storing in the secure world the cryptographic hashes for each of these
binaries, and before their execution, the measured hash will be compared with the stored
hash, and only if they match the execution will they be allowed.

5.1.1. Component Flow

The trusted execution environment component will be composed of a dynamic inter-
face that will be able to serve a variety of security-sensitive functions. As discussed above,
the three main functional categories target the secure storage that TEEs can provide, the
secure execution of critical cryptographic functions and our implementation of binary in-
tegrity checking that will be used for the authorized execution of said binaries. All these
sub-components have internal dependencies between them and thus can and will utilize
functionalities of each other. For example, the cryptographic functionality will utilize the
secure storage for storing the cryptographic keys used, and the binary integrity checking
functionality will also use the secure storage to store a list of authorized binary hashes
that can run within the normal world. This design aims to provide a dynamic secure en-
vironment that can be utilized by any application within the SealedGRID ecosystem and
protect them in their core functionalities while maintaining a balance between functional-
ity and TCB minimization. Figure 4 presents the overall scheme, where each sub-compo-
nent utilizes functions of each other, and each sub-component can get used by any
SealedGRID application (App).

Sensors 2021, 21, 5448

12 of 24

» »a
ﬁ Cryptography "l secure Storage Secure Execution
= Application L, Application N Application
) 74
A A \
% h 4 4 4
=
g SealedGRID App 1 SealedGRID App 1 mmm | SealedGRID App n
S
z

Figure 4. Component Overview of the TEE module.

The secure storage component application will provide a flexible API for the storage
of security critical information which could include authentication data and smart meter
data. The main concept behind this, is the utilization of storage identifiers which will al-
low for easy management. More specifically, a client application needs to first be authen-
ticated and then request the allocation of a single storage slot, the secure storage applica-
tion will then allocate the requested slot and return to the client application the storage
ID. With the storage ID, the client application will be able to store and retrieve data within
this slot given that it is always authenticated and that it provides the correct storage ID.
The entire procedure is demonstrated in Figure 5 and it is to be noted here that the initial
storage allocation can be enriched with additional properties which could for example
indicate that a specific data slot is to be written only once, or that it cannot be retrieved to
the normal world and can only be utilized in the secure world (such as cryptographic keys
used for cryptographic functions executed within the TEE).

Normal World Secure Storage
Application Application

Authenticate and request storage ID

Y

Provide storage ID Allocate storage

A

Data, Authenticate, ID

Success message, Pointer Store data

Authenticate, ID, Pointer

Y

Data Fetch data

Figure 5. Abstract overview of the secure storage application.

The cryptography application provides a drop-in replacement for a variety of cryp-
tographic operations including key generation, encryption-decryption and any other op-
erations supported by the underlying environment which is aligned with the functionality
provided by the standardization TEE body GlobalPlatform in the internal API specifica-
tion [29]. As apparent, this provides a two-sided functionality, one for key creation where
the client application will be first authenticated and will be able to either create keys either
for inner-TEE cryptography or to create external keys to be exported out of the TEE for

Sensors 2021, 21, 5448

13 of 24

other applications. While the second part of the cryptographic functionality is composed
of the actual cryptographic functions where each function requires an optional key and
the appropriate configurations from an authenticated client application. The application
will be able to send: (optional) data, (optional) key ID stored in the secure storage, (op-
tional) key stored by the application, cryptographic function ID and cryptographic func-
tion configuration. After a correct evocation of the cryptographic function, the TEE will
send the success/failure message and the applicable results. Figure 6 depicts the design.

Normal World Cryptography
Application Application

Authenticate and request key ID

Generate &

< Provide key ID store key

Crypto function, Authenticate, key ID

Execute crypto
Success message, Results function

Figure 6. Abstract overview of the TEE Cryptography Application.

The secure execution function will be able to provide a level of assurance behind a
normal world application before it is allowed to be executed. A high-level overview is
depicted in Figure 7 where two main functions can be observed: (i) the registration of a
trusted application through its calculated hash and (ii) the integrity checking of an already
registered application that will allow or disallow the execution of it. The entire procedure
will be supported through secure hash functions and possibly asymmetric cryptography
for external attestation purposes.

Normal World Secure Execution
Application Application
Authenticate, Binary Hash
Add to
< Success message trusted binaries
Binary Hash >

Check against

< Allow/Disallow Execution trusted binaries

Figure 7. Overview of the secure execution function.

Sensors 2021, 21, 5448

14 of 24

5.1.2. Integration between Modules and Related Workflows

According to the identified use cases [30] of trusted computing within the project, the
basic functionalities that need support from this module are the identity validation/au-
thentication process and the secure storage of the collected digital evidence. Given the
flexibility of the proposed architecture, it can support these functionalities and any other
future-identified functionality as it will provide drop-in replacement AP]Is for the required
functionality (see Figure 4).

We assume an administrator, who aims to execute a specific sensitive application
with the utilization of the security guarantees provided by the proposed TEE architecture.
First, he authenticates with the TEE and sends a cryptographic hash of the application he
wants to register with the TEE secure execution function. After the TEE validates the au-
thentication credentials provided by the administrator, it stores the cryptographic hash of
the application by utilizing the TEE secure storage application, effectively registering the
application in the trusted binaries registry. Once the aforementioned processes are com-
pleted, whenever this application is allowed to be executed, its hash is calculated and
compared with the stored hash value within the TEE and only if the hashes match its
execution can continue. With this in place, the verified application can proceed to off-load
all cryptographic functions to the TEE cryptography application that can be used for key
provisioning and execution of almost every current cryptographic scheme. Whenever
such a functionality is needed, the application calls the provided TEE API and waits for
the TEE cryptography application to respond with the results. Moreover, the application
can utilize the secure storage application so that it can allocate storage within the secure
world which it can use to store sensitive data in the isolated memory of the TEE. This use
case is demonstrated in Figure 8.

Administrator

Normal World Secure Storage Cryptography Secure Execution
Application Application Application Application

P Register Application

Y

____Store Application Hash

Request Execution

L, Compare Hashes

L, Allow Execution

Off-load Cryptography

Store Keys

A

Allocate Storage

Y.V

Store Sensitive Data

TEE Secure Execution
TEE Cryptography
TEE Secure Storage

Figure 8. Basic use case of the full TEE functionality —secure execution, cryptography and secure storage.

5.1.3. Design and Architectural Goals and Guidelines

The design of the overall solution is meant to be secure, minimal, and flexible, aiming
to provide high functionality while maintaining a small attack surface through TCB min-
imization. As discussed above, the initial design is to provide a triaxial functionality
within the secure world of the TEE module that strikes a balance between functionality
and the deployment of the smallest possible code base within the TEE. The goal behind
this design is to provision usable and secure solution to the SealedGRID project that will

Sensors 2021, 21, 5448

15 of 24

work as a flexible security enhancement tool which could be deployed almost as a drop-
in replacement to already existing normal world functions.

The targeted functions are three: (i) cryptography, (ii) storage, and (iii) execution in-
tegrity. These three functions are common attack surfaces that often are protected through
traditional security measures that we aim to enhance by utilizing the security guarantees
of TEEs. Cryptography functions run within the TEE take advantage of the protected and
isolated environment that will allow them to be executed securely, minimizing the possi-
bility of inference from malware residing in the normal world. On the other hand, the
storage functionality is backed by the secure storage capabilities of the TEE that allows for
anisolated and cryptographically secure storage of information. Furthermore, secure stor-
age allows for the protection of the cryptographic keys that never leave the TEE, providing
a completely isolated environment for cryptographic operations. Both these benefits apply
to the execution integrity checking function that can safely compare the integrity hash
values of the running applications, while having a secure place for storing these hashes in
the secure storage.

The guidelines we provide for the utilization of the TEE module follow our design
and architecture; that is, security, minimality, and flexibility. We aim to provide an API
on which developers can be based to program drop-in replacement libraries for the pro-
gramming languages that they use. Effectively, we propose a segregated model, in which
the development of the described functionalities and the API falls in the development of
the TEE component and the library that utilizes the API alongside the application is de-
veloped by each application development team (see Figure 9).

TEE Functions

Y

<> API <—> Library < Application

TEE Module
SealedGRID App

Figure 9. The proposed model of the segmentation between TEE and application development.

5.2. Trusted Computing in Sealed GRID Ecosystem

In the heart of the SealedGRID platform lies the TEE, because the authentication and
the authorization component demand its existence for ensuring not only trust but also
privacy among the entities.

The SealedGRID authentication component [31], makes use of critical data and per-
forms processes upon which the network’s security is built. More specifically, private keys
and revocation certificates are securely stored inside a trusted environment that cannot be
tampered either physically or digitally. Moreover, operations related to key management,
like certificate signing and revocation, need to be performed in such a secure environment
to ensure that the private keys used in the process are not exposed to be taken advantage
of by malicious parties. Remote attestation, which is a crucial part of maintaining a secure
and trusted authentication component, is also executed in a trusted environment. Remote
attestation is a powerful operation that, if misused, may result in denial of service, or in-
fecting the network with malicious nodes, affecting the infrastructure’s security.

Moreover, trusted computing plays an essential role within the Sealed GRID author-
ization component [32]. TEE TrustZone is the technology chosen to implement trusted
computing mechanisms in the project as was justified in previous sections. The TEE can
be used by SealedGRID to enable the secure handling of confidential information on de-
vices and on server infrastructure. Among the most relevant features, we have mentioned
the isolation. The TEE standard creates an isolated environment that runs in parallel with

Sensors 2021, 21, 5448

16 of 24

the operating system, providing security for the rich environment. This isolation is essen-
tial to implement the SealedGRID authorization component that keeps sensitive infor-
mation that will be securely stored within the secure zone in TEE as the authorization
token. Isolation can be used to store and encrypt (if applicable) sensitive information from
context awareness processed to implement Sealed GRID authorization components.

5.3. Trusted Computing Component Implementation

Following the defined architecture, we implemented a solution that provides a three-
fold functionality with a component for cryptographic operations, a component for secure
storage and a component that will allow the integrity checking of binaries before they are
allowed to run. The cryptography and secure storage components are stand-alone and can
be used and configured dynamically from other applications by calling the corresponding
executable binary with the appropriate flags and configurations. While the integrity
checking component depends on the other two to enroll binaries (hash, sign and securely
store the signature of the binary to be enrolled) and check binaries (pull signatures from
secure storage, hash the binary and verify it) with its functionality being mainly targeted
towards system administration tasks.

5.3.1. OP-TEE

For the actual implementation of the SealedGRID trusted computing component, we
chose the OP-TEE project [33] that provides a fully functional secure world operating sys-
tem and the corresponding normal world hooks that allow for normal-secure world com-
munications. Also, it provides a toolset for the development of trusted applications which
is GlobalPlatform compliant and allows for portable code for other compliant systems.
The project consists of the optee_os which is the operating system of the secure world and
contains libraries that implement GlobalPlatform-defined TEE functionalities with mini-
mal extra libraries that mainly target providing support for common operations that take
place within a TEE. On the other hand, the optee_client contains libraries and APIs for the
correct function of the normal world side of the TEE, something that includes proper sys-
tem calls, GlobalPlatform compliant API support of the normal world client applications
and proper authorization to the TEE device driver. The build component of the OP-TEE
project contains all the necessary build recipes for setting up the entire environment for a
variety of targets (development boards and emulated QEMU targets) as well as for build-
ing complete trusted and client applications. Underneath the aforementioned operating
systems, the OP-TEE project utilizes a standard ARM TrustZone firmware [34] that acts
as a hypervisor between the normal and the secure world. This firmware is essentially
tasked with handling any TEE-related system calls or interrupts and managing the TEE
so as to provide the defined functionality securely and correctly.

5.3.2. Cryptographic Component

The cryptographic component is mainly concerned with implementing specific cryp-
tographic functions in the secure environment of a TEE. The entire component is designed
to be used with configuration flags that specify what exact operation should be executed,
a process that begins from the normal world client applications that interprets these flags
and properly calls the trusted application so that it will execute the specified function
within the TEE which then in turn will return the results back to the normal world.

The cryptographic component contains some basic operations, namely:

L key generation
II. encryption/decryption
III. hashing
Iv. signing/verification.

The design of each of these aims to provide a wide range of predefined commonly

used cryptographic algorithms but also being easily extensible so that new algorithms

Sensors 2021, 21, 5448

17 of 24

could be added. The initial architecture of this module is to be used as an external binary
(the programmer will have to call it as a system program), but external libraries can be
implemented to provide easier to use APIs for the specific language that the developer is
using. In the following subsections we will present the functionalities implemented by
each module.

The key generation module is tasked with generating keys that reside only within
the TEE and never leave it and this is achieved by utilizing the internal secure storage of
the TEE that holds the generated keys. These are later pulled for cryptographic operations
within the secure world, and when generating a key, a user must specify first the keygen
directive after the binary call alongside with the following parameters: (i) Key ID: the ID
which will be used for later accessing the key. Essentially it is used as a unique identifier
for the storage ‘drawer’ that holds the key; (ii) Key Type: the type of the key that will be
generated. Valid values for this flag are RSA for asymmetric cryptographic and signing
keys or AES for symmetric cryptography keys; (iii) Key Size: the size of the key that will
be generated. This needs to comply with standard practices and will affect the type of
available cryptographic functionalities that will be available with said key (RSA
1024/2048, AES 128/256). Under the hood, the client application sends all the aforemen-
tioned information to the secure world application so that it can initialize the key genera-
tion process. This is broken to the actual key generation with all the desired properties,
executed with the TEE_GenerateKey function and temporarily stored on the secure world
in a TEE_ObjectHandle with the TEE_AllocateTransientObject function. With the object
handle in hand, the trusted application continues to permanently store the key in its se-
cure storage. This is achieved with the utilization of the TEE_CreatePersistentObject func-
tion that takes in the desired ID of the stored key that the user has defined.

The encryption and decryption functionalities are included within the cryptographic
module which is tasked with the encrypting and decrypting in the various available
modes of AES for symmetric cryptography or of RSA for asymmetric cryptography. There
are specific modes hardcoded in the application which can easily be modified or extended
in the source code depending on the needs and requirements of the end application. These
cryptographic functionalities are invoked using the compiled binary with specific direc-
tives and flag configurations with the target of being called by Sealed GRID functionalities
to provide secure cryptography throughout the smart meter deployed applications. The
normal world application sets up all the required parameters and makes the correspond-
ing call to the trusted application so as to clearly state the desired functionality from the
TEE. In the secure world, the trusted application initially sets the encryption decryption
functionality with the desired algorithm and mode, then it calls the get_key() function of
the key generation module to pull the specified key and finally invokes the cryptographic
operation. When the results are returned to the normal world application, the trusted ap-
plication writes the output to the specified file which is created if it does not exist.

The hash function is a part of the cryptographic module of the Sealed GRID trusted
computing module, and it allows for hash operations of inputs with the output being re-
turned either in a file or to the standard output of the terminal. The client specifies the
desired hash operation algorithm and the input and output parameters, that the trusted
application receives and acts accordingly. Available algorithms are: (i)
TEE_ALG_SHA256: the SHA256 algorithm, and (ii) TEE_ALG_SHA512: the SHA512 al-
gorithm. Under the hood, the client application sends all the relevant information to the
trusted application which will in turn act upon them and execute the defined operation.
More specifically, the operation mode is set to the TEE_MODE_DIGEST alongside the
specified algorithm, and afterwards, the hash function is executed with the results being
returned to the client application.

The signature and verification functions are part of the cryptographic component and
more specifically, the asymmetric cryptography functionality. The purpose of this func-
tionality is to provide a secure method for signing and verifying hashes that are fed into
the binary either through the command line or from input files. The output signature is

Sensors 2021, 21, 5448

18 of 24

stored in the specified output-file and, regarding the verification, the POSIX success code
of zero (0) is returned on correct verification and error codes are returned for incorrect
verification. The process is similar to the asymmetric part of the encrypt and decrypt func-
tionality and similar arguments are required for the execution for the signing and verifi-
cation of hash digests. Under the hood, the client application compiles all the required
information and invokes the trusted application so that it can execute the specified func-
tion. In the secure world, the trusted application sets all the appropriate modes and con-
figuration for the asymmetric signature or verification in the cmd_do_crypto() function,
pulls the defined key with the get_key() function and executes the defined asymmetric
function in the RSA_Operation() function.

5.3.3. Secure Storage Component

The secure storage component is a separate binary part of the SealedGRID trusted
computing component that is tasked with securely storing files and data within the secure
storage of the TEE. The secure storage is an encryption backed and hardware protected
storage location that allows for normal world inaccessible and encrypted data. This stor-
age location is used for holding sensitive data from the normal world as well as data that
never leave the TEE as we have already established in the key generation component that
creates and stores cryptographic keys that never leave the premises of the TEE. In the
following two chapters we will analyze the functionality of storing and pulling data from
the secure storage in the context of the normal world usage (data will travel from the nor-
mal world to the secure world and vice versa).

Store Data in the Secure Storage

The data storage process can be called from the secure storage binary with the store
directive, which essentially allows for storing a file in the secure storage with a given ID
locator that will later be used for pulling this file. The following configurations must be
specified for a successful data storage alongside with the store directive: (i) File name: the
file name of the file to be stored and (ii) File identifier: The ID of the secure storage location
where the file will be stored. Under the hood, the size of the file is computed to properly
set all the required parameters which are then sent to the TEE. The trusted application on
the other side, creates the corresponding persistent object that is populated with the
TEE_WriteObjectData() function that copies the contents of the file in the persistent object.

Pull Data

Pulling data from the secure storage is similar to the process of storing the data, so
the client application needs to specify the identifier of the stored object and the name of
the file to be created that will contain the pulled data. Under the hood, the client sends the
identifier of the data storage to be pulled to the trusted application. The trusted applica-
tion then pulls the data that the identifier points to with the command TEE_ReadObject-
Data().

5.3.4. Binary Verification Component

The binary verification component is a standalone function of the SealedGRID
trusted computing component that allows for the secure integrity verification of executa-
ble binaries before they are allowed to run. This component first allows an administrator
to enroll binary signatures in the secure storage, a process that first calls the cryptographic
component to securely digest and sign the hash to create a valid certificate and then stores
the resulting certificate in the secure storage through the secure storage component. then,
when a binary is to be executed, the certificate is pulled from the secure storage, the hash
is recalculated through the cryptographic component which will be used once again to
verify the hash in comparison with the pulled certificate. In the following subchapters, we
will analyze the binary enrolment and verification.

Sensors 2021, 21, 5448

19 of 24

Binary Enrolment

The binary enrolment process initially copies the binary in administrator-only direc-
tory to avoid any race condition vulnerabilities. It then proceeds to call the cryptographic
component to produce the hash of the binary and then its certificate with the usage of the
defined asymmetric key. With the certificate in hand, the final task is to store the certificate
within the TEE through the secure storage component.

Binary Verification

The binary verification procedure is the reverse of the enrolment procedure, and it
essentially allows for the integrity verification of executables before they are allowed to
run. Once again, the binary is initially copied to an administrator created temporary di-
rectory so as to avoid race conditions and then it is hashed with the cryptographic com-
ponent. Afterwards the corresponding certificate is pulled from the secure storage given
the name of the binary. Finally, with both the certificate and the hash in hand, the crypto-
graphic component is called once again to verify the binary given the specified asymmet-
ric key ID. If the binary is correctly verified, it is automatically executed from the tempo-
rary directory, if not an error is returned.

6. Results
6.1. Authorization Component Evaluation

The authorization component was subjected to a stress test, using a series of scripts
written in bash, as well as two tools: percentile (https://github.com/yuya-takeyama/per-
centile (accessed on 14 April 2021)) and ntimes (https://github.com/yuya-
takeyama/ntimes (accessed on 14 April 2021)).

A series of tests have been defined, mainly by varying the number of clients (running
several processes that call the REST API interface of the AuthZ component). The most
relevant result that we considered is the measured API response time as well as CPU and
RAM variation according to the number of clients.

6.1.1. API Response Time

The number of clients that simultaneously call the API interface of the AuthZ com-
ponent has been varied and then the average, minimum, maximum response time to per-
form a POST operation and the standard deviation but also the percentages of its different
values were measured.

Percentile x—represents the value at which x percentages of the data are below the
measured value.

For the purpose of this evaluation, we will consider an acceptable response time of
the order of 500 ms (https://www.nngroup.com/articles/response-times-3-important-lim-
its/ (accessed on 15 April 2021)).

Following the analysis of Figure 10, we can observe that the response time exceeds
500 ms, when the number of clients exceeds 100. Moreover, the growth rate of this re-
sponse time increases with the number of customers exceeding 100 in a linear fashion. A
similar trend can be observed for the 95th percentile, but here we mention that the values
are much worse than the average. The conclusion is that the API interface of the AuthZ
component cannot support simultaneous connections from more than 100 smart grid cli-
ents, without significant degradation of the response time. This provides valuable insight
when designing the access control solution and the general architecture for a secure smart
grid system.

Sensors 2021, 21, 5448

20 of 24

Average response time (ms)

1400

1200

1000 +

800

600

400

200

—— Authorization component —— Authorization component

2500
™y ~
£ /
o 2000+ <
£
g
S 15004
Q.

[
o
[} /
= 1000
S
8
0 500
T T T T 0 T
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of clients Number of clients
Figure 10. Average response time and 95th percentile response time.

6.1.2. RAM and CPU Consumption

While running the stress tests mentioned, we also used the Linux commands sar (part
of sysstsat (https://man?.org/linux/man-pages/man5/sysstat.5.html (accessed on 15 April
2021)) package) for CPU consumption and the values of RAM consumption reported by
I/proc/meminfo file. The variation was recorded for 180 s.

Analyzing Figure 11, we can see that the CPU consumption jumps to about 60% and
remains until the concurrent API calls return. The more numerous the clients, the more
the CPU consumption remains at 60%. A periodic drop to about 30% CPU for 500 and
1000 clients is noticeable. This behavior can be attributed to the thread scheduling in the
Linux kernel used —some of the API calls are on hold and after some of them finish (about
60 sec, which keeps CPU load at 60%), the rest that run after keep the CPU load at 30%.

Figure 11 shows that the memory consumption has a linear increase, but with little
relative increase. For 1000 clients, the memory consumption jumps by 42% and then line-
arly rises to about 52% of the initially consumed RAM (therefore an 8.5% increase).

CPU variation
70
60
50
40
X
30
20
10 I
0 I.M“‘Z“:_‘\’_."‘:-J."_'.*- o S Nt g
DO MO NN d 0N ANOOOWMONS TN OO MOIN S
N N OO A AN AN NI I NO A A N NN < NN O NN M
ST WL HWWLWLMWMWLNIOE 8OOV OoONKNNNRKN
TSI ssdSssd SIS I ST STEE A
D B B B B I e B B I I A B I A e e e e e R e e O I O |
L B B B B B B B e B B B B e T B B B e B B o B e B B o B o A B o |
e 10 Clients e 50 clients 100 clients 500 clients e=====1000 clients

Figure 11. CPU consumption variation for different number of clients.

Sensors 2021, 21, 5448 21 of 24

Figure 12 shows the variation of the memory consumption only until 11:45:51. After
that the memory consumption stays nearly constant and we opted not to graphically rep-
resent this part. From Figures 12 and 13 we can conclude that the RAM and CPU impact
can be accommodated by medium-end hardware. Corroborating with the results in Sec-
tion 4.2.1, where we concluded that 100 simultaneous connections to the authorization
component can be supported, we see that the impact of the authorization component
when receiving multiple simultaneous API calls is negligible especially on the RAM con-

sumption.
Memory variation
8
75
7
65
o
— =
55
5
45
DO NN OO A < NOMUWOUONLWL O AT ~NOMmMWO N W 0
MY TN N9 009 e N N D) MW S W
T - T T T ST D DD NN WD
TEST ST S SSSSSSS ST STSSTSSTSTSS
o e e = = = = = = = = = = -~ = = =& = =& -~ - - -
™ =~ =~ =~ =~ = = ™ A A A o A o " A " A A A A "~ "~ A o o o
e | () ClieNts e 50 clients e 100 clients 500 clients e 1000 clients

Figure 12. RAM consumption variation for different number of clients.

benchmark_1001 TEE Trusted Storage Performance Test (WRITE) —— benchmark_1001 TEE Trusted Storage Performance Test (WRITE)
—— benchmark_1002 TEE Trusted Storage Performance Test (READ) —— benchmark_1002 TEE Trusted Storage Performance Test (READ)
benchmark_1003 TEE Trusted Storage Performance Test (REWRITE) benchmark_1003 TEE Trusted Storage Performance Test (REWRITE)

18 700
16 by 600
14
. s —
—~ 12+ 3 = I A—
o / 2
\?D_-” 10 ; 400
) 1S
€ g4 A=
£ / = 300
G /
200
4 -
2 : , - 100_2—:__‘;i;’:—**7——_:
0= - ! C ' ; ‘
0 0.2 04 06 0.8 1 12 0 02 04 06 08 1 12
Data Size (MByte) Data Size (MB)
(A) (B)

Figure 13. (A) WRITE, READ, REWRITE Tests—Data Size vs. Time and (B) Data Size vs. Speed.

Sensors 2021, 21, 5448

22 of 24

6.2. Performance Evaluation of the Sealed GRID Trusted Computing Component

A series of tests were conducted using the OP-TEE test suite, so the OPTEE environ-
ment was set up on a virtual machine within a computer where resources were dedicated
to it. The computer and VM have the specifications listed in Table 2, and the QEMU tool
was used within the VM to virtualize an ARM processor that provides the underlying
TrustZone technology that OP-TEE uses to bootstrap its secure and normal world.

Table 2. Testbed parameter.

Specification Value
CPU Intel i7-8568u
Number of CPU Cores/Threads 4/8
RAM 16 GB
Host Operating System Windows 10.0.19041
VM Number of Processor Cores/Threads 2/2
VM allocated RAM 2 GB
VM Operating System Ubuntu 20.04
QEMU Version 5.0.0

We note that the viability and performance of the proposed trusted computing com-
ponent reevaluated through emulation. We ran a series of benchmarks for the perfor-
mance of the underlying OP-TEE primitives that our solution utilizes, the aim here is to
create a concise report of how efficiently the OP-TEE framework can handle different
kinds of payloads in both trusted storage and cryptographic operations, as well as to run
all the OP-TEE defined regression tests to check its proper functionality.

We performed the following tests with respect to the data size: (i) data write time, (ii)
data read time, and (iii) data rewrite time. We observed that the data read time increases
linearly with the doubling of the data size; the read times are very small for small data
sizes and finally, that the time to rewrite remains very small for small data sizes, however
it increases linearly for larger ones. Figure 13A summarizes these results regarding the
required time, while Figure 13B presents the speed for the aforementioned measurements
regarding the corresponding data size.

Moreover, we have measured the performance of SHA1, SHA256, AES ECB and AES
CBC with random inputs of the same size, and Table 3 summarizes the results of this
evaluation.

Table 3. SHA1, SHA256, AES ECB, AES CBC Execution Times.

Algorithm Min (us) Max (us) Mean (us) Stddev (us)
SHA1 586.14 5042.05 729.56 105.52
SHA256 731.90 2958.29 919.312 75.06
AES ECB 596.83 2811.23 749.524 89.58
AES CBC 613.408 385.5 729.82 98.48

Given the above measurements (see Table 2) that we produced, we can observe that
our solution is capable of supporting the Sealed GRID solution in its functionalities. In the
context of data storage, given the fact that the stored data will be of small size (mainly
cryptographic keys and signed hashes) the measured speed is more than enough to in-
stantly push and pull data from the TEE or stage. On the other hand, the cryptographic
primitives of the OPTEE platform provide performance in the order of microseconds (us)
which can provide exceptional performance given the fact that it is provided by an exter-
nal security module. This performance can vary depending on the platform that the soft-
ware runs on (hardware accelerators) and how optimized the cryptographic libraries are.
All in all, we observe the overall performance and correctness of the SealedGRID trusted

Sensors 2021, 21, 5448 23 of 24

computing component as more than acceptable for the targeted functionality and it meets
the requirements.

7. Conclusions and Future Work

In this work we have presented the entire process that we followed while designing
a functional trusted computing component that fulfils the requirements of the
SealedGRID project, implementing it and measuring its performance. We chose the
TrustZone trusted execution environment technology which is abundantly available in
devices with ARM processors which are common in small devices that cover the needs of
the smart meters of SealedGRID. With this in place, we selected the OP-TEE platform, a
complete TEE environment that provides secure- and normal worlds with the usage of
the TrustZone technology and can be used to develop both physical devices based or emu-
lation-based TEE applications. After the selection process, we created a trusted computing
component architecture that aims at providing versatility in its functionality by giving
commonly used primitive functions to the user (cryptography, signatures, hashing, and
storage).

The paper presented steps taken to implement XACML policies tailored for smart
grids, therefore, proper XACML entities were defined according to the scope and purpose
of the SealedGRID project. Also, a reference implementation of the trusted computing
component was presented, and a preliminary evaluation of the implementation was per-
formed.

Author Contributions: All authors were significantly involved as key team members in the
SealedGRID research project. However, authors G.S. and M.V. were mostly involved in conceptu-
alization; A.V. and N K. in establishing methodology; N.K. and M.-A.S. in software development;
M.V. and C.X. in the validation phase; A.V. and M.V. in formal analysis and simulation; G.S. in
investigation and resources; M.V. and M.-A.S. in writing —original draft preparation; A.V. and A.F.
in writing—review and editing; G.S. and C.X. in visualization and supervision, A.F. in project ad-
ministration; and G.S. in funding acquisition. All authors have read and agreed to the published
version of the manuscript.

Funding: This research has received funding from the EU as part of the SealedGRID project (H2020-
MSCA- RISE-2017 under grant agreement No 777996) and the research leading to these results has
received funding from the NO Grants 2014-2021, under Project contract no. 42/2021, RO-NO-2019-
0499 —"A Massive MIMO Enabled IoT Platform with Networking Slicing for Beyond 5G IoV/V2X
and Maritime Services” —SOLID-B5G.

Acknowledgments: Engineer Cristiana Istrate contributed to this work during the preparation of
her master thesis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, I. Greenhouse gas emission accounting approaches in electricity generation systems: A review. Atmos. Environ. 2019, 200,
131-141, doi:10.1016/j.atmosenv.2018.12.005.

2. Abbasi, S.; Barati, M.; Lim, G.J. A Parallel Sectionalized Restoration Scheme for Resilient Smart Grid Systems. IEEE Trans. Smart
Grid 2019, 10, 1660-1670, doi:10.1109/tsg.2017.2775523.

3. Momoh, J. Electric Network Analysis in Energy Processing and Smart Grid. In Energy Processing and Smart Grid; John Wiley &
Sons: New York, NY, USA, 2018; pp. 5-29, doi:10.1002/9781119521129.ch2.

4. Richard, J.C. The Smart Grid: Status and Outlook. Available online: https://fas.org/sgp/crs/misc/R45156.pdf000 (accessed on 2
May 2019).

5. Huseinovi¢, A.; Mrdovi¢, S.; Bicakci, K; Uludag, S. A survey of denial-of-service attacks and solutions in the smart grid. IEEE
Access 2020, 8, 177447-177470, doi:10.1109/ACCESS.2020.3026923.

6. Farao, A.; Veroni, E.; Ntantogian, C.; Xenakis, C. P4G2Go: A Privacy-Preserving Scheme for Roaming Energy Consumers of the
Smart Grid-to-Go. Sensors 2021, 21, 2686.

7. Suciu, G,; Istrate, C.I.; Vulpe, A.; Sachian, M.A.; Vochin, M.; Farao, A.; Xenakis, C. Attribute-based Access Control for Secure

and Resilient Smart Grids. In Proceedings of the 6th International Symposium for ICS & SCADA Cyber Security Research,
Athens, Greece, 10-12 September 2019; Volume 6, pp. 67-73.

Sensors 2021, 21, 5448 24 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.

32.

33.
34.

Xue, C. Analysis of Information Security Protection Strategy for Network Electronic Engineering Archives. In Proceedings of
the 5th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2018), Malang,
Indonesia, 16-18 October 2018; d0i:10.25236/iceeecs.2018.084.

Ullah, M.; Kakakhel, S.R.U.; Westerlund, T.; Wolff, A.; Carrillo, D.; Plosila, J.; Nardelli, P.H. IoT Protocol Selection for Smart
Grid Applications: Merging Qualitative and Quantitative Metrics. In Proceedings of the 2020 43rd International Convention on
Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September—2 October 2020; pp. 993-998,
doi:10.23919/MIPRO48935.2020.9245238.

Iglesias-Urkia, M.; Casado-Mansilla, D.; Mayer, S.; Bilbao,].; Urbieta, A. Integrating Electrical Substations Within the IoT Using
IEC 61850, CoAP, and CBOR. IEEE Internet Things |. 2019, 6, 7437-7449, doi:10.1109/JI0T.2019.2903344.

Fernandez-Izquierdo, A.; Cimmino, A.; Patsonakis, C.; Tsolakis, A.C.; Garcia-Castro, R.; Ioannidis, D.; Tzovaras, D. Openadr
Ontology: Semantic Enrichment of Demand Response Strategies in Smart Grids. In Proceedings of the 2020 International
Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7-9 September 2020; pp. 1-6,
d0i:10.1109/SEST48500.2020.9203093.

Martins, J.; Strasser, T.I.; Sanduleac, M. Guest Editorial: Smart Meters in the Smart Grid of the Future. IEEE Trans. Ind. Inform.
2021, doi:10.1109/TI1.2021.3094182.

Li, X,; Liang, X.; Lu, R;; Shen, X; Lin, X.; Zhu, H. Securing smart grid: Cyber attacks, countermeasures, and challenges. [EEE
Commun. Mag. 2012, 50, 38-45, d0i:10.1109/MCOM.2012.6257525.

Ruland, C.; Sassmannshausen, J. Firewall for Attribute-Based Access Control in Smart Grids. In Proceedings of the 2018 IEEE
International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12-15 August 2018; pp. 336-341,
doi:10.1109/SEGE.2018.8499306.

Abreu, V.; Santin, A.O.; Viegas, E.K.; Cogo, V. Identity and Access Management for IoT in Smart Grid. In Advances in Intelligent
Systems and Computing, Proceedings of the Advanced Information Networking and Applications. AINA 2020, Caserta, Italy, 15-17 April
2020; Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 1151,
doi:10.1007/978-3-030-44041-1_104.

Saxena, N.; Choi, B.J.; Lu, R. Authentication and Authorization Scheme for Various User Roles and Devices in Smart Grid. I[EEE
Trans. Inf. Forensics Secur. 2016, 11, 907-921, doi:10.1109/TIFS.2015.2512525.

Yeo, S.-S.; Kim, S.-J.; Cho, D.-E. Dynamic Access Control Model for Security Client Services in Smart Grid. Int.]. Distrib. Sens.
Networks. 2014, 10, 181760, doi:10.1155/2014/181760.

Chaudhry, S.A.; Alhakami, H.; Baz, A.; Al-Turjman, F. Securing Demand Response Management: A Certificate-Based Access
Control in Smart Grid Edge Computing Infrastructure. IEEE Access 2020, 8, 101235-101243, doi:10.1109/ACCESS.2020.2996093.
Herold, R; Hertzog, C. Data Privacy for the Smart Grid. Available online:
https://www jerichosystems.com/technology/glossaryterms/policy_enforcement_point.html (accessed on 2 May 2019).

Pereira, O.M.; Semenski, V.; Regateiro, D.D.; Aguiar, R.L. The XACML Standard —Addressing Architectural and Security
Aspects. In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security, Sydney, Australia,
23-24 October 2021.

Oh, Y.; Lee, S.U.-]. Case Study for Collecting Policy Evaluation Factors upon Request when Creating XACML Policy. J. KIISE
2018, 45, 975-979.

Ayed, D.; Lepareux, M.-N.; Martins, C. Analysis of XACML policies with ASP. In Proceedings of the 2015 7th International
Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 27-29 July 2015.

IEC-62351-8, Power Systems Management and Associated Information Exchange —Data and Communications Security —Part
8: Role-Based Access Control. Available online: https://webstore.iec.ch/publication/6911 (accessed on 14 June 2021).
AuthzForce Server. Available online: https://github.com/authzforce/server (accessed on 26 March 2021).

CORE. Available online: https://github.com/authzforce/core (accessed on 26 March 2021).

RESTful PDP. Available online: https://github.com/authzforce/restful-pdp (accessed on 26 March 2021).

Demertzis, F.F.; Karopoulos, G.; Xenakis, C.; Colarieti, A. Self-organised key management for the smart grid. In International
Conference on Ad-Hoc Networks and Wireless; Springer: Cham, Switzerland, 2015; pp. 303-316.

Koutroumpouchos, N.; Ntantogian, C.; Xenakis, C. Building Trust for Smart Connected Devices: The Challenges and Pitfalls of
TrustZone. Sensors 2021, 21, 520.

TEE Internal Core API Specification v1.2.11GPD_SPE_010. Available online: https://globalplatform.org/specs-library/tee-
internal-core-api-specification-v1-2/#collapse- (accessed on 26 March 2021).

Farao, A.; Ntantogian, C.; Istrate, C.; Suciu, G.; Xenakis, C. SealedGRID: Scalable, trustEd, and interoperAble pLatform for
sEcureD smart GRID. In Proceedings of the 6th International Symposium for ICS & SCADA Cyber Security Research 2019,
Athens, Greece, 10-12 September 2019; pp. 74-81.

Bolgouras, V.; Ntantogian, C.; Panaousis, E.; Xenakis, C. Distributed Key Management in Microgrids. IEEE Trans. Ind. Inform.
2019, 16, 2125-2133, d0i:10.1109/T11.2019.2941586.

Suciu, G.; Istrate, C.; Sachian, M.A.; Vulpe, A.; Vochin, M.; Farao, A.; Xenakis, C. FI-WARE authorization in a Smart Grid
scenario. In Proceedings of the 2020 Global Internet of Things Summit (GIoTS), Dublin, Ireland, 3 June 2020; pp. 1-5.

Open Portable Trusted Execution Environment. Available online: https://www.op-tee.org/ (accessed on 26 March 2021).
TrustZone Arm. Available online: https://developer.arm.com/ip-sproducts/security-ip/trustzone (accessed on 26 March 2021).

