## **3D-Image simulation of Platelet Receptor Distributions**

The following MatLab scripts allow to create 2-color, 3D image stacks based on simulated platelet receptor distributions and the image resolution provided by confocal microscopy and sample expansion. Two scripts have to be executed sequentially:

- PlateletColocSimulation\_P1\_DummyPlatelet.m This script calculates a 3D point cloud of evenly spaced positions on the surface of a spheroid with defined lateral and axial radii.
- PlateletColocSimulation\_P2\_3DImageStack.m Based on the 3D point cloud created in 1., image parameters, expansion factor, defined receptor densities and clustering and colocalization parameters 2-color 3D image stacks are reconstructed.

## **Requirements:**

- MatLab R2018b incl. Curve fitting toolbox
- interparc.m function: John D'Errico (2017). interparc (https://www.mathworks.com/matlabcentral/fileexchange/34874-interparc), MATLAB Central File Exchange. Retrieved November 27, 2017.
- points2srtfi3DNoise\_Hh.m, Hannah S. Heil
- 1. Simulation of 3D point cloud of evenly spaced positions on the platelet surface
  - Step 1: Run PlateletColocSimulation\_P1\_DummyPlatelet.m
  - Step 2: Input via dialog:

**a** - lateral (x,y) platelet radius in nm

**b** - axial (z) platelet radius in nm

• Step 3: Output saved as .mat:

Dist - Distance between generated positions in nm.

**AllPoints** - .mat file with matrix AllPoints containing all generated equidistant receptor positions [x,y,z] on platelet surface in nm.



**Figure 1:** Defining the platelet geometry based on a spheroid with the lateral radius a and axial radius b. **a**) Scheme of the spheroid geometry, **b**) Input dialog for dummy platelet parameters.

## 2. Generation of platelet receptor distributions and 2-color 3D image stacks

- **Step 1:** Run PlateletColocSimulation\_P2\_3DImageStack.m
- Step 2: Define image parameters via dialog (Figure 2a & b):

**Number of simulated stacks** - Number of simulated stacks for each expansion factor

**Distance between labels** - Minimum distance between the two markers in the unexpanded case to account for the linking error and it's amplification during expansion (see also Figure 4 c)

**PSF width (x,y) [nm]** – lateral extension of the point spread function of the optical system in nm

**PSF height (z) [nm]** – axial extension of the point spread function of the optical system in nm

**Voxelsize (x,y) [nm]** – lateral voxelsize in the reconstructed 3D image in nm

**Voxelsize (z) [nm]** – axial voxelsize in the reconstructed 3D image in nm

**Backgroundlevel [photons]** – Number of photons contributing to the background level in photons

**Std of Read Noise [photons]** – Standard deviation of number of photons contributing to the read noise in photons

Noise calculation: Read noise (Gaussian distr. around 0) + Poisson distributed photon noise (sqrt(N)) + background level, no negative values are set to 0

| 承 P                 | _           |          | ×      |  |  |
|---------------------|-------------|----------|--------|--|--|
| Number              | of simula   | ated sta | cks    |  |  |
| 5                   |             |          |        |  |  |
| Distance            | betwee      | n labels | [nm]   |  |  |
| 0                   |             |          |        |  |  |
| PSF wid             | th (x,y) [r | nm]:     |        |  |  |
| 250                 |             |          |        |  |  |
| PSF heiç            | ght (z) [n  | m]:      |        |  |  |
| 500                 |             |          |        |  |  |
| Voxelsiz            | e (x,y) [n  | m]:      |        |  |  |
| 40                  | 40          |          |        |  |  |
| Vovelsiz            | o (z) [com  | J.       |        |  |  |
| 180                 | e (z) (nn   | ıj.      |        |  |  |
| 100                 |             |          |        |  |  |
| Intensity [photons] |             |          |        |  |  |
| 5000                |             |          |        |  |  |
| Expansio            | onfactor:   |          |        |  |  |
| 1,4,10              |             |          |        |  |  |
|                     | 0           | к        | Cancel |  |  |
| 承 P                 | _           |          | ×      |  |  |
| Backgrou            | undlevel    | Inhotor  | sl     |  |  |
| 5                   |             | proof    | -01    |  |  |
| Std of Re           | ad Nois     | e [phot  | ons]   |  |  |
| -                   |             |          |        |  |  |

a)

b)

Figure 2: Image parameters

| 📣 Dummy Data               |                                      |                                           |               |       |                  |                | ×      |
|----------------------------|--------------------------------------|-------------------------------------------|---------------|-------|------------------|----------------|--------|
| ← → • ↑ <mark>.</mark> « A | nalysis > #Scripts > 201910_ExMSimu  | ulation > PlateletColoc >                 | ~             | Ō     |                  | oloc" durchsuc | chen   |
| Organisieren 👻 Neu         | er Ordner                            |                                           |               |       |                  |                | ?      |
| Dieser PC                  | Name                                 | ^                                         |               |       | Änderungsdatum   | Тур            |        |
| 🗊 3D-Objekte               | 📙 Upload                             |                                           |               |       | 15.10.2020 17:42 | Dateiordne     | r      |
| 📰 Bilder                   | PlateletColocSimulation_V1_Dur       | mmyPlatelet_a-1500nm_b-500nm_Dist-1.6723n | m_Workspace.r | nat   | 25.10.2019 16:38 | MATLAB Da      | ata    |
| E. Desktop                 |                                      |                                           |               |       |                  |                |        |
| 🛫 users (\\132.187.        |                                      |                                           |               |       |                  |                |        |
| <b>_</b> ¥                 | ·                                    |                                           |               |       |                  |                |        |
| Date                       | iname: PlateletColocSimulation_V1_Du | mmyPlatelet_a-1500nm_b-500nm_Dist-1.6723n | m_Workspace.  | mat 🕓 | MAT-files (*.ma  | t)             | $\sim$ |
|                            |                                      |                                           |               |       | Öffnen           | Abbrech        | eni    |

Figure 3: Importing 3D point cloud on platelet surface from matlab workspace data created with PlateletColocSimulation\_P1\_DummyPlatelet.m.

- Step 3: Load 3D point cloud coordinates from Dummy Platelet data created with script 1 (Figure 3)
- **Step 4:** Select receptor distribution patterns (Figure 4a) and colocalization test case (Figure 4b):



Figure 4: Dialog selection of a) receptor distribution pattern and b) colocalization mode.

- **A.** Single Receptors:
  - Randomly distributed single receptor positions for marker A and B (Figure 5 a)
  - In Colocalization Test Case 1 "Maximum Coloc" both marker occupy the same positions only separated by the "Distance between labels" d as defined in Step 1 (Figure 5 a, zoom-ins).
  - In Colocalization Test Case 2 "Minimum Coloc" each position can only be occupied by either marker.
  - The total number of receptors per platelet for marker A and B and the marker retention ratio in % is defined in a dialog (Figure 5 c)
- **B.** Receptor Clusters:
  - The marker positions are distributed in clusters (Figure 5 b), with the Cluster density D<sub>c</sub>, the Cluster Area A<sub>c</sub> and the Number of Receptors per Clusters N<sub>R</sub>.
  - The cluster parameters and the marker retention ratios are defined in a dialog (Figure 5 d).
  - The colocalization test are already described in A.
- **C.** Partial Colocalization:
  - Randomly distributed single receptor positions for marker A and B (Figure 5 a)
  - The total number of receptors per platelet for marker A and B, the marker retention ratio in % and the ratio of colocalization R<sub>coloc</sub> in % is defined in a dialog (Figure 5 e)
  - While the Ratio of R<sub>coloc</sub> of the marker positions are occupied by both markers only separated by the "Distance between labels" d as defined in Step 1 (Figure 5 a, zoom-ins), the remaining position can only be occupied by either marker.

| a)                     | b)                                    |                             |  |  |  |
|------------------------|---------------------------------------|-----------------------------|--|--|--|
| Mi                     | in. Max.<br>loc. Coloc.               |                             |  |  |  |
| c)                     | d)                                    | e)                          |  |  |  |
|                        | \land Plat — 🗆 🗙                      |                             |  |  |  |
|                        | Mean Cluster Area Receptor A [nm^2]:  |                             |  |  |  |
|                        | Mann Cluster Area Reporter B [ami/2]: | 承 P — 🗆 🗙                   |  |  |  |
| 💽 P — 🗆 🗙              | 300                                   | Number of Receptor A:       |  |  |  |
| Number of Receptor A:  | Localzations per Cluster Receptor A:  | 120000                      |  |  |  |
| 120000                 | 7                                     | Number of Receptor B:       |  |  |  |
| Number of Receptor B:  | Localzations per Cluster Receptor B:  | 120000                      |  |  |  |
| 120000                 | 7                                     | Retention Ratio A [%]:      |  |  |  |
| Retention Ratio A [%]: | Cluster Density Receptor A [um^-1]:   | 100                         |  |  |  |
| 100                    | 70                                    | Retention Ratio B [%]:      |  |  |  |
| Retention Ratio B [%]: | Cluster Density Receptor B [um^-1]:   | 100                         |  |  |  |
| 100                    | 70                                    | Ratio of Colocalization [%] |  |  |  |
| OK Cancel              | Retention Ratio A [%]:                | 30                          |  |  |  |
| OK                     | 60                                    | OK Casad                    |  |  |  |
|                        | Petertion Patio B [%]                 | UK Cancel                   |  |  |  |
|                        | 60                                    |                             |  |  |  |
|                        | OK Cancel                             |                             |  |  |  |

Figure 5: Receptor distribution patterns and parameters for the three distribution modes. a) Random distribution of single receptor positions and marker positions in the Colocalization Test Case 1 "Maximum Coloc" and Test Case 2 "Minimum Coloc". b) Position distribution for receptor clusters with a defined cluster density D<sub>c</sub>, cluster area A<sub>c</sub> and number of receptors per cluster N<sub>R</sub>. c-e) Parameter input dialogs for the different receptor distribution patterns: c) "Single Receptors", d) "Receptor Clusters" and e) "Partial Colocalization".

• Step 5: After randomly excluding marker positions based on the defined retention ratio, a 3D image stack is reconstructed for each colour channel based on the function points2srtfi3DNoise\_Hh.m and saved as .tiff stack.