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The Arctic is a region of pronounced climate changes...

Data from GISS/NASA GHCNv4_ERSSTv5__1200km

Data source: Satellite observations. Credit: NSIDC/NASA 

Introduction

Arctic sea-ice average September extent

Surface Temperature anomalies 
between 2018-2008 and 1968-1958

… with potential impacts on lower latitudes 
but it remains under debate (Cohen et al., 2019)

http://nsidc.org/


Potential impacts due to Arctic sea-ice melting on ... 

North Atlantic 
Oscillation (NAO)

Courtesy of UCAR

 NAO- NAO+
Observation
(NAO-):
King et al., 2015
Garcia-Serrano et al., 2015
Simon et al., 2020 ...

Coupled model
(NAO-) :
Deser et al., 2015
Screen et al., 2018
Simon et al., 2021 ... Atmospheric model 

(NAO-/NAO+/no NAO): Magnusdottir et al. 2004 ; 
                       Screen et al. 2014 ; Seierstad et al. 2009 

To understand the full story, it is important to investigate the interaction
 between Arctic sea-ice loss and persistent cofounding factor 
(snow cover, Sea-surface temperature, persistent atmospheric variability)



Potential impacts due to Arctic sea-ice melting on ... 

North Atlantic
Oscillation

Extreme Events

Francis and Vavrus, 2012; 

Grassi et al., 2013

Screen et al., 2013

Cvijanovic et al., 2017

Coumou et al., 2018

Figure : Simulated May–June in the low Arctic ice run relative to the high Arctic ice run. 

Screen et al., 2013 



Potential impacts due to Arctic sea-ice melting on ... 

North Atlantic
Oscillation

Atlantification

Extreme Events
Arthun et al., 2012

Polyakov et al. 2017

Lind et al., 2018

Barton et al., 2018



Potential impacts due to Arctic sea-ice melting on ... 

North Atlantic
Oscillation

Atlantification

Atlantic
Meridional
Overturning
Circulation (AMOC)

Extreme Events

Sévellec et al., 2017,
Suo et al., 2017
Liu and Fedorov, 2019
And many others

Sévellec et al, 2017



Potential impacts due to Arctic sea-ice melting on ... 

North Atlantic
Oscillation

Atlantification

Atlantic
Meridional
Overturning
Circulation (AMOC)

Tropical Pacific

Extreme Events

Deser et al, 2015

Cvijanovic, 2017



Overview of studies 

Observation
a) Direct Arctic sea-ice loss impact in winter
Simon, A., Frankignoul, C., Gastineau, G., & Kwon, Y. O. (2020). An observational estimate of the 
direct response of the cold-season atmospheric circulation to the Arctic sea ice loss. 
Journal of Climate, 33(9), 3863-3882.

In the continuity of this work:

b) Arctic sea-ice loss impact in summer
c) Antarctic sea-ice loss impact in winter 

Modelling
d) Arctic sea-ice loss impact in winter at decadal timescale (CMIP5)
Simon, A., Gastineau, G., Frankignoul, C., Rousset, C., & Codron, F. (2021). 
Transient climate response to Arctic sea ice loss with two ice-constraining methods. 
Journal of Climate, 34(9), 3295-3310. 

In the continuity of this work:
e) Multi-model study focusing on Mediterranean precipitation
f) Extension of the simulation for equilibrium response  
g) (CMIP6) Direct impact and the Interdecadal Pacific Variability (IPV) 
h) (CMIP6) Direct impact and the Quasi-biennal Oscillation (QBO)



Observation a) Direct Arctic sea-ice loss impact in winter

PC1

Year

EOF of Arctic SIC

Simon, A., Frankignoul, C., Gastineau, G., & Kwon, Y. O. (2020). An Observational Estimate of the Direct Response of 
the Cold-Season Atmospheric Circulation to the Arctic Sea Ice Loss.Journal of Climate, 33(9), 3863-3882.B
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* Observations show that 
years with low Arctic sea 
ice extension have a 
negative NAO-like 
pattern in late winter 
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Observation b) Arctic sea-ice loss impact in summer 

Regression of surface temperature 
anomalies in May onto April dPC1. 
The contours indicate 10% significance and hatching 
FDR significance at the 10% level.

Methodology based on Simon et al, 2020 but for summer

EOF1 (in %) 
of Arctic sea-ice
concentration in 
April

PC1



Observation c) Antarctic sea-ice loss impact in winter 

Methodology based on Simon et al, 2020 
but for Antarctic sea-ice

LFP1
(Low frequency 
pattern)
 in June

Regression of 
Detrended LFC1 
in June and
detrended SLP 
in July, (hPa)



Observation c) Antarctic sea-ice loss impact in winter 

Methodology based on Simon et al, 2020 
but for Antarctic sea-ice

Modelling analysis (LMDZ model with PAMIP) - 
200 members of 14 months of future and pre-
industrial Antarctic sea-ice in JAS

LFP1
(Low frequency 
pattern)
 in June

Regression of 
Detrended LFC1 
in June and
detrended SLP 
in July, (hPa)

→ Antarctic sea-ice loss (gain) induces a negative (positive) Southern Annular mode like



Modelling d) Arctic sea-ice loss impact in winter at decadal timescale

- Coupled model IPSLCM5A2 
(CMIP5)
- Arctic sea-ice constrain by 
reducing (i) albedo (ALB) (ii) 
thermal conductivity (THCD)
- Ensembles of 10 members 
- Transient response: 10-30 years

Simon, A., Gastineau, G., Frankignoul, C., Rousset, C., & Codron, F. (2021). Transient climate response to Arctic sea ice loss 
with two ice-constraining methods. Journal of Climate, 34(9), 3295-3310.

Methodology
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Simon, A., Gastineau, G., Frankignoul, C., Rousset, C., & Codron, F. (2021). Transient climate response to Arctic sea ice loss 
with two ice-constraining methods. Journal of Climate, 34(9), 3295-3310.

Methodology

The protocol to melt sea-ice with a coupled model lead to same pattern but different amplitude
Some robust responses (AMOC weakening, NAO-(like), Tropical Atlantic Warming) but Pacific’s are not.



Modelling e) Multi-model study focusing on Mediterranean precipitation

I. Cvijanovic, X. Levine, A. Simon, R. White, P. Ortega, M. Donat, D. D. Lucas, J.C.H. Chiang, A. 
Seidenglanz, D. Bojovic, A. R. Amaral, V. Lapin and Francisco Doblas-Reyes “Near-term impacts of 
Arctic sea-ice loss”, under review



Modelling e) Multi-model study focusing on Mediterranean precipitation

I. Cvijanovic, X. Levine, A. Simon, R. White, P. Ortega, M. Donat, D. D. Lucas, J.C.H. Chiang, A. 
Seidenglanz, D. Bojovic, A. R. Amaral, V. Lapin and Francisco Doblas-Reyes “Near-term impacts of 
Arctic sea-ice loss”, under review

DJF



Modelling f) Arctic sea-ice impact for equilibrium response (B. Ferster)

Southward shift of
the subpolar gyre

Extension of the ALB 
simulation (IPSLCM5A) 
to 200 years. 
(8 members)

An initial weakening of 
AMOC is followed by a
recovery of AMOC



Modelling g) Direct Arctic sea-ice loss response and modulation 
by the Interdecadal Pacific variability (IPV) with IPSLCM6A (CMIP6)

Low – High Arctic sea-ice (grey 
contour)
90 % confidence 
level based on Student t-test 
(colors)
90 % confidence level based on 
False discovery rate (black 
contours)
High in DJF (red contours)

Arctic sea-ice loss is 
associated with a :

* negative NAO 
* increase of z50
* weakening of the polar 

vortex 

The stratospheric responses 
are significant for the 
coupled model only

Ensemble of 200 members of 14 months with nudged Arctic sea-ice loss



Modelling g) Direct Arctic sea-ice loss response and modulation by the IPV
by the Interdecadal Pacific variability (IPV) with IPSLCM6A (CMIP6)

Low - High Arctic sea-ice 
for different phase of IPV

IPV index(DCPP-C; Boer et al., 2016)

Composites of IPV- and IPV+
for Low - High Arctic sea-ice  
 (67 members;14 months)

  IPV-                         IPV+              IPV- minus IPV+



Modelling g) Direct Arctic sea-ice loss response and modulation 
by the QBO (Quasi-biennal Oscillation) with IPSLCM6A (CMIP6)

* The quasi-biennial oscillation (QBO) is a quasi-periodic oscillation 
of the equatorial zonal wind in the stratosphere between easterlies (QBO-E) 
and westerlies (QBO-W) with a period of 28 months (Baldwin et al., 2001).

Courtesy of NASA/GSFC (MERRA-2 reanalysis)

Equatorial zonal 
mean zonal winds (m/s)
(AMIP simulations)

* QBO in models

CMIP5 CMIP6



Modelling

Coupled model no significant impact on mid-latitude
Atmosphere-only model: QBO-W leads to stronger 
polar vortex and weak positive Arctic Oscillation

Similar results for High Arctic sea-ice

QBO-W minus QBO-E (grey contour)
90 % confidence level (colors)
90 % FDR significance (black contours)
High in DJF (red contours)

g) Direct Arctic sea-ice loss response and modulation 
by the QBO (Quasi-biennal Oscillation) with IPSLCM6A (CMIP6)

Composites of QBO-E and QBO-W
for Low Arctic sea-ice  
 (67 members;14 months)



Thank you for your attention
ajsimon@fc.ul.pt
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