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Long-term unsupervised mobility assessment in 
movement disorders
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Andreas Keller, Claudine Lamoth, Andrea Pilotto, Lynn Rochester, Gerhard Schmidt, Bastiaan R Bloem, Walter Maetzler

Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify 
mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data 
collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical 
assessments, as they capture fluctuating and rare events. These data could support clinical decision making and could 
also serve as outcomes in clinical trials. However, studies that directly compared assessments made in unsupervised 
and supervised (eg, in the laboratory or hospital) settings point to large disparities, even in the same parameters of 
mobility. These differences appear to be affected by psychological, physiological, cognitive, environmental, and 
technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the 
unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider 
these disparities and the multiple factors that contribute to them.

Introduction
Deficits in mobility are common in patients with 
neurological disorders and often affect activities of daily 
living, work, and socialisation.1 These deficits predict mor
bidity, cognitive decline, and mortality2–5 and negatively 
affect quality of life, especially in patients with movement 
disorders.6,7 For example, in patients with Parkinson’s 
disease, healthrelated quality of life is strongly associated 
with the activities and participation components of the 
International Classification Of Functioning, Disability, 
and Health model.8 Therefore, it is crucial for healthcare 
professionals to obtain a full and objective evaluation of 
a patient’s mobility as a basis for individually tailored 
clinical decision making and prognostication. Mobility 
assessments are mainly done under supervised conditions 
in a laboratory or hospital using standardised, mostly 
quali tative or semistructured evaluations (panel);9–11 how
ever, many patients do para doxically well when they know 
that they are being observed. Various clinically relevant 
events are also difficult to capture during these snapshot 
observations, because they take place over long periods of 
time (eg, the total amount of physical activity), are rare 
(eg, falls or freezing episodes),12 occur at night (eg, sleep 
distur bances), or have complex fluctuating patterns (eg, 
the response to dopaminergic treatment in Parkinson’s 
disease). To reliably evaluate such events, it is important 
to measure patients unobtrusively and for longer periods 
of time, while they move about freely and unsupervised in 
their dailyliving environment.

Several reviews describe the promise of unsupervised 
assessments of mobility using novel technologies.13,14 
Unsupervised assessments of mobility using novel tech
nology, although very different from other daily living 
acquired parameters that are already used in clinical 
routine (such as the Holter electrocardiogram15,16 and 
blood glucose monitor ing),17 could soon be essential for 
the longterm evaluation of mobility and personal ised 
clinical dec ision making in neurology.13,14  Unsuper vised 
assess   ments might save time and cost by cap tur ing 

healthrelated data since these assessments would be 
largely inde pendent of the availability of healthcare 
services. These assessments are particularly important for 
patients living in rural areas or developing countries, 
where the number of healthcare professionals is small 
relative to the popula tion size.14 Finally, unsuper vised 
assessments offer patients an opportunity to become 
more actively involved by, for example, using their own 
devices such as smart phones and receiving feedback 
about their own daily living p erformance.18

Unsupervised assessments of mobility can provide 
additional and, at least partly, complementary infor mation 
compared with supervised assessments. However, differ
ences with respect to the conventional evaluation need 
to be considered. In this Personal View, we summarise 
the evidence of the weak association between mobility 
assessed in the two settings and discuss poten tial reasons 
for the observed differ ences. We also present suggestions 
to facilitate the imple mentation of unsupervised mobility 
assessment in clinical care and future research.

Unsupervised mobility assessment
Unsupervised assessments are usually done with mobile 
health technologies13 that can measure physical activity,19–21 
evaluate mobility or specific movements such as gait,22–24 
or detect specific symptoms in unsupervised environ
ments.25–27 The potential added value of unsupervised 
assessments in patients with mobility deficits has been 
shown in several studies. For example, both predicting 
the risk of future falls and discriminating fallers from 
nonfallers in older adults (>60 years of age)28–31 and stroke 
survivors32 appears to be more accurate when using 
data collected in the unsupervised environment. Indeed, 
the relevance of unsupervised mobility parameters was 
acknowledged by the US Food and Drug Administration33 
and the European Medicines Agency,34 both of which 
encourage the inclusion of para meters from unsuper
vised mobility assessments as exploratory endpoints in 
clinical trials.

http://crossmark.crossref.org/dialog/?doi=10.1016/S1474-4422(19)30397-7&domain=pdf
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We did a systematic search to compare the same features 
of mobility (ie, gait, turns, and postural transitions) in 
super vised and unsupervised assessments. 12 studies 
done in three different populations—adults older than 
60 years, patients with Parkinson’s disease, and patients 
with multiple sclerosis—were identified (appendix pp 1–3). 
Strikingly, the same mobility parameters obtained in 
differ ent settings with identical participants differed 
from –40% (eg, gait speed and cadence in patients with 
Parkinson’s disease) to 180% (end turn angular velocity in 
healthy older adults, figure 1). These differences are much 
larger than the effects usually measured after interventions. 
Thus, small and even moderate treatment effects might be 
buried under the variations introduced by the measure
ment techniques themselves if the differences between 
super vised and unsupervised assessments are not appro
priately considered.

Differences between supervised and unsupervised 
assessments
Several reasons could explain the substantial differ
ences in mobility parameters when comparing supervised 
with unsupervised assessments (table 1). Unsupervised 
move ments are typically selfinitiated, embedded in a 
rich behavioural context, and goal directed. By contrast, 
movements in a supervised setting are usually triggered by 
a command and done in an isolated, standardised setting 
with limited ecological validity.36 For example, selfinitiated 
finger movements activate different brain structures com
pared with externally triggered move ments, suggesting 
that the brain generates supervised movements using 
networks that differ from those that generate unsupervised 
movements.47,48 Moreover, with an external focus, attention 
is directed to the outcome of the action (eg, leaving the 
room), while with an internal focus, attention is directed to 
controlling the body parts while executing the movement.49 
An external focus of attention results, at least sometimes, 
in more fluent movements.50

Performance can be affected by several psychologi cal 
and physiological processes that might differ across 
settings. These factors include alertness, motivation, 
the whitecoat effect (a change [typically worsening] in a 
para meter because it is measured in a clinical setting), the 
reverse whitecoat effect (a change [typically an improve
ment] in a clinical parameter because it is measured in a 
clinical setting), the Hawthorne effect (the change in 
behaviour of participants because of the awareness of 
being studied),51 fatigue, pain, and stress. These effects 
might explain why patients rise from a chair with lower 
peak power in unsupervised assessments than during 
supervised assess ments, even when these movements are 
done in an identical environment and with the same 
equipment.24 Similar disparities have been identified for 
other gait parameters.52 Supervised assessments seem
ingly provide a measure of someone’s best, rather than 
their usual performance; that is, they capture capacity 
rather than performance.53,54

The environment is usually standardised in supervised 
conditions (eg, walking in a clean and sterile environ ment 
without distractions), but much more variable in 
unsupervised conditions (eg, furniture, lighting, patterns, 
colour of the environment, and obstacles). Unsupervised 
environ ments can induce large variability and asymmetry 
in mobility patterns, as shown by studies that assessed 
walk ing through busy corridors and through a city 
centre.55,56 Different types of seats and couches (eg, firm 
chair or armchair) in unsupervised conditions can also 
partly explain the greater variability observed in postu ral 
transi tions (ie, sittostand and standtosit movements 
or turning over in bed) in daily living.24,30,37,41 Moreover, 
asymmetry can be introduced through a constrained 
environ ment that requires gait adaptation or turning in 
the same direction.

Furthermore, multitasking situations are common in 
unsupervised environments (eg, walking and texting), but 
uncommon in supervised assessments, which could 
further contribute to the observed differences. Even 
during supervised dualtask walking, the gait quality was 
usually better than that during unsupervised walking.39 
The presence of a partner or caregiver can also affect 
mobility in unsupervised conditions. Social interac  tions 

Panel: Glossary of terms used in mobility assessment

Daily living
This term, also referred to as free living, real world, or community living, is used to 
distinguish testing within the normal environment of a participant from testing in a 
standardised setting, such as in the clinic or laboratory

Inertial measurement units
Sensors that measure acceleration or angular velocity, which can determine the quality 
and quantity of movement using specifically developed algorithms

Mobile health technologies
Umbrella term for wearable, portable, or domestic-integrated devices that can provide 
objective measures and that include digital applications, as well as body-worn (adhered to 
a body surface, mainly inertial measurement units) or frequently used patient-centred 
devices (eg, smartphone and keyboard)

We focus on technologies that can measure the frequency and quality of movement, 
and mobility characteristics

Supervised assessment
Refers to the traditional, conventional mode of assessing mobility in a laboratory or 
clinical setting

Typically, a qualitative or semi-quantitative one-time snapshot evaluation of mobility by 
a trained health-care professional

Unsupervised assessment
Refers to the quantitative assessment of mobility in the home and daily living 
environment that is done continuously with new, mainly mobile, health technologies 
over relatively long periods of time

Wearables
Mobile devices worn on the body, such as inertial measurement units, smartwatches, 
or Holter electrocardiogram monitors
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are common during everyday walking: for example, 
spouses who act as an external cue to improve walking in 
patients with Parkinson’s disease or to relieve anxiety 
in people with a cautious gait disorder.57

Technical limitations might also add to the differences 
observed. Most algorithms have been developed and valid
ated in supervised environments. Because the amount 
and variability of activities and mobility are much larger in 
unsupervised than in supervised environments, these 
algorithms might have difficulties differentiating similar 
movements (such as picking something up from the floor 
and sittostand movements) that were not evaluated in 
the supervised assessment.58,59 Notably, only one study 
found in our systematic search used algorithms that 
were explic itly validated in both standardised and non
standardised settings.44 A further bias might be introduced 
by the use of different device locations on the body (eg, 
waist or ankle). The use of distinct mobile health tech
nologies (eg, hard ware or algorithms)37,42 could also play a 
part, but this aspect is limited as a change in hardware will 
not have a large influence on the results of a validated 
algorithm, because the data collected are the same 
(appendix p 4). The validation of algorithms for unsuper
vised daily living assessments brings new challenges 
as goldstand ard references are currently absent, and 
urgently needed.60,61

Finally, the statistical approaches for the analysis of 
supervised assessments (eg, means and SDs), might not 
be optimal for characterisation of complex data obtained 
from unsupervised settings. The supervised assessment 
typically involves one test, whereas the unsupervised evalu
ation might include thousands of walking bouts, turns, 
and transitions. It is yet to be determined how to best com
pare a single value with values obtained from a distribu
tion (or histogram; figure 2; appendix pp 1–3). Several 
studies showed that the tails of an individual’s distribution 
correspond better to supervised assessments and therefore 
to clinical endpoints, such as risk of falls, limitation in 
activities, frailty, and supervised gait speed, compared with 
mean and median values.24,36,40

Effect of movement type and disease on mobility 
assessment
Some types of mobility (eg, postural transitions) show 
seemingly larger differences than others (eg, walking) 
when comparing supervised with unsupervised conditions 
(figure 1). This difference might even depend on specific 
parameters. In a study of patients with Parkinson’s disease, 
the velocity at the beginning of the turn was similar in 
unsupervised and supervised conditions but was lower at 
the middle and substantially higher at the end of turns 
under the unsupervised condition.42

Notably, the type and severity of a disease might also 
have an effect on the differences between supervised and 
unsupervised assessments (figure 1).23,62 For example, the 
differences in standtosit duration between both sett
ings were smaller in older adults than in patients with 
Parkinson’s disease.37 Patients with multiple sclerosis 
showed an even more surprising pattern. Different to 
patients with Parkinson’s disease and older adults, their 
per form ance was comparable under supervised and 

Figure 1: Percentage change from parameters measured under unsupervised conditions compared with 
supervised conditions
Data were obtained from the 12 studies identified in our systematic search (appendix pp 1–3). We did not illustrate 
variability and asymmetry parameters because they are especially sensitive to the environment and are probably 
higher for unsupervised than for supervised assessments because of the non-instructed performance and more 
variable physical nature of the environment.45 Cadence is the rate at which a person steps (about 110–115 steps 
per min in healthy adults). Chair rise peak power is the maximum power that is exerted to lift the body’s centre of 
mass during a sit-to-stand movement.46 Median walking acceleration is the median of the magnitude of the 
acceleration during walking. Stance time is the time one leg is in contact with the surface during a step that is 
taken during walking. Step time is the time it takes to complete one step (ie, the time between initial contact of 
one foot and the initial contact of the contralateral foot). Stride time (also known as gait cycle time) is the time to 
complete two steps (ie, the time between initial contact of one foot and the next initial contact of the same foot). 
Swing time is the time one leg is not in contact with the surface during a stride that is taken during walking 
(in healthy young adults, swing time is about 40% of the stride time and with ageing and disease, the time spent 
in swing time often gets smaller). *Instructions in the supervised setting were to walk as fast as possible. 
†Supervised assessment was done on a treadmill with fixed speed, the unsupervised parameters used for the 
comparison were matched to the treadmill speed. ‡Only the best postural transitions reported were used to 
calculate the duration.
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unsuper   vised assessments (gait speed),43 while showing 
the opposite behaviour of what was seen in patients with 
Parkinson’s disease and older adults (ie, for stance, step, 
and swing time, which were all lower in unsupervised 
conditions).44 The reasons for these observations are not 
yet clear, but differences in physical, attentional, and 
cognitive capabilities might contribute.63 These differences 
between supervised and unsupervised per form ance might 
even be relevant at the subgroup level. The reported 
changes in turning parameters in patients with Parkinson’s 
disease42 differed substantially between fallers and non
fallers, with or without fear of falling. Remarkably, fallers 
with fear of falling showed slower turns in the supervised 
assessment, but faster turns in the unsupervised assess
ment, than did patients in other Parkinson’s disease 
subgroups.42

Implementation of unsupervised assessments in 
clinical practice and future research
As we anticipate that unsupervised assessments will 
become a prerequisite for future clinical decision making 
and clinical trials, in this section we provide directions to 
help move this emerging field forward (table 2). Although 
there is still insufficient understanding of the associ
ation between supervised and unsupervised mobility 
when interpreting data obtained from unsupervised envir
onments, studies suggest that any extrapola tion of 
unsuper vised mobility based on findings from supervised 
mobility might be substantially influenced by the type, 
subtype and stage of the disease, as well as type of mobility 
extracted from the data.37,40,42,44

Technical limitations should be also addressed, for 
example, by using the same mobile health technologies, 
located in the same place, for both supervised and unsuper
vised measurements. The algorithms used to calculate 
mobility parameters should be validated, to the highest 
degree possible, in both settings. Moreover, algorithms 
for mobility assessments should be validated separately for 
each type of neurological movement disorder as they 
might be associated with distinct movement patterns.23,64 
Notably, even healthy people move differently at differ
ent ages65,66 and fitness levels.66 Another require ment to 
increase the usefulness of unsupervised measures is 
harm on ised reporting of parameters (eg, as a core dataset 
across studies), and should include the reporting of meta
data (ie, data that accompany and describe the primary 
data).67 The duration of the unsupervised assessments 
should be standardised and the type of movement assessed 
should be reported in detail.67,68

Special emphasis should also be placed on more 
sophisticated analyses of unsupervised data. A promising 
approach is to consider and leverage specific episodes 
of mobility (eg, turning, sittostand, and standtosit 
movements, and other movements used regularly during 
the day) and novel parameters, such as the distribution 
and extreme values of mobility parameters (figure 2).24,36,35,40 
So far, these analyses have been done only for healthy 

Figure 2: Gait speed measures based on evaluation in the laboratory and in the daily living environment in a 
78-year-old woman with a history of falls
(A) The supervised testing yields a single value (101 cm/s), as indicated by the arrow. (B) By contrast, the daily 
living, unsupervised testing yields hundreds of tests of gait speed and a distribution of values. The daily living 
values are based on 30 s walking bouts from a 1-week recording.39 Multiple measurements, in contrast to a single, 
one-time snapshot, might be highly valuable for the improvement of assessment protocols. In many of these 
unsupervised tests, gait speed is lower than that seen during supervised testing.
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Clinometric properties (norms and 
test-retest reliability)

Established In progress

Setting Artificial Ecologically valid (represents real-world 
performance)

Number of assessments Snapshot, one-time 
evaluation

Multiple or even continuously performed tests 
can be obtained over days, weeks, and months

Sensitivity to fatigue, affect, 
and mood

Minimal Yes, reflects typical performance and a range 
across the day and week, including best and 
worse behaviours

Sensitive to white-coat, 
Hawthorne, and related effects

Yes Minimal

Patient centred Not necessarily Yes

Captures real-world challenges Somewhat Yes

Real-time feedback for treatment Questionable Yes

Interpretation of results Easy More challenging

Environmental influences Minimal Yes

Table 1: Advantages and disadvantages of supervised and unsupervised mobility assessments
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older adults and not for patients with neurological 
disorders. An example could be the evaluation of the 
effects of an experimental therapy. The effects might be 
measured best in the optimum state (improvement in 
supervised assessment and the best 10% of an individual’s 
distribution of the unsupervised assessment), while the 
median and lower range of an individual’s distribu
tion might be informative of changes throughout the 
day (figure 2). Future trials could use this information 
as outcomes.

Variability measures can serve as a useful example 
of how important it is for clinicians and researchers 
to have a deep understanding of how their treatment 
and compounds influence mobility in daily life. Some 
variability measures (eg, stride length variability) are highly 
affected by the environment and should be meas ured in 
a supervised setting, which better reflects the patient’s 
capacity.45 In the home environment, decreased variability 
with similar mean values might be a positive outcome if 
the goal of an intervention is to reduce motor response 
fluctuations in patients with Parkinson’s disease. In a 
trial investigating patients with subop timal treatment, 
a decrease in variability associated with an improve
ment of mean values can indicate more consistent good 
performance during the day. In trials focusing on behav
ioural symptoms, increased variability might indicate 
better adaptability, more variable and enriched physical 
activity, and social interactions. Thus, the context is crucial 
for evaluating the effect of an intervention.

Whether data obtained from unsupervised environments 
provide relevant progression and treatment response 
infor mation, rather than acting as markers of rou tine, 
fixed behaviours or trait markers, should be evalu ated in 
future studies. Trait markers could still be good measures 

of progression, but appropriate inter pretation is key for 
practical use. For example, the actions done during daily 
living are very different per individual, but show a 
surprisingly similar pattern within an individual.69

Future statistical analyses should take advantage of the 
high number of repeated, specific movements occurring 
during longterm observation periods in unsupervised 
environments (figure 2).24,42 Deep learning, machine 
learning, and artificial intelligence approaches should be 
applied. Algorithms that learn from data have shown 
remarkable success in making accurate predictions for 
complex problems that previously depended on human 
skills (eg, referral for eye diseases,70 detection of Parkinson’s 
disease motor fluctuations).71

Future work should further explore the associations 
between objective digital measures with conventional 
measures of mobility, and with patientreported outcome 
measures (PROMs) and caregiverreported outcomes. 
Both PROMs (in this case, subjectively) and mobile 
health technologies (in this case, objectively) offer remote 
measurements in the unsupervised setting, and both 
approaches are potentially more ecologically valid and 
more meaningful to patients and their caregivers than are 
data acquired in the traditional clinical setting. Among 
the studies that we identified, only four assessed correla
tions with PROMs related to mobility, with contrasting 
findings (appendix pp 1–3).

We should keep in mind that mobile health tech
nologies might alone cause behavioural changes, even 
when no feedback is provided (eg, Hawthorne effect), 
but especially if feedback is provided (eg, to induce 
compliance). Studies are needed to investigate if and 
when the performance of the user in the unsupervised 
setting becomes similar to that in the supervised setting, 

Gaps and challenges Potential resolution

Supervised versus 
unsupervised mobility 
assessment

Weak associations might exist between the measures of these two 
assessments

Acknowledge the limited understanding when comparing supervised with 
unsupervised data and conduct more research to gain a better understanding of the 
interactions between these types of assessments

Algorithms Algorithms for the assessment of unsupervised mobility are difficult 
to validate

Work on new approaches that can be used to validate algorithms for unsupervised 
mobility assessment against, or at least correlated with, clinically established 
parameters

Age and type of disease Different age phases and diseases have different mobility performances, and 
a one-size-fits-all mobility-assessing algorithm might deliver low accuracy 
values in at least some cohorts

Develop and validate algorithms for the evaluation of unsupervised mobility 
separately per age groups and diseases

Harmonisation Description of metadata, assessment protocol, and validation method 
have not yet been harmonised in the field, hindering the comparison 
across studies

Use standardised protocols to report, particularly concerning the description of the 
primary data, duration of assessments, description of the data analysis process, or 
reference to the algorithm and its validation

Data analysis Statistical analysis and selection of summary measures of unsupervised data 
might be very different from usual statistical approaches

Explore new options for data analysis, such as the extremes of mobility performance 
during the day

Patient-reported outcome 
measures

Associations between unsupervised assessment and patient-reported 
outcome measures are scarcely investigated

Studies investigating either unsupervised mobility or patient-reported outcome 
measures should consider including the other evaluation tool and compare 
outcomes on an exploratory level

Behaviour The effect of unsupervised mobility assessment on the behaviour of the user 
has not been investigated

Studies investigating this aspect are urgently needed; focus should be on 
assessment systems that provide feedback to the users

Upper body movements Studies investigating upper body movements under supervised and 
unsupervised conditions are rare

More studies are necessary to see whether similar results in mobility are seen for 
upper body movements

Table 2: Gaps, challenges, and steps toward a more informed use of supervised and unsupervised mobility assessments
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and whether the induced behavioural changes themselves 
might have therapeutic effects that could interfere with 
the evaluation. For example, patients who know that they 
are equipped with mobile health technologies might 
increase their level of physical activity, particularly when 
feedback about their own performance is provided.

Healthcare professionals should also interpret their 
supervised assessments cautiously, as these findings could 
have limited ecological value. To improve their value, we 
suggest to provide natural, everyday lifelike situations and 
instructions during super vised assessments. Explicit goals 
should be given to the patients, forcing them to focus on 
the goal instead of on the actual movements that must be 
performed to reach the goal.67 For example, instructing a 
sitting person to walk allows for a more naturalistic 
observation of the sittostand performance, because the 
person focuses more on the walking task rather than the 
necessary transition from sittostand. Other opportunities 
to observe uninstructed movements occur when patients 
move in the waiting room or on their way to the clinician’s 
office.72 It is also essential to gain as much information as 
possible about the living envir onment of the person being 
assessed. If the person has cluttered furniture at home, 
healthcare profes sionals might focus more on assess
ing mobility in small, crowded places instead of large, 
open hospital hallways. Addi tionally, the type of furniture, 
lighting, patterns, and other environmental factors might 
be important.73

Mobility differences between the supervised and 
unsuper vised setting can also be relevant for the measure
ment of other symptoms and deficits. For example, 
deficits in upper extremity movement occur in many 
patients with neurological disorders,74 and several methods 
have been proposed to continuously assess upper limb 
bradykinesia in daily life.75 However, a direct comparison 
of these vari ous symptoms in supervised and unsupervised 
settings remains absent. One exception is a study that 
assessed habitual keyboard typing behaviour in patients 
with Parkinson’s disease.76 This study showed that various 
key stroke metrics as measured in the clinic were strongly 
correlated with those obtained at the patient’s home, 
suggesting that some upper extremity performances (in 
this case, a measure of bradykinesia) are similar under 
supervised and unsupervised conditions. This finding 
under  scores the need to assess different aspects of motor 
functioning on a casebycase basis.

Conclusions
There is increasing evidence that, depending on whether 
mobility is assessed under supervised or unsupervised 
conditions, the results can differ substantially.24,36,38,39 These 
striking differences and the importance of measurements 
obtained in both settings call for expanding our knowledge 
about unsupervised mobility (table 2). Unsupervised 
mobility parameters could be implemented to improve 
clinical care and could act as primary or secondary end
points in future intervention trials.
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