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Abstract

Mobile data traffic is increasing rapidly and wireless spectrum is becoming a more and more scarce resource. This makes it highly
important to operate mobile networks efficiently. In this paper we are proposing a novel lightweight measurement technique that can
be used as a basis for advanced resource optimization algorithms to be run on mobile phones. Our main idea leverages an original
packet dispersion based technique to estimate per user capacity. This allows passive measurements by just sampling the existing
mobile traffic. Our technique is able to efficiently filter outliers introduced by mobile network schedulers and phone hardware. In
order to asses and verify our measurement technique, we apply it to a diverse dataset generated by both extensive simulations and
a week-long measurement campaign spanning two cities in two countries, different radio technologies, and covering all times of
the day. The results demonstrate that our technique is effective even if it is provided only with a small fraction of the exchanged
packets of a flow. The only requirement for the input data is that it should consist of a few consecutive packets that are gathered
periodically. This makes the measurement algorithm a good candidate for inclusion in OS libraries to allow for advanced resource
optimization and application-level traffic scheduling, based on current and predicted future user capacity.
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1. Introduction

Even though spectrum efficiency is improving thanks to the
fifth generation [1] of mobile networks, the wireless medium
is becoming a scarcer and scarcer resource, due to the ever in-
creasing demand for mobile communication. Recently, a num-
ber of papers addressed improved resource allocation mecha-
nisms based on capacity prediction techniques. For instance,
[2, 3, 4] propose to use resources when they are more abun-
dant and cheap, and to refrain from or to limit communication
when it is more expensive (e.g., lower spectral efficiency, higher
congestion, etc.) by exploiting perfect knowledge of the future
capacity.

In [5], we surveyed the state of the art on mobile capacity pre-
diction techniques and built a model for both short and medium
to long term prediction errors in order to be able to quantify
the impact of prediction uncertainties in resource allocation.
Most short term prediction techniques [6, 7] rely on time se-
ries filtering solutions, such as moving average and autoregres-
sive (ARMA) or autoregressive conditional heteroskedasticity
(ARCH) modeling. Thus, in order to allocate resources on a
given time granularity, prediction must be available with the
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same granularity and, consequently, mobiles must be able to
measure capacity with the same granularity [8].

Mobile capacity measurement is a well investigated topic in
the literature, but, to the best of our knowledge, no lightweight
or passive technique allows mobiles to collect frequent mea-
sures of their capacity. To fill this gap, this paper proposes a
simple technique which is able to measure the fast variations of
the per user capacity and, from those, the expected end-to-end
throughput.

In order to do so we adapt packet train dispersion techniques
by applying an adaptive filtering mechanism, which we show
is effective in removing the impact of outliers due to bursty
arrival and jitter, which are very prevalent in mobile environ-
ments. We validate the effectiveness of the solution through ex-
tensive simulation and “real world” measurement campaigns:
our technique can achieve an accurate throughput estimate with
as few as 5 % of the packets needed by other solutions, while
making an error smaller than 20 %.

Our goal is to provide a simple tool that evaluates passively
or with minimum impact the per user capacity variations over
time in a mobile environment. This enables filter based pre-
diction techniques and, consequently, prediction based resource
allocation optimization. Source code for the tool can be found
in the repository of the EU project eCOUSIN1.

In the following sections we propose a lightweight measure-
ment technique of the per user cell capacity. Our proposal

1https://ecousin.cms.orange-labs.fr/sites/ecousin/files/

lightmeasure.zip
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adapts earlier packet train dispersion techniques and allows to
collect reliable measurements on a mobile device despite the
complexities introduced by the wireless link and the phone
hardware. Also, we have evaluated our technique on both simu-
lations and actual mobile network data collected during a mea-
surement campaign.

The rest of the paper is structured as follows. Related work
and some mobile network fundamentals are discussed in Sec-
tions 2 and 3 respectively. We present our measurement tech-
nique in Section 4, in Section 5 a first evaluation of our tech-
nique based on simulations, and in Section 6 we describe how
we collected “real world” data to validate it. The results are
discussed in Section 7. Finally, Section 8 summarizes our con-
clusions.

2. Related Work

A number of approaches exist to estimate mobile capac-
ity. The most popular of which is Ookla’s mobile applica-
tion, Speedtest [9], which computes the maximum end-to-end
throughput achievable by two long lived TCP connections with
the closest measurement server (according to our tests the mea-
surement lasts for either 20 seconds or after 30 MB have
been downloaded, whichever happens first). Then, it derives
throughput samples and aggregates them into 20 bins (each one
has about 5% of the samples), applies some post processing
to remove measurement artifacts and, finally, estimates the av-
erage of the bins. Huang et al. [10] proposed to use 3 parallel
TCP connections in order to remove the effects of packet losses,
TCP receive window limitations and overloaded servers, while
ignoring any data collected during the slow-start phase of TCP.
The calculated throughput is given by the median of the col-
lected samples, in order to reduce the effect of outliers. Re-
cently, Xu et al. [11] analyzed the use of UDP to compute the
end-to-end throughput availability, also accounting for packet
interarrival times and the impact of mobile scheduling. All
these techniques are active, use long data transfers and thus,
incur a high overhead.

Conversely, passive monitoring techniques aim at estimat-
ing similar information by analyzing ongoing mobile commu-
nications, without triggering any dedicated activity. Gerber et
al. [12] achieved quite accurate results just by relying on se-
lected types of applications (i.e., video streaming), which pro-
vide more reliable throughput measurements as they are more
likely to exploit the full cell capacity. In order to study trans-
port protocols in LTE, [13] developed a passive measurement
scheme, which monitors the sending rate over a given time win-
dow that ensures the full exploitation of the capacity. PRO-
TEUS [14] combines passive monitoring with linear prediction
to estimate the achievable throughput. Other solutions worth
mentioning in this category are [15], where the authors try to
identify bottleneck links in the core network of an operator by
conducting large scale passive measurements of TCP perfor-
mance parameters and [16], where network “footprints” (gen-
erated by counting the number of packets and the number of re-
transmissions of all the users of a network) were used to identify

Figure 1: Some of the LTE network components that a file has to traverse in
order to reach a mobile client.

capacity bottlenecks. However, these solutions cannot be di-
rectly applied to mobile phones. We conclude that none of the
aforementioned solutions allow for frequent throughput mea-
surements, nor do they provide estimates of the per user cell
capacity on the client side (mobile device) to allow for effective
capacity prediction and resource allocation.

Lai [17] attempts to actively measure the link capacity
(which in [17] is called bandwidth) of a path by taking ad-
vantage of the packet pair property of FIFO-queuing networks.
Dovrolis [18] further refines the packet pair technique and
demonstrates that packet pair dispersion rate has a multimodal
distribution, whose modes in turn depend on the capacity and
the cross traffic at each of the links composing the sender-
receiver path. Also, the authors devise a method to estimate
the capacity of the bottleneck link in the path, based on the
fact that the average throughput measured by packet trains con-
verges to the asymptotic dispersion rate, from which an esti-
mate of the bottleneck capacity can be computed. As we will
discuss later though, it is unsuitable for use over mobile net-
works. CapProbe [19] proposed a technique based on packet
pairs dispersion and delays to devise a reliable capacity estima-
tion technique, aimed at mobile networks. Both techniques are
meant to measure the capacity of the bottleneck link of a path.
Instead, we are interested in measuring the per user capacity at
a given moment.

We have recently proposed a passive technique that is able to
provide an estimation of the per user capacity range by moni-
toring the packet arrival pattern that takes place during the TCP
slow start phase [20]. In this current work, we are interested
in a more accurate per user capacity measurement that is based
on periodic samples of the exchanged traffic, taken during the
whole duration of the flow.

3. Mobile Networks Characteristics

In this section we provide a brief overview of the components
and characteristics of mobile networks that have an effect on
capacity measurement. In the rest of the paper, we will use
terminology and network architecture components of LTE, but
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(a) Link saturation traffic over LTE during the
steady state of a TCP flow.

(b) Arrival of the first packets of a TCP flow
over LTE.

(c) Some packets may be registered with a no-
ticeable delay.
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(f) Arrival of high speed UDP CBR traffic.

Figure 2: Time-sequence graphs presenting the arrival of packets to a smartphone, as they were captured by the traffic sniffing tool tcpdump. The time values
represent time since the first packet of the download arrived and when the related packets were captured by tcpdump.

the ideas and the algorithm can be applied to any recent mobile
network technology like 3G.

The user equipment (UE), which can be any device with mo-
bile communication capabilities, connects to the operator net-
work through any of the multiple base stations (BS) that the
operator controls, as shown in Figure 1. BSs are in turn con-
nected to the core network (CN) of the operator. This set of BS
can be collectively called Radio Access Network (RAN). They
form the interface between the UE and the operator.

The transmission of data from the BS to the multiple UEs
connected to it is regulated by a scheduler, which periodically
allocates resources and transmits packets to the associated UEs.
This period, called Transmission Time Interval, (TTI) largely
differs among mobile telecommunication systems, with more
recent technologies having lower values. It can be as short as
1 ms for LTE or at least 10 ms for UMTS. Thus, the UEs re-
ceive data in a way such that a burst of data is transmitted to
them, during TTIs in which they have been allocated resources
and receive nothing during TTIs in which they have not been
allocated resources. The scheduling process is usually based on
a fairness scheme that takes into account the data requirements
and channel quality of all the UEs served by the same BS. A
very popular such scheme is the “proportionally fair” schedul-
ing [21]. It tries to weight the past allocation of resources and
the current potential throughput of all the competing users. This
way it finds a balance between providing adequate resources to

all users, regardless of their channel quality, and maximizing
the overall throughput of the base station. Thus, in contrast
to wired networks, which usually serve traffic based on a FIFO
scheme, the incoming traffic at the antenna is distributed to user
specific queues and the outgoing is shaped by the scheduler.
So, the nature of the competing traffic (UDP/TCP or short/long
flows) does not greatly affect the speed of each user. On the
other hand, factors that may have an effect include policies (e.g.,
whether a user is a virtual or host network subscriber [22]) and
the specific service that generates the traffic (e.g., VoLTE traffic
has the highest priority in an LTE network).

When a packet is transmitted to a UE, it travels from the
Internet to the operator’s core network which forwards it to
the base station that the UE is connected to. The packet is
then stored at the base station in a buffer dedicated to the re-
cipient UE. The packet remains in the dedicated buffer until
the scheduler decides to allocate resources to the recipient UE.
Upon allocation and depending on the signal quality, it is ei-
ther grouped alongside other packets present in the buffer to a
Transport Block (TB) or, in cases of a bad signal and/or a small
amount of allocated resources, a segment of it is encapsulated
in a TB. The TB is then sent to the UE.

The mechanisms above are illustrated in Figure 2a, which
shows the arrival of packets to an LTE smartphone, as captured
by the sniffing tool tcpdump. In this experiment we are saturat-
ing the link and observe its behavior during TCP steady state.
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Note that the TTI of LTE is fixed to 1 millisecond. It is eas-
ily observable that the packets arrive in groups that have about
the same duration as the TTI. Between these groups of pack-
ets, the smartphone is not allocated resources, thus nothing is
received. The size and temporal spacing of the groups depend
on the channel quality of the UE and the congestion level at the
BS.

3.1. Measurement artifacts
In our traces we frequently observed measurement artifacts

that are unrelated to the scheduler and are due to the following
reasons.

3.1.1. Small congestion window values during the slow start
The servers that transmit data over TCP send bursts of pack-

ets to the client and wait for the related acknowledgments be-
fore sending more. This behavior is very prominent during the
slow start phase of the transmission when the congestion win-
dow has small values. The gap in the transmission at the server
side may cause an analogous gap in the transmission at the base
station. During this time, the base station is not sending data
to the recipient UE, because there are not data in the dedicated
buffer. This is visible in Figure 2b, which illustrates the delivery
of the first packets of a TCP flow over LTE. In two occasions,
consecutive TBs are received with a delay on the order of tens
of ms. We also observe in this example, that the total number
of packets delivered in the groups that arrive at about 75 ms is
bigger than the number of packets in the first set of groups (the
second group has just one packet) at 0 ms. This is caused by the
exponential growth of the congestion window. Eventually, the
congestion window is large enough that the we observe a con-
tinuous stream of incoming packets and this effect diminishes.
Since the Round Trip Time (RTT) is larger in 3G networks, the
impact of this TCP behavior is slightly more pronounced.

3.1.2. Infrequent polling for incoming packets
IP packets arrive at the UE as part of a TB alongside other IP

packets. An ideal method to measure the downlink speed then
would require the registering of the exact size and timestamp of
each TB. However, this is unfeasible. The related information
is only available at the eNodeB, to which a client side tool as the
one we propose has no access, or at the Network Interface Card
(NIC) of the mobile device. Accessing such NIC information
would require specialized drivers, that vendors are very hesitant
to release for public usage. The lowest level from which we can
extract network information is the kernel, where we register the
time and size of all the IP packets. Thus, our view of the net-
work is limited to what is known to the kernel. The exact timing
of packet arrivals at the kernel is affected by the capabilities of
the phone and the capture software2. Usually packets are reg-
istered at the kernel with a noticeable delay, compared to their
arrival at the NIC. In [23] the delay between the WiFi interface
and the kernel is measured, which the authors believe should
be comparable with the “Mobile NIC-kernel” delay. They note

2http://www.tcpdump.org/faq.html#q8 [Last access: 2015-03-24]

that the TCP data packets, the packets we are interested in, have
the lowest possible delay, compared to ICMP and other TCP
packets. The delay, which depends on the NIC ranges from be-
ing insignificant to being a few ms. According to [11], both
delays are related to the polling frequency of the NIC from the
OS.

We have conducted a small scale experiment to assess the
effect of polling on several phones, when both the WiFi and
the LTE interface are used. When the LTE interface is active,
packets are reported in groups similar to the ones visible in Fig-
ure 2a, in all of the phones. The pattern is always similar with
some minor variations on the size and spacing of the groups,
depending on how powerful the hardware is. For the WiFi ex-
periment we use 802.11g without packet coalescing, to ensure
that each MAC frame encapsulates exactly one IP packet and
there is no grouped transmission of packets. We also set up
a sniffer, which provides more accurate timestamps to moni-
tor the exchanged traffic and provide the groundtruth. In Fig-
ures 2d and 2e, we show the traces captured by the sniffer and
the phones during high speed downloads. We observe that dif-
ferent phones may exhibit a very different behavior. The sniffer
always reports a continuous delivery of packets “in the air”.
Some phones report the packets in the same grouped fashion
as above, whereas others report continuous delivery of packets.
Based on these observations, we conclude that the pattern of
packet arrival on WiFi seems to be greatly dependent on the
phone specifications. The arrival pattern in the LTE case is
determined by the grouped delivery of packets in the physical
layer, but the timestamping accuracy of each packet is related
to the phone hardware. More powerful phones are less affected
by the polling problem, but even in this case, the delay shows
slight variations. Since this delay is very small, it is not signif-
icantly affecting our technique, whose adaptive and statistical
nature tries to countermeasure it.

3.1.3. Weak or busy phone hardware
It is quite common for packets to be delivered to the phone

but not delivered to the higher layers until several milliseconds
later, alongside all the other packets that have been received in
the meantime. This is usually observed in cases of high capac-
ity and/or high CPU utilization. This behavior is very evident
in Figure 2c, which depicts the TCP steady state of a 3G down-
load. According to the server side trace of this download, the
server transmitted all the packets that are visible in the figure
almost “back-to-back”. Also, the phone trace showed a steady
rate in the delivery of packets. But at times 5175 and 5215 ms
we observe a gap in the delivery of packets and then the deliv-
ery of an impossibly large group. Packets were actually deliv-
ered during these gaps, but were registered all together when
the CPU was able to process them.

3.1.4. Slower speed during the first packets of a flow
We have noticed that when a UE may achieve very high

speed, there is a significant difference in the arrival rate of the
first few hundred packets of a flow and the arrival rate of the
rest of that flow’s packets. The difference is present even if
we take into account the reduced rate of the slow start phase
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of TCP, in case the flow is TCP. We have observed this phe-
nomenon in traces gathered in the networks we used to evaluate
our tool, as well as other European mobile networks. In order to
get more insight, we have done a small experiment in a Spanish
LTE network, where we send constant bit-rate UDP traffic and
monitor the arrival rate as reported by the mobile. When the
server transmits traffic at a rate smaller than 25 Mbps, there is
no difference in the arrival rate at different parts of the flow. If
the rate of the server is higher than 25 Mbps, the first part of
the flow (usually the first 150 to 300 packets) has an arrival rate
25% to 50% lower compared to other parts of the same flow.
For the flow presented in Figure 2f, the arrival rate of the pack-
ets located on the left side of the vertical line (first 178 packets)
is almost half the rate of the rest of the packets on the right side
of the vertical line. If the transmission pauses for a few tens of
ms, the same effect is observed upon restart. Even though we
did not perform a dedicated experiment for a 3G network, our
traces indicate that this phenomenon is even more prominent in
3G. An independent team of researchers [24], who conducted
measurements in the same German network we used to collect
our traces, observed that the first packets of a flow experience
a considerably higher delay compared to the rest, when the rate
at the server is higher than 20 Mbps. This effect causes reduced
speed during the first part of the flow. While we are unable to
investigate this phenomenon further, due to we lack of physical
layer or mobile network specific information, we believe that it
can be attributed to an operator configuration.

3.2. Packet pairs issue

The previous characteristics of mobile networks and phone
hardware make the use of traditional packet pair techniques in-
feasible. Any two packets that would make a packet pair are in
either of the following cases.

Transmitted in the same TB. In this case the packets arrive
more or less at the same time to the UE, since all the informa-
tion included in the TB is transmitted in parallel using multiple
carrier frequencies. The lower protocol layers of the UE ensure
that they are delivered to the higher layers in the right order,
while also assigning them slightly different timestamps. Con-
sequently, sniffing tools like tcpdump perceive them as arriving
with a tiny time difference, in the order of a few hundreds of mi-
croseconds. A capacity estimation based on these packet pairs
would greatly over-estimate the real value of the capacity.

Transmitted in different TBs. In this case, the packet pair
consists of the last packet of a TB and the first packet of the fol-
lowing TB. Thus, the capacity value is greatly underestimated,
since the measured dispersion is the dispersion between the TBs
and each TB is very likely to be able to encapsulate more than
one IP packet, which is not reflected in the measurement. If
there is exactly one packet per TB, then an accurate estimation
is possible, but we observed that in the majority of the cases
each TB contains multiple packets.

3.3. Packet trains issue

Packet trains are also problematic. They cannot be used in
a passive scenario because the server transmits packets on the
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Figure 3: Dispersion of IP packets over the Internet. First, they are sent back-
to-back from the server (1). After experiencing dispersion on the Internet, they
arrive on the BS (eNodeB) (2). Finally, they are received in groups by the UE
(3). The timelines (1-3) happen sequentially, one after the other, not in parallel.
The horizontal arrows represent TBs allocated to the recipient UE.

receipt of ACKs and the application requirements, so the trains
will have variable length. The number of packets in each TB
may be different, which results in similar problems to the ones
described in the “packet pair” scenario. On some occasions all
the packets will be transferred in the same TB and on others in
multiple TBs.

It is clear that long-established packet dispersion techniques
that were developed to detect the bottleneck link capacity in
wired networks are not suitable for mobile networks, especially
in regards to detecting the per user capacity. In the sequel, we
will present the necessary modifications to this approach for it
to provide reliable capacity estimations in mobile scenarios.

4. Mobile Capacity Estimation

In the literature, the term “link capacity” refers to the trans-
mission rate of a link, “path capacity” is the minimum trans-
mission rate among all the links of the path and finally “link
available bandwidth” refers to the spare link capacity (capac-
ity not used by other traffic) [18]. Instead, we are interested in
estimating the maximum capacity that the scheduler of an eN-
odeB could allocate to a target user if he requested saturation
traffic under a specific bearer. This metric is specific to cellular
networks, we call it “per user capacity” and we symbolize it as
CU . For brevity, in the rest of the paper we refer to it as “ca-
pacity”. To the best of our knowledge, traffic flow templates are
not used for generic browsing and multimedia traffic, which is
the scope of this work. Thus, we can safely assume that all the
measured traffic is using the default bearer, allowing us to ig-
nore this variable. As we will analyze in the sequel, in practice,
the measured CU will often be less than the maximum capacity
a user could be allocated. For this reason, the measured value
represents the greatest lower bound of the user’s capacity. We
will show that this value is very close to the actual maximum,
thus causing a slight underestimation of the true maximum per
user capacity.

The wireless link is the last hop of a downlink path and the
CU of all the connected users is dependent on the cell con-
gestion, the channel quality, the channel’s bandwidth and the
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Figure 4: Scatterplots of cW (left of each pair) and its statistical distribution (right of each pair) computed for tT = {1, 5, 10, 30} ms from left to right. When the
dispersion time is computed on windows larger than the TTI, tT > tS , the distribution gets more stable.

scheduling algorithm. It is usually the link of a path with the
lowest capacity, that also contributes the most to the delay. On
the other hand, the average end-to-end TCP throughput R, de-
pends on the capacities and the cross traffic of all the links in
the path, as well as possible rate adaptations at the server side,
caused by the TCP mechanisms. The end-to-end TCP through-
put is primarily determined by the link with the minimum spare
link capacity, which in a mobile scenario is usually the RAN.
We are interested in measuring CU , since it is the metric that
affects all the connections that the user is going to have in the
future and is usually the bottleneck.

Figure 3 illustrates the packet dispersion due to the trans-
mission over links at different link capacities. This example is
based on LTE, but similar effects are observed in various mobile
technologies. Initially, (1) the server sends a burst of IP packets
(A-H in the example) back to back. The number of packets in
the burst varies since it depends on a number of factors like the
state of TCP connection, the specifics of the application and the
server that generates it. Subsequently, (2) the base station (eN-
odeB) receives the packets, which have suffered variable delays
due to the different link capacities and cross traffic encountered
along the path. When the scheduler allocates a TB (marked with
horizontal arrows in the plot) to the receiving UE (3), as many
packets as possible are encapsulated in it. Therefore, all the
packets that are scheduled together arrive within the same TTI
at the UE. As a consequence, the inter-packet interval can be
greatly reduced (packets A and B) or greatly magnified (pack-
ets B and C).

Considering the set of “back-to-back” transmitted packets
crossing the path in Figure 3, we can distinguish their arrival
rate RA at the antenna from their transmission rate from the an-
tenna to the user, which can have a maximum value of CU . Both
metrics are dynamic and are affected by the same parameters
that affect R. Thus, if we sample them for a specific period of
time, we may notice the following relationship between them.

If RA > CU , the set of packets arrives at the BS with a delay
which is inversely proportional to RA and shorter than the aver-
age time needed for the BS to serve all but the last packet. Since
the arrival rate is higher than the departing rate at the base sta-
tion, the dispersion of the set is caused by the last link. Also,
depending on the scheduling strategy, the set may be served
within the same transport block or multiple transport blocks by
the BS. Conversely, if RA < CU the set of packets arrives at
the BS separated by a delay which is longer than the average
serving time of the BS. We thus have three cases (excluding the
problematic cases of section 3):

i) Bursty arrival [13, 11] (e.g.: set of packets E-F), if RA >
CU and packets are in the same transport block.

ii) Wireless link capacity, if RA > CU and packets are in dif-
ferent transport blocks (e.g.: set of packets A-D).

iii) The bottleneck link being in the server-BS path and/or the
server transmitting at a very low rate (e.g. TCP slow start),
if RA < CU

In order to estimate CU , we have to filter both i) and iii) cases,
as well as take into account the behavior of sets of packets when
transmitted over mobile networks as presented in section 3. In
brief, our approach has two components: a) generating capacity
estimation samples which are not significantly affected by the
above and b) the statistical processing of those samples in order
obtain a CU value.

4.1. Capacity Estimation Samples

The input data for our passive measurement tool are the
timestamps and sizes of all the received data packets of a smart-
phone. We ignore packets related to connections establishment
such as TCP and TLS handshakes, since they can not saturate
even momentarily the wireless link. This information can be
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collected on the OS level by monitoring the stack. In our ex-
periments, we use rooted Android smartphones and tcpdump
to capture all the incoming traffic. Ultimately this function-
ality could be included in the mobile OS as an on-demand
lightweight measurement service.

We consider a set of N packets sent from a server and re-
ceived at the UE so that the i-th packet is received at time ti,
with i = {1, . . . ,N}. A key metric used by our algorithm is the
“inter-packet interval”, the time difference between the arrival
of two consecutive packets (ti+1 − ti). Obviously, in a group
containing N packets, there are N − 1 intervals. W represents
the unit-less number of such intervals that we take into account
when we generate the capacity estimation samples. For each
packet in the set we define the dispersion time dW (i) = ti+W − ti,
and the per user capacity sample cW (i) = (

∑i+W−1
j=i L j)/dW (i), for

a given value of W, where Li is the length of i-th packet.
In detail, the cW (i) value of packet i is derived by adding the

sizes of W consecutive packets, starting from i and then divid-
ing by the time duration of W consecutive inter-packet intervals,
starting from [ti+1 − ti]. Packet i + W contributes only to the de-
nominator. For example, in Figure 3, cW=2(A) is computed by
dividing the sum of sizes of the packets A and B by the disper-
sion time dW=2(A) = tC − tA.

The three arrival cases above contribute to the distribution of
the capacity samples in different ways. Arrivals of type i) cause
a tiny dW and, thus, skew the distribution to the right (over-
estimation of CU). At the same time, type iii) events, which
show larger dW (under-estimation of CU) skew the distribution
towards the left. To better visualize what is discussed next, Fig-
ure 4 shows a set of scatterplots of cW and histograms of its
distribution computed on a single download performed using
the Speedtest application [9] over a HSPA connection. The X-
axis of the scatterplots represents the arrival time of packet i
and the Y-axis its cW value.

The impact of type i) arrivals can by limited by setting W ap-
propriately. The idea is to include in each measurement packets
belonging to different TBs in order to make sure that the high-
est throughput cW we can measure is only related to the cell
capacity and not to bursty packet arrivals, as it would have hap-
pened had we chosen W = 1 in the example of Figure 3. In
order to achieve that, it is sufficient to study groups that, start-
ing from any packet i, contain Wi intervals so that the minimum
dispersion time dW (i) is longer than the maximum TTI of the
scheduler, abbreviated tS :

Wi = {min(W) | min
W

(dW (i)) > tS } (1)

This guarantees that at least two packets within the Wi window
are scheduled in two different transport blocks, since ti+Wi − ti =

dWi (i) > tS . In other words, we are averaging the burstiness
over two transport blocks. An effect of Equation (1) is that each
packet i has a different Wi value, depending on the spacing of
packets that were received after it.

It is important to select the minimum value of W for the
creation of the cWi(i) value for packet i that has the property
min(dWi (i)) > tS . As discussed in section 3, the “slow start”
behavior of TCP introduces noticeable gaps in packet delivery.

tT , ms
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∆
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Figure 5: Ratio ∆(tT ), varying tT ∈ [2, . . . , 50] ms. The measurements get
stable from tT > tS = 10 ms.

Thus, samples that include these gaps in their calculation of dW ,
generate cW values that are significantly smaller and not repre-
sentative of the CU . A high value of W increases the probability
of a sample to include such gaps.

4.2. Statistical Processing Of The Samples

Now that type i) events are filtered, we ensure that each set
spans across at least two TBs. The minimum dispersion time
min dWi (i) for every packet i of the flow cannot be smaller than
the minimum time needed for a set of packets to cross the wire-
less link, which corresponds to the maximum per user cell ca-
pacity. Thus, CU can be found as the maximum of the distribu-
tion of cW , which is equivalent to the maximum value of cW .

CU = max
i∈[1,...,P]

cWi (i) (2)

P is the total number of data packets of a flow. Note that, with
Equation (1) we are filtering the effect of type i) arrivals (min)
and with Equation (2) the delays introduced by type iii) arrivals
(max).

Ideally, we would like to sample cW until its distribution is
stable, but CU is varying because of both user movements and
fast fading. Hence we can only obtain an estimate CU

(p) of it
from a set of p consecutive estimation samples, where p < P.
Although estimating the distribution from a limited number of
samples reduces the accuracy of our measurement, we can at
least guarantee that we are not overestimating CU :

CU
(p) = max

i∈[1,...,p]
cWi (i) ≤ max

i∈[1,...,P]
cWi (i) = CU (3)

This follows from the probability of the distribution of a sam-
pled random process to contain the maximum of the theoretical
distribution of the process, which is increasing with the number
of collected samples:

lim
p→∞

CU
(p) = CU (4)
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Figure 6: Coefficient of variation of the normalized root mean square error
εC of the capacity estimate computed over a fraction f = k/K of continuous
samples for varying bin sizes ({0.1s, 0.2s, 0.5s, 1s}).

4.3. Capacity Measurement

This section describes the feasibility of lightweight active
and passive measurements of per user capacity CU based on
dispersion samples of packet sets. It also explores the effect
different values of some parameters have on our technique. We
compute the dispersion time by using an adaptive window Wi

intervals long for every packet i such that:

Wi = {min(W) | ti+W − ti > tT }, (5)

where tT ∈ [1, . . . , 50] ms, for all the values of tT . The esti-
mation sample of the ith packet is composed of all packets fol-
lowing i until the first packet which arrived at least tT ms later
than i. This allows to satisfy Equation (1) a posteriori if the TTI
duration is not known.

We exemplify the dispersion time in Figure 4 based on data
obtained by time-stamping the arrival time of the packets of a 6
MB HSPA download. The figure presents the evolution of the
scatterplots of cW and the corresponding histograms of the cW

distribution for various characteristic values of tT .
During the slow start phase of a TCP connection an increas-

ing number of packets are sent back to back from the server,
and after a few RTTs the congestion window is large enough to
allow the transmission of packet trains long enough to measure
capacity as high as 100 Mbps. In fact, CU should be propor-
tional to the maximum number of packets that can be scheduled
in a single transport block and, if Equation (1) is satisfied and
tT > tS , the impact of outliers due to bursty arrivals is removed.
With reference to Figure 4, it can be seen that the maximum
of cW is approaching a stable value of about 10 Mbps when
tT ≥ 15 ms. Due to limited space, we do not present the related
plots of other downloads. Based on the rest of our dataset, a
stable value is reached for values of tT between 10 and 20 ms.

Moreover, Figure 5 shows the stability of the maximum of
the capacity by plotting the ratio ∆(tT ), computed between the
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Figure 7: Time plot of the capacity variation CU
(k)(t) computed every 500 ms

and its different estimates computed with f = {10, 20, 50, 100} %.

maximum value obtained with windows of [tT ] and [tT − 1]:

∆(tT ) =
|CW |tT −CW |tT−1|

CW |tT−1
(6)

Ideally, the ratio ∆(tT ) should stabilize to 0 as soon the schedul-
ing outliers are filtered (tT > tS ) and further increasing tT
should only make the distribution smoother. However, in ac-
tual experiments increasing tT makes it more difficult to obtain
a sample of the maximum capacity which is consistent over dif-
ferent transport blocks. In this preliminary example, we can see
that ∆(tT ) becomes stable for tT > 20 ms, which is in line with
the HSPA TTI of 2 − 10 ms.

Next, we divide the time duration of a download into fixed
sized bins. We apply the above method taking into account only
a percentage f = k/K of consecutive capacity samples in each
bin. In this case, K is the total number of samples inside each
bin and k is the number of consecutive samples that we consider
for every bin. Figure 6 shows the coefficient of variation of
the normalized root mean square error – CV(NRMSE) – of the
estimate εC , by varying f :

εC =

√∑
bins(C(k) −C(K))2

NbE[C(K)]2 , (7)

where Nb is the number of bins in a flow. The computa-
tions have been repeated for different bin sizes varying in
{1, 0.5, 0.2, 0.1} seconds (dotted, dash-dotted, dashed and solid
lines, respectively). It can be seen that the error decreases be-
low 20 % when more than 20 % of the samples are used.

Figure 6 can also be interpreted as the width of the prob-
ability distribution of having an exact measurement using f
% of the samples. In particular, it is easy to see that when
we use all the samples, the distribution should collapse into a
delta function (zero width), while the fewer samples we use,
the wider the distribution. The real value can only be larger
than the measured one, because of Equation (3) that shows
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maxi∈[1,...,k] cWi (i) ≤ maxi∈[1,...,K] cWi (i). Thus, this distribution
has non-zero width for values smaller than the actual measure-
ment only.

To complete this preliminary evaluation of our measurement
technique, Figure 7 shows the variation of the per user capacity
CU

(K)(t) measured every 500 ms and its estimates CU
(k)(t) com-

puted with f = k/K = {10, 20, 50, 100} % (dotted, dash-dotted,
dashed and solid lines, respectively). Although with 10 % of
samples the estimates are quite different from the actual capac-
ity values, we will be showing next that it is possible to exploit
these coarse estimates to obtain a sufficiently accurate capacity
estimate.

5. Simulation Campaign

We have performed an extensive simulation campaign in or-
der to evaluate our proposed technique in a controlled environ-
ment. We use a modified version of ns-3.23 [25] and its LTE
module LENA [26]. We focus on LTE due to its increasing pop-
ularity. In all simulations the monitored user uses TCP, since it
is both the most challenging and the most popular [13] transport
layer protocol of mobile phones. The variable parameters of the
simulations are presented in table 1. The fixed parameters are:
1) the simulation lasts for 22 seconds and 2) the BS uses a pro-
portionally fair scheduler. For each set of parameters we run
the simulation multiple times with a different seed, generating
in total 18570 flows.

Table 1: Simulation parameters

Parameter Value
number of resource blocks (Mhz) 25 (5), 50 (10), 75 (15), 100 (20)

number of competing UEs in the cell [0, 1, 2 . . . , 10]
distance between UE and BS in m [0, 50, 100 . . . , 450]

number of interfering BS [0, 1, 2 . . . , 6]
type of scenario “static”, “urban walking”, “vehicular”
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Figure 9: Deviation of the sampling estimations (k = 5%) for various average
polling periods tP from the ideal case (k = 100%, tP = 0).

Next we investigate the effect of polling on the accuracy of
the measurements. The simulation results do not suffer from
polling, thus the packet arrival time reported in the logs is the
actual arrival time at the NIC. In order to simulate the polling
effect we manipulate the logs so that we check for incoming
packets every tP ± 10%, where tP ∈ [1, 3, 10, 30, 100] ms. We
add the 10% deviation in the timing of each polling because
based on our traces and the literature, polling does not have a
fixed frequency. We also add a tiny inter-packet delay (in the
range of 0.1 ms) between the packets that are reported together
by the polling function, in a fashion similar to the one we ob-
serve in our “real life” traces. Please note that the polling delay
(if present) is usually within 10 ms under normal circumstances.

Figure 8 shows the CV(NRMSE) εP between traces that have
the original timestamps and processed ones. We calculate the
εP as we did for the εC in Equation (7).

εP =

√∑
bins(C(tP) −C(0))2

NbE[C(0)]2 (8)

It can be seen that the error is at most 20% for most cases (up
to 10 ms of delay).

Subsequently, we examine how the combination of sampling
only 5% of the available estimators and polling affects the ac-
curacy of the results. We divide every flow to 100 ms bins and
for every bin we calculate the CU

(100%) and the CU
(5%) for var-

ious tP values. The speed of each flow is the average of the
measured capacity of all its bins E[CU

(k)]. As a groundtruth,
against which we compare the rest of the results, we suppose
the case where tP = 0 (ideal polling) and k = K. Figure 9 de-
picts the Empirical CDF of the percent Deviation DS computed
by the formula:

DS =
|E[CU

(5%)(tP)] − E[CU
(100%)(0)]|

E[CU
(100%)(0)]

(9)

By comparing the ideal line of tP = 0 with the rest, we conclude
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that even though polling does have a negative effect in the mea-
surements, the dominant cause of error is the sampling. Also,
we observe that for the most common tP values (tP < 10 ms)
the deviation for 90% of the cases is less than 30%.

6. Measurement Campaign

In order to validate our measurement technique over many
different “real life” scenarios and configurations, we organized
a measurement campaign that covers two cities in two different
countries, Darmstadt (Germany) [27] and Madrid (Spain), for
24 hours a day lasting 7 days. During this time, 5 people per
city moved around as they normally do, carrying one measuring
device each and performing their usual tasks involving mobile
networking on the measuring devices. In order to be able to
compare results of both passive and active measurements, we
also perform automated periodic file downloads.

All the devices were running a simple Android application,
which was periodically sampling the available capacity by start-
ing two download types: short downloads of 500 KB to study
the TCP slow start phases and long downloads of 2 MB to mea-
sure TCP steady state throughput. The two types were orga-
nized in a sequence with a long download, preceded by two
small downloads and later succeeded by another two. We use
tcpdump on the measurement devices to monitor the arrival
time and size of all incoming packets. The download sequence
was repeated every 50 minutes. Additionally, we log other re-
lated phone parameters: GPS, cell ID, Channel Quality Indica-
tors (ASU, dBm) and network technology (2G, 3G, LTE).

The phones used in the campaign were the following: 5
Nexus 5, located in Germany, and 4 Sony Xperia Miro and 1
Samsung Galaxy S3, located in Spain. Also, while the Nexus
5 phones are LTE capable, the other phones only support radio
technologies up to HSPA.

7. Results and Discussion

We verified our measurement technique by analyzing more
than 3000 unique TCP flows extracted from the communica-
tion of the phones participating in the campaign. As before, we
split each flow into 100 ms bins and calculate the CU

(100%) and
CU

(5%) metrics, and assume that their average is the speed of
each flow. Note that in these measurements we neither have
control over the polling, nor we can distinguish it from the
scheduling behavior.

Figure 10 shows a scatterplot where the abscissa and the ordi-
nate of each rectangular point are the sampled and non-sampled
versions of CU , respectively. Further we add in the same plot
the related simulation results for tP = 3 ms as diamonds. As ex-
pected from Equation (3) all the data points are above the y = x
line. Thus, we verify that our algorithm may only underesti-
mate the capacity. The fact that all the points are so close to the
y = x line proves that the values derived by just 5% of the sam-
ples are good estimators of CU

(100%). As a consequence, this
measurement can be safely used as a lower bound in resource
optimization problems. We also plot the linear regression of
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Figure 10: Scatterplot of the average estimate of per user capacity computed
using all available information E[CU

(K)] against the estimate computed 5 % of
the available information E[CU

(k)], k = K/20.

only the actual measurement results as a dashed line. The re-
gression line would allow us to build an even better estimator
with lower error.

The figure is plotted in double logarithmic scale in order to
emphasize that the relationship between CU

(100%) and CU
(5%)

can be observed over all the measured connection rates and
there is an almost constant ratio between the estimate and the
actual value. Although outliers are visible, we can obtain quite
an accurate estimate of CU by exploiting as few as 5 % of the
packets sent during a TCP connection. This allows for quite
an effective passive monitoring technique as, even by monitor-
ing small data exchanges, it is possible to obtain frequent and
accurate mobile per user capacity measurements necessary for
user throughput prediction and resource allocation. The linear
regression line seems to deviate from the measurement “cloud”
for low values of capacity, because of the double logarithmic
scale used in the plot, which highlights the regression offset
for low values (500 Kbps and less). Further, we observe that
for high values, the regression line has an almost fixed vertical
distance from the y = x line (constant percentage error). This
represents the error of the estimate and, since it is constant, in
the double logarithmic plot, appears as a fixed deviation on the
Y-axis from the y = x line.

Unfortunately, using very low rate background traffic is im-
possible. The rates of such traffic are on the order of 4 packets
over 100 ms, which do not allow for reliable capacity measure-
ments. Also, a big number of the APPs use the Google Cloud
Messaging (GCM) service, which minimizes their notification
related traffic. In the case of GCM, if there is an update a few
packets are sent just to generate a notification. When the user
interacts with the notification, a larger number of packets are
downloaded. In this scenario, we can use that download to get
an estimation.

In the experiments, we use rooted Android phones and tcp-
dump to perform the measurements. Given the very low com-
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Figure 11: Contour graph of εC varying tT and f for a bin size of 200 ms.

plexity and resources that are required by our approach, the CU

estimation is generated at virtually no cost. Therefore, we be-
lieve that it may be included in the OS as a service to applica-
tions that may opt-in to use it. For example, the flow-id, the
timestamp and the size of a packet could be registered as part
of the standard kernel packet processing procedure. Since these
values do not contain any sensitive information, there are no
privacy concerns and after a short period to time, when this
information is irrelevant it can be deleted. Upon application
request, the OS could generate a CU estimation, if there are suf-
ficient data stored. The knowledge of the flow-id can help dis-
tinguish the state of a TCP flow (slow-start, steady-state etc.).
If it is possible to use small values of tT , it is possible to gen-
erate accurate estimators even during the late part of slow start,
when the congestion/receive windows have relatively high val-
ues, since then the dispersion time can be smaller than the time
required by the antenna to transmit a server burst. In case of
a TCP flow that stops very early, it can be difficult to remove
both the slow start and the scheduling artifacts. In such cases,
the resulting value will be significantly lower than the truth, but
this is easy to detect and filter (e.g., requiring a flow to generate
at least 75 downlink packets in order to be used).

As a side note, our technique is also able to estimate fast per
user capacity variations. However, it obtains a lower accuracy
since a larger fraction of samples are needed to estimate the
maximum of the cW distribution. Nonetheless, it is often suffi-
cient to use 20 % of the samples collected in a bin to achieve
a reasonable estimate of CU . In fact, with the smallest bin size
and as few as 20 % of the samples have an error εC < 0.2,
which means the actual capacity should not be larger than 120
% of the estimated value.

In addition, tT must be taken slightly longer than the TTI to
avoid the measurement being impacted by many bursty arrivals.
In line with Equation (1) of Section 4, ∆(tT ) approaches zero for
tT > 15 ms for most of the recorded flows.

Figure 11 shows the CV(NRMSE) for various combinations
of tT and f of the measurement campaign flows. The bin size
is set to 200 ms to give an example of this technique’s results
when it collects very frequent measurements. As expected εC
decreases when tT and f increase. For values of tT ≥ 15 ms

and f ≥ 20 %, the error is small enough for the model to give
trustworthy results (εC ≤ 15 %).

Finally, Table 2 shows some of the overall evaluation of
the traces obtained by the measurement campaign with f =

25 % averaged over the bin size and using the optimal tT
(min tT |∆(tT ) → 0). Optimal tT and CU are computed as de-
scribed in Section 4 and then averaged over all the traces. While
some of the flows are transmitted using 2G EDGE data, the re-
sults are not included since there are too few such flows for
statistical significance.

Technology UMTS HSPA HSPA+ LTE
CU (Mbps) 10.83 1.4 10.74 24.3
Optimal tT (ms) 19 23 17 16

Table 2: Average CU and average optimal tT per technology.

The measurements are based on the data reported by the An-
droid OS. Note that HSPA and HSPA+ are a family of enhance-
ments to UMTS, that greatly increase its speed. The high av-
erage speed of UMTS is related to networks that support the
HSDPA enhancement for improved downlink speed, but not all
the enhancements that would classify them as HSPA or HSPA+.
The very big differences in speed between the HSPA, HSPA+

and LTE technologies can be explained by the following rea-
sons. More recent technologies can achieve higher speeds.
Smartphones tend to use the best technology possible for their
channel quality. Thus, they use HSPA only when their signal
is too bad to use a better technology and in turn the bad signal
greatly affects speed.

Our approach is designed for downlink measurements, which
account for the vast majority of the smartphone generated traf-
fic [13]. Recent trends, though, show an increase in uplink
related user activity and therefore we will briefly discuss the
uplink case. Our algorithm cannot be directly applied to the
uplink due to uplink communication characteristics. For in-
stance, if we attempt to perform a measurement on the phone
side we can gather very limited information. Without accessing
the transceiver firmware, we can only observe how fast packets
appear in the kernel, instead of how fast the NIC successfully
transmits them at the medium, which is the metric we are in-
terested in. It is possible that packets may remain in the buffer
of the NIC for a relatively long time after they appear in the
kernel, leading to wrong estimations. On the other hand, apply-
ing our algorithm to measurements collected on the server side
will fail to measure the cell capacity, since many intermediate
hops may be between the eNodeB and the server. An alterna-
tive approach would be to infer clues of the speed indirectly at
the phone side. If a UDP socket is blocking, it can be an indica-
tion that the rate at which an application is generating packets
(which we can detect) is higher than the link capacity, thus de-
riving an upper limit of the speed. In the case of TCP traffic, the
ACKs can be analyzed to infer whether the rate that the appli-
cation is generating traffic is above or below the link capacity.
Further analyzing the uplink scenario is beyond the scope of the
present paper and we leave it for future work.
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8. Conclusions

We presented a lightweight measurement technique that
leverages adaptive filtering over the packet dispersion time.
This allows to estimate the per user capacity in mobile cellu-
lar networks. Accurate estimates can be achieved exploiting as
few as 5 % of the information obtained from TCP data flows.
Given that this solution can support dense throughput sampling,
it is ideal for capacity prediction and optimized resource allo-
cation. In fact, if the future capacity availability is known, it is
possible to predict when it is best to communicate by doing so
when it is cheaper (i.e., more capacity available). In addition,
our solution is able to estimate the fast capacity variations from
a mobile terminal by monitoring the traffic generated under nor-
mal daily usage.

We validated our technique over a week-long measurement
and an extensive simulation campaign. We achieved good esti-
mation accuracy even when using only short lived TCP connec-
tions. Since our technique is based on simple post-processing
operations on the packet timestamps, it is possible to easily in-
tegrate it in background processes or OS routines.

We are planning to extend our measurement application with
filter based prediction capabilities in order to provide mobile
phones with a complete capacity forecasting tool, which, in
turn, will allow for advanced resource allocation mechanisms.
Finally, we are planning additional measurement campaigns in
order to further extend these encouraging results on passive and
lightweight measurement tools.
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