Latency Preserving Self-optimizing Placement at the Edge

Luca Ferrucci
ISTI-CNR, National Research Council
Pisa, Italy
luca.ferrucci@isti.cnr.it

Emanuele Carlini
ISTI-CNR, National Research Council
Pisa, Italy
emanuele.carlini@isti.cnr.it

ABSTRACT

The Internet is experiencing a fast expansion at its edges. The wide
availability of heterogeneous resources at the Edge is pivotal in
the definition and extension of traditional Cloud solutions toward
supporting the development of new applications. However, the
dynamic and distributed nature of these resources poses new chal-
lenges for the optimization of the behaviour of the system. New
decentralized and self-organizing methods are needed to face the
needs of the Edge/Cloud scenario and to optimize the exploitation
of Edge resources. In this paper we propose a distributed and adap-
tive solution that reduces the number of replicas of application
services that are executed throughout the system, all the while
ensuring that the latency constraints of applications are met, thus
allowing to also meet the end users’ QoS requirements. Experimen-
tal evaluations through simulation show the effectiveness of the
proposed approach.

CCS CONCEPTS

« Computer systems organization — Cloud computing; « In-
formation systems — Computing platforms.

KEYWORDS

Self-optimizing application placement, Application model, Opti-
mization Techniques for Resource Management, Edge computing

ACM Reference Format:

Luca Ferrucci, Matteo Mordacchini, Massimo Coppola, Emanuele Carlini,
Hanna Kavalionak, and Patrizio Dazzi. 2021. Latency Preserving Self-opti-
mizing Placement at the Edge. In Proceedings of the 1st Workshop on Flexible
Resource and Application Management on the Edge (FRAME °21), June 25,
2021, Virtual Event, Sweden. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3452369.3463815

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FRAME 21, June 25, 2021, Virtual Event, Sweden

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8384-4/21/06...$15.00
https://doi.org/10.1145/3452369.3463815

Matteo Mordacchini
IIT-CNR, National Research Council
Pisa, Italy
matteo.mordacchini@iit.cnr.it

Hanna Kavalionak
ISTI-CNR, National Research Council
Pisa, Italy
hanna.kavalionak@isti.cnr.it

Massimo Coppola
ISTI-CNR, National Research Council
Pisa, Italy
massimo.coppola@isti.cnr.it

Patrizio Dazzi
ISTI-CNR, National Research Council
Pisa, Italy
patrizio.dazzi@isti.cnor.it

1 INTRODUCTION

The adoption of Cloud computing is spreading at an incredible
pace [1]. The transition is not only cost-effective for application
providers, which avoid the set-up and most maintenance costs of
the server-side infrastructure of services, but is also typically conve-
nient for the end-users, who exploit always up-to-date applications
via lightweight clients. However, not all modern applications are
easily migrated onto Cloud computing infrastructures, as some
application features and constraints, like latency-sensitiveness, can
prevent a straightforward Cloud-based deployment and execution
of services. Virtual reality applications can hardly be removed from
their end-users without impairing the perceived QoE. Other ex-
amples of latency and bandwidth constraints are found among
ToT-based applications, where a flow of raw data from a huge num-
ber of usually low-cost, low computational power sensors must be
classified and processed in real time to react to changes in environ-
ment, such as in domotics [2]. Edge Computing is an attempt to
overcome these limitations, it is a service computing paradigm that
aims at bringing the computation as close as possible to the data
producers and/or consumers (e.g., end-users). The direct bearing
of this approach is to strongly limit the latency between the data
producers/consumers and the computing resources. In the Edge
Computing perspective the infrastructure is envisioned as revolv-
ing around a vertical computing continuum that goes from one
(or more) Cloud(s) to a potentially large number of edge resources,
geographically distributed over a usually broad area. The manage-
ment of such a complex set of distributed, typically heterogeneous
resources can be very burdensome and poses practical problems, as
well as some interesting research challenges. Among those there
is the non-trivial task of selecting the most adequate resources for
a given application service, conditioned by the set of its users and
their dynamically varying locations. Many approaches have been
proposed so far to tackle the problem, some based on traditional
optimization techniques whereas others exploiting data-driven ap-
proaches (e.g. machine-learning). There are solutions based on
centralized solvers and others with a distributed nature. This paper
proposes a decentralized, latency-aware solution for application
placement at the edge. Application instances on the edge interact
with one another in order to perform workload exchanges, lowering
the overall resource usage while keeping the latency between the
users and the edge under an application-dependant preset threshold.
The remaining part of this paper is organized as follows. Section 2
contextualizes this work in the related scientific literature. Section 3

https://doi.org/10.1145/3452369.3463815
https://doi.org/10.1145/3452369.3463815
https://doi.org/10.1145/3452369.3463815

presents our formal definition of the problem and illustrates the
approach we propose. Section 4 describes the experimental evalua-
tion of the proposed solution. Finally, Section 5 draws concluding
remarks and highlights future work directions.

2 RELATED WORK

In recent years, many solutions have been proposed for optimizing
the behaviour of Edge-based systems [3, 4]. The common feature
of these approaches is to limit the communications to centralized
Cloud servers by moving services and/or data closer to users, thus
enhancing the quality of the services offered to them. To achieve this
result, decentralized and/or self-organizing methods are exploited.

Some solutions are focused on data-driven mechanisms. In this
case, the data is moved in the system to make it easy for the users
to access it [5-29]. In particular, a common strategy is to shorten
the distance between data producers or storage and consumers
to reduce the latency needed to respond to the users’ requests.
Suitable distributed strategies for data placement and replication
are proposed in works like Aral and Ovatman [30] and Li et al. [31].
Differently from these approaches, we deal more with computing
requests and find an optimal placement/replication of computing
services.

Other solutions are more concerned with the placement of ap-
plications closer to the data to use and/or their respective users.
For instance, the work described in [32] exploits a self-organizing
clustering of the Edge data producer devices. Clusters are used
to identify the characteristics of the data produced by the vari-
ous groups of devices and, as a consequence, to optimally place
the users’ data analysis applications. Maia et al. [33] propose two
methods, one based on genetic algorithms and one based on a
Mixed-Integer Linear Programming heuristic. However, these two
solutions are designed to work offline and with complete knowl-
edge of the set of potential applications and computing nodes, i.e.,
a simpler scenario than the one we consider in this work. Ning et
al. [34] propose a distributed, online solution for service placement
at the Edge. Their solution is based on a probabilistic optimization
method for computing the utility (in terms of cost, storage capabil-
ity, and latency) of service migration and placement to determine
the service placement configurations. De Lira et al. [35] implement
a genetic algorithm that exploits the concept of user coverage to
place latency-sensitive services according to the supposed location
of end-users to maximize their quality of experience.

Different from the previous set of works, the method we propose
in this paper is related to the optimization of the Edge resource
consumption levels. One of the solutions available in this field is
proposed by Kavalionak et al. [36, 37]. The authors design a dis-
tributed solution, where geographically dispersed Edge devices
are able to coordinate, both among themselves and with a remote
server. In this way, the devices (surveillance cameras, in their use
case scenario) are able to fulfill their activities more efficiently by
sharing and balancing the required computational costs. Beraldi et
al. propose CooLoad [38], a distributed, cooperative load-balancing
scheme. In this model, an Edge data center stops processing in-
coming requests when they exceed a given threshold. To balance
the load, new requests are to re-directed to another adjacent data
center. Carlini et al. [39] have designed a completely decentralized

system, where autonomous entities in a Cloud Federation are able
to communicate to exchange services. The objective of the pro-
posed approach is to maximize the profit of the whole Federation
by mixing collaborative and selfish behaviours of the entities of the
system. Indeed, the devices collaborate by mutually exchanging
data and services. However, they make only the exchanges that
increase their own subjective revenues, eventually leading the sys-
tem to optimize its overall profits. Rather than balancing the load
or maximizing revenues, in this paper, we propose a solution that
optimizes the resource usage on the Edge by limiting the number
of redundant replicas of the applications that are executed in the
system. As we explain in detail in the following sections, to achieve
this result, point-to-point interactions between edge mini clouds
are used to move the users’ requests from one minicloud to an-
other, hence allowing to shut down some of themini clouds of the
same application. User requests are moved only if the users’ latency
QoS requirements are guaranteed. In this way, we avoid wasting
resources on useless replicas without violating the QoS constraints.

3 PROPOSED SOLUTION

In this section, we provide a detailed description of our proposed
approach. We first give a formal definition of the problem we face
in this paper. Then, we describe how we have tackled the problem,
using autonomous interactions between entities at the Edge.

3.1 Problem Definition and Model

In the context of this paper, we consider that the system at its edges
is made of entities that are termed as edge mini-clouds (EMC). An
EMC represents an entity located at the Edge. This entity is in
charge of supervising a set of other smaller, simple devices at the
Edge. In this paper, the resources handled by an EMC are the sum
of all the resources available within it. The only direct interactions
that could happen in the system are the ones between different
EMCs. Users of the system request the services provided by a set
of application. Each application offers a different type of service.
Several instances (or replicas) of an application can be deployed on
several EMCs, on the basis of users’ requests and QoS constraints.
Each EMC is in charge of supervising the execution (and all the
related optimization aspects) of the application replicas it receives.

On the basis of this description, we can define that the system
that we study in this paper is made of the following entities:

e M edge miniclouds {EMCy, .., EMCy}
e N types of applications {A1, .., AN}
In addition, we consider that these entities have the following

characteristics:

e Each edge mini-cloud EMC; has a specific capacity of re-
sources (or maximum admittable execution cost) Cj, j €

[1,...,M].
e For each application A;, there is a set of instances, or replicas
R; = {ajjlj € S € [1,..., M]}, where a replica a;; runs on

the edge minicloud EMC;.

e Each application A; has an associated set of users U;, |U;| =
Ui>1

e Fach application type A; is characterized by a fixed cost C{ P
and a variable cost. We assume that A; pays a cost C{*" for

each of the users it serves, so that the total variable cost is
computed as CY%" - Uj.

e To respect the QoS agreed with its users, each application
A; has a specific maximum latency requirement L;.

As highlighted in the Introduction, in this paper we face the
problem of minimizing the total number of running replicas in
the system. This operation should be done by a proper choice
of the replicas to maintain active and the selection of the edge
miniclouds where they have to be allocated. The selection and
allocation processes should ensure that all the users are served,
without violating their latency requirements. Moreover, the edge
mini-clouds capacity limits should be respected.

Using the notation introduced in this section, this problem can be
formally described as an optimization problem, using the following
mathematical formulation:

N M
mn >

i=1 j=1
st > (€T +Ci ;e < C; V),
i
Z ujjaij = U; Vi,)
J
lijaij < Li Vi, j,
ajj € {0, 1},
ujj €N

where a;; is a replica of application i on EMC; (active = 1, inac-
tive/turned off = 0), U; is the total number of users of application A;,
Cj is the maximum capacity of EMC}, u;; is the number of users of
application A; handled by the replica running on EMCj, I;; is the
latency experienced by the replica a;;, while L; is the maximum
allowable latency for any replica of A; .

The objective function minimizes the total number of replicas of
applications that are running in the system. The first constraint en-
sures that the total cost brought by the applications (and their users)
running on each EMC does not exceed the EMC’s maximum allow-
able cost. The second constraint guarantees that all the applications’
users are served by the active replicas, while the third constraint im-
poses that the active replicas should respect the maximum latency
assigned to their respective applications. Note that, by assuming
Ui 2 1, the second constraint also implies that 3} ; a;; > 1Vi, i.e.
there is at least an active replica for each application A;.

3.2 Solution Description and Pseudo-code

In the previous section, the problem we face in this paper has been
described as an optimization problem. It is characterized by a high
complexity, and a general solution would require a global knowl-
edge. Both these points force to exploit a different approach, that
is also capable of taking into account the distributed and dynamic
nature of the computing environment at the Edge.

In the rest of this section, we detail our proposed solution. This
solution is a self-optimization scheme. Indeed, it is based on the
autonomous actions of the entities (the EMCs) that compose the
system. The overall collective behaviour of these entities eventually
leads the whole system to optimize its behaviour.

The description proposed in this section follows the pseudocode
given in Algorithm 1. The algorithm describes the step performed
by a generic EMC Ej;. Specifically, we consider that E; has a set
Nof neighboring EMCs. These neighbors are the EMCs that are
in the communication range of E;. We assume that the latency
between E; and any other Ex € N is L(E}, Ex). Moreover, let A; be
the set of applications running on E;. Each application a;; € Aj is
characterized by a maximum agreed latency L;, a set of users u;;,
which have a maximum experienced latency I;;.

Algorithm 1 Actions performed by an EMC E; at each cycle

N = set of neighbors of E;

L(Ej, Ex) = latency between E; and E; € N,Vk
Aj = set of apps running on E;

L; = max admitted latency for users of a; € A}, Vi
l;j; = max latency for users of a; € Aj, Vi

u;jj = set of users of a; € Aj, Vi

Randomly choose a; € Aj

Let N; = {Ej € N|L(Ej,Ek) + lij < Li}

Randomly choose E; € Nj

Oy = resource occupancy of Ep

C;. = max capacity of Eg

Request from Ey. its O, Cy. and A

if Ja; € Ag and Oy + C?%u;j < Cy then
move all u;; on Ej
turn off a; on E;

end if

In order to contribute to a solution of the overall problem, at
regular intervals E; performs the following actions. It randomly
chooses one of its application a;; € Aj. Then, it selects the subset
N; C N of'its neighbors that respect the condition L(Ej, Ex) +1;; <
L;. This condition allows to determine which are the neighbors
eligible for receiving the users of a;; without violating the latency
constraint L;.

At this point, E; randomly selects and contacts a neighbor Ej. €
N;. Ej responds by communicating to E; the list Ay of the applica-
tion replicas it is running, its actual resource occupancy Oy, and its
maximum capacity Cg. Ej checks whether Ay contains a replica a;j
of A;, and that the cost of adding the users u;; to Ej does not exceed
Ck, ie. O +C7%u;j < Cy.In case these conditions are satisfied, E;
redirects all the users u;; to use the replica on Ej. Then, it shuts
down its application replica a;;.

In our algorithm the entities in the system collaboratively try
to detect application replicas that can be considered redundant,
then regroup the users of that application in order to use fewer
replicas. The applications’ latency constraints are never violated
by the regrouping, while the progressive elimination of redundant
replicas and the limits imposed by the EMCs’ capacities eventually
lead the system to converge.

In this paper, such convergence is not formally demonstrated,
leaving it as a future work. A possible technique is to represent
the algorithm with a workflow, using modelling languages such as
StateFlow/StateCharts. Then, it is possible to convert automatically
such workflows in linear temporal-logic formulae and exploiting

a Model Checker tool, as in [40], formally verify a property of the
whole system, that a terminal state is always eventually reachable
following every computation path.

4 EXPERIMENTAL EVALUATION

In order to validate our approach, we simulated a target scenario
using PureEdgeSim [41], a discrete-event simulator for Edge envi-
ronments. The simulated scenario consists of a federation of EMCs.
Each EMC is composed of an heterogeneous set of resource con-
strained edge devices and servers, able to host various types of
applications on behalf of a set of users. Addressing such complex-
ity and heterogeneity is beyond the scope of this work, so each
EMC is simulated as a single aggregated entity with a PureEdgeSim
Datacenter object with a quantity of resources that is the sum of
the resources of the devices and servers that compose it. Each user
device is simulated with a PureEdgeSim EdgeDevice object (e.g., a
tablet or a smartphone). At the beginning of the simulation, each
user device offloads a single application instance (represented by
a Task object in PureEdgeSim) to the closest EMC. If an instance
with the same application type already exists on the same EMC, the
user is added to the set of users served by the preexisting instance,
increasing its footprint. In this work, mobility of user devices, en-
ergy consumption of devices, and dynamic churn of users are not
simulated. The number of users is fixed at the beginning of each
experiment, varying in the set {60, 120, 180}. Each user device is
generated at the beginning of each experiment and placed randomly
in a simulated bi-dimensional rectangular space of 200x200 metres.
In our experiments the number of EMCs is fixed to 4. They are
placed at predefined locations inside the simulation space, at the
vertices of a square of coordinates {50,50}, {50,150}, {150,50} and
{150,150}. An investigation of the behaviour of our proposed solu-
tion when varying the number of EMCs is beyond the aim of this
paper; similarly, for this preliminary work, a confrontation of our
algorithms with the best practice algorithms existent in literature
is not performed, since our aim is to show the effectiveness and
validity of realization of our algorithm and if it reaches its goals,
expressed in the optimization function. Such confrontation will
be performed as a future work. A set of assumptions are made,
accordingly to our model: (1) any application type can be run on
any EMC, (2) there is at most a single instance of each application
type on each EMC, and (3) all the EMCs belonging to the federation
are able to communicate with each others and with all user devices,
to provide full connectivity.

The types of resources simulated for EMC and applications are
limited to three: VCPUs, Ram and Bandwidth. They represent, re-
spectively, the number of VCPUs, the amount of Ram and the
amount of network bandwidth required by the VMs/ Containers
of a certain application type. For an EMC, instead, they represent,
respectively, the maximum declared capacity of VCPU, the maxi-
mum declared capacity of Ram, in million of bytes, and the maxi-
mum amount of aggregated Bandwidth over communication links
to/from the EMC to other EMC or user’s device.

There are 4 different application types, each characterised by a
different resource footprint, which is composed by a fixed cost C/*
(the amount of resources required to start an application instance
), and a variable cost C?#" (for each additional user). The different

application types and their costs are described in Table 1 and Table 2.
Computational Bound, Memory Bound and I/O Bound application
types simulate a computational intensive, memory intensive and
networking intensive application, respectively. In this perspective
“intensive” means having double the requirements of VCPUs, Ram
or Bandwidth than the basic Balanced application type.

Table 1: C/* for each application type

Type VCPU Ram (Mbyte) BW (Mbit/s)
Balanced 1 200 20
Comp Bound 2 200 20
Mem Bound 1 400 20
I/0 Bound 1 200 40

Table 2: C%%" for each application type, for user

Type VCPU Ram (Mbyte) BW (Mbit/s)
Balanced 1 each 10 users 20 2
Comp Bound 1 each 5 users 20 2
Mem Bound 1 each 10 users 40 2
1/0 Bound 1 each 10 users 20 4

For each application type, we have also specified 3 different
values for the max network latency: such values vary in the set
0.2, 0.3, 0.5 seconds, and are aimed at testing the behaviour of the
experiments with applications with different latency sensitivities.
Thus, the number of distinct types of applications used in our
experiments is 12 (4 types of applications times 3 different latency
constraints). Consequently, each EMC has an equivalent amount of
resources, allowing it to be able to host 80-100% of the replicas of the
different type of applications at the beginning of each experiment;
the capacity of each EMC is { VCPU = 24, Ram = 6Gbytes, Bandwidth
= 600Mbits/s}. A simulated latency is calculated for each user’s
device, using the function

fiatency(d, EMC) = ChanLat i, + dist(d, EMC) * Crq;
This function is composed of two parts:

e afixed part, ChanLat f;,, which is dependent from the com-
munication channel type; in our experiments, it is fixed at
0.1 seconds and also includes the part of the latency that
depends from the bandwidth of the channel and the dimen-
sion of the sent packet; this part is actually negligible for our
experiments and thus considered accounted for
e alinear part, proportional to the Euclidean distance
dist(d, EMC) between the EMC hosting the instance of the
serving application and the user’s device d. The Cr4; prede-
fined constant represents the latency cost for each unit of
distance and is fixed in our experiments at 0.0005.
Our simulation is divided into iterations occurring at discrete time
intervals. Each EMC is an agent that, once per iteration, acts as
initiator for the algorithm. In our scenario, an iteration is started
every 30 seconds, and every experiment has a simulated duration

50 T T T T T
180 users —=—

120 users ——
i \ 7
60 users ——

Number of instances

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Iteration number

Figure 1: Total number of instances, per iteration

T T T T T T T T T T
80 VCPUs: 180 Users —&— VCPUs: 120 users —o— VCPUS: 60 users —&—
AM: 180 Lsers —— AM: 120 Users —e— RAM: 60 Users —=—

o e Bandwidth; 180 users —e— _ Bandwidth: 120 users —-— __ Bandwidth: 60 users —e—

Percentage %

. L . .
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Iteration number

Figure 2: Resources consumption of the federation, per iter-
ation

time of 15 minutes, so the number of iteration is fixed to 29. All
the presented values are the average of 10 independent runs, to
minimize the effects of randomization introduced by the algorithm.
The graph in Figure 1 shows the speed of convergence and the
effectiveness of our algorithm in optimizing the objective function,
with a varying number of users. As we expected, with the small
federation used in our experiments, even with a limited number
of users (120 - 180) the number of instances initially hosted by the
federation is close to the maximum the whole platform can bear,
that is 48; only with 60 users the initial number of instances is 34.
The graph shows a high speed of convergence, also for the scenario
with a low number of users, mainly due to the limited number of
EMCs and the high number of initial application instances, which
increases the probability that the randomly chosen EMC to contact
actually hosts an instance of the same randomly chosen application
type, and the swap does not violate latency constraints. The conver-
gence is reached between 12-15 iterations, with a reduction in the
number of instances of about 45% in average for 120 and 180 users,
reduced to 25% for 60 users. This is an almost ideal scenario, as we
expect lesser reduction in number of instances and slower speed
of convergence for scenarios with (1) a greater number of EMCs,
keeping fixed the number of users, or with (2) lower maximum
latency. Both conditions decrease the probability of being able to
move users to another EMC in order to coalesce app instances.
The graph in Figure 2 shows the reduction in resources consump-
tion for all resource types and the entire federation, varying the
number of users. Analyzing the graph, we can see that the reduction
is more consistent during the first 10-15 iterations of the algorithm:
it is an expected result, due to the corresponding behaviour in the

Percentage %

180 users —=— | |
120 users —=—

36

60 users —=—
T T T

35 I L I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Iteration number

Figure 3: Average latency, per iteration

number of application instances that switched. We shall remind
that the asymptotic resource cost is not linear with the number of
users, as the fixed costs are proportional to the number of EMCs and
their allocation is constrained by the actual set of communication
latencies, that will generally prevent full utilization of instances.

Finally, the graph in Figure 3 shows the average measured net-
work link latency, in percentage respect to the average of maximum
network link latencies, for all the application types. We know from
the simulator that no latency constraint is exceeded, hence it makes
sense to look at the aggregation of results with respect to the vary-
ing number of users. We can observe analyzing the results that, at
the beginning of the simulation, the average measured latency is
about the 36% of the average maximum latency, as every user of-
floads its application to the closest EMC. While choosing the locally
minimal latency ensures the minimum average latency overall, it
does not lead to a minimization of the overall resources consump-
tion or of the number of application instances. The two metrics of
average communication latency and resource usage are actually in
conflict, and optimizing the second while subject to the constraint
of the first needs to achieve a trade-off. The graph shows this trade-
off in the simulation. The average network latency increases as
users are moved to other EMCs by the resource optimization algo-
rithm, as opposed to previous two graphs that show a reduction in
resource consumption and number of the application instances.

Analyzing the experimental results, we can conclude that our
algorithm is suitable to reach a sound trade-off, at least in the
most common scenarios. The results document a good speed of
convergence (achieving most of the resource savings within the
first 15 iterations in our experiments).

5 CONCLUSIONS AND FUTURE WORK

This paper presents a solution for application placement in an edge
computing environment based on a fully decentralized approach. It
works by performing inter-edge exchanges with the objective of
reducing the resource usage, while safeguarding the QoE of appli-
cations by keeping the communication latency below application
dependant-thresholds. The paper gives a formal definition of the
constraints and the objectives, as well as the pseudo code of the
proposed approach. An experimental evaluation via simulation
shows the viability and validity of the solution in the most common
scenarios, where the number of instances and the overall resources
consumption of a set of application types in an Edge Federation is
minimized without violating the latency constraints.

While the solution is quite a promising one, there is space to
improve the results in the near future. It is worth e.g. considering al-
ternative local search criteria and heuristics for the selection criteria
of the EMC and application for the swap proposal, which currently
is a plain random choice. This may improve the asymptotic cost
savings and is likely to improve the achieved savings as well as
the convergence speed of our algorithm. We also plan to provide a
complexity analysis of the approach, a more detailed experimen-
tal evaluation including user mobility and variations in the edge
resources, and an evaluation of the impact on energy consumption.

ACKNOWLEDGMENTS

This work has been partially supported by the European Union’s
Horizon 2020 Research and Innovation program, under the project
ACCORDION (Grant agreement ID: 871793) and by the OK-INSAID
project funded by the Italian Ministry of Education and Research
(MIUR) under grant agreement No. RS01_00917.

REFERENCES

(1]
(2]

[10]

(1]

[12]

[13]

[14

[15]

[16]
(17

C-H. Youn, M. Chen, and P. Dazzi. Cloud Broker and Cloudlet for Workflow
Scheduling. Springer, 2017.

V. Miori, D. Russo, and L. Ferrucci. Interoperability of home automation systems
as a critical challenge for iot. In 2019 4th International Conference on Computing,
Communications and Security (ICCCS), pages 1-7. IEEE, 2019.

F. Salaht, F. Desprez, and A. Lebre. An overview of service placement problem in
fog and edge computing. ACM Comput. Surv., 53(3), 2020.

G. Z. Santoso, Y-W. Jung, S-W. Seok, E. Carlini, P. Dazzi, J. Altmann, J. Violos,
and J. Marshall. Dynamic resource selection in cloud service broker. In 2017
International Conference on High Performance Computing & Simulation (HPCS),
pages 233-235. IEEE, 2017.

M. Mordacchini, P. Dazzi, G.Tolomei, R. Baraglia, F. Silvestri, and S. Orlando.
Challenges in designing an interest-based distributed aggregation of users in p2p
systems. In 2009 International Conference on Ultra Modern Telecommunications &
Workshops, pages 1-8. IEEE, 2009.

M. Mordacchini, A. Passarella, M. Conti, S. M. Allen, M. J. Chorley, G. B. Colombo,
V. Tanasescu, and R. M. Whitaker. Crowdsourcing through cognitive opportunis-
tic networks. ACM Trans. Auton. Adapt. Syst., 10(2), June 2015.

R. Bruno, M. Conti, M. Mordacchini, and A. Passarella. An analytical model for
content dissemination in opportunistic networks using cognitive heuristics. In
Proceedings of the 15th ACM international conference on Modeling, analysis and
simulation of wireless and mobile systems, 2012.

M. Mordacchini, M. Conti, A. Passarella, and R. Bruno. Human-centric data
dissemination in the iop: Large-scale modeling and evaluation. ACM Trans.
Auton. Adapt. Syst., 14(3), February 2020.

J. Patman, P. Lovett, A. Banning, A. Barnert, D. Chemodanov, and P. Calvam.
Data-driven edge computing resource scheduling for protest crowds incident
management. In 2018 IEEE 17th International Symposium on Network Computing
and Applications (NCA), pages 1-8, 2018.

A. Lulli, L. Ricci, E. Carlini, and P. Dazzi. Distributed current flow betweenness
centrality. In IEEE Ninth International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), 2015.

R. Baraglia, P. Dazzi, B. Guidi, and L. Ricci. Godel: Delaunay overlays in p2p net-
works via gossip. In IEEE 12th International Conference on Peer-to-Peer Computing
(P2P), pages 1-12. IEEE, 2012.

C. Gennaro, M. Mordacchini, S. Orlando, and F. Rabitti. Mroute: A peer-to-peer
routing index for similarity search in metric spaces. In 5th VLDB International
Workshop on Databases, Information Systems and Peer-to-Peer Computing (DBISP2P
2007), 2007.

M. Marzolla, M. Mordacchini, and S. Orlando. A p2p resource discovery system
based on a forest of trees. In 17th International Workshop on Database and Expert
Systems Applications (DEXA’06), pages 261-265. IEEE, 2006.

R. Baraglia, P. Dazzi, M. Mordacchini, L. Ricci, and L. Alessi. Group: A gossip based
building community protocol. In Smart spaces and next generation wired/wireless
networking, pages 496-507. Springer, Berlin, Heidelberg, 2011.

E. Carlini, M. Coppola, P. Dazzi, D. Laforenza, S. Martinelli, and L. Ricci. Ser-
vice and resource discovery supports over p2p overlays. In 2009 International
Conference on Ultra Modern Telecommunications & Workshops, pages 1-8. IEEE,
2009.

M. Danelutto, P. Dazzi, et al. A java/jini framework supporting stream parallel

computations. In PARCO, pages 681-688, 2005.
A. Lulli, E. Carlini, P. Dazzi, C. Lucchese, and L. Ricci. Fast connected components

computation in large graphs by vertex pruning. IEEE Transactions on Parallel and

[18

[19]

[20]

[21

[23

[24]

[25]

[26]

[27

[28

[29

(30]

w
—

(32

(33]

(34

(35]

[36

(37]

[38

(39]

[41

Distributed systems, 28(3):760-773, 2016.

M. Bertolucci, E. Carlini, P. Dazzi, A. Lulli, and L. Ricci. Static and dynamic big
data partitioning on apache spark. In PARCO, pages 489-498, 2015.

M. Mordacchini, A. Passarella, and M. Conti. A social cognitive heuristic for
adaptive data dissemination in mobile opportunistic networks. Pervasive and
Mobile Computing, 42:371-392, 2017.

L. Ferrucci, L. Ricci, M. Albano, R. Baraglia, and M. Mordacchini. Multidimen-
sional range queries on hierarchical voronoi overlays. Journal of Computer and
System Sciences, 2016.

F. Baiardi, A. Bonotti, L. Ferrucci, L. Ricci, and P. Mori. Load balancing by domain
decomposition: the bounded neighbour approach. In Proc. of 17th European
Simulation Multiconference, pages 9-11, 2003.

A. H. Payberah, H. Kavalionak, A. Montresor, J. Dowling, and S. Haridi. Light-
weight gossip-based distribution estimation. In 2013 IEEE International Conference
on Communications (ICC), pages 3439-3443. IEEE, 2013.

R. Baraglia, G. Capannini, P. Dazzi, and G. Pagano. A multi-criteria job scheduling
framework for large computing farms. Journal of Computer and System Sciences,
79(2):230-244, 2013.

G. F. Anastasi, E. Carlini, and P. Dazzi. Smart cloud federation simulations with
cloudsim. In Proceedings of the first ACM workshop on Optimization techniques
for resources management in clouds, pages 9-16, 2013.

M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli, P. Mori, . Jensen, L. Johnson, and
P. Kershaw. The Contrail approach to cloud federations. In Proceedings of the
International Symposium on Grids and Clouds (ISGC’12), volume 2, page 1, 2012.
R.G. Cascella, L. Blasi, Y. Jegou, M. Coppola, and C. Morin. Contrail: Distributed
Application Deployment under SLA in Federated Heterogeneous Clouds. In
A. Galis and A. Gavras, editors, The Future Internet, pages 91-103, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

E. Carlini, L. Ricci, and M. Coppola. Integrating centralized and peer-to-peer
architectures to support interest management in massively multiplayer on-line
games. Concurrency and Computation: Practice and Experience, 27(13):3362-3382,
2015.

L. Ricci, L. Genovali, E. Carlini, and M. Coppola. Aoi-cast in distributed virtual
environments: an approach based on delay tolerant reverse compass routing.
Concurrency and Computation: Practice and Experience, 27(9):2329-2350, 2015.
E. Carlini, L. Ricci, and M. Coppola. Flexible load distribution for hybrid dis-
tributed virtual environments. Future Generation Computer Systems, 29(6):1561—
1572, 2013.

A. Aral and T. Ovatman. A decentralized replica placement algorithm for edge
computing. IEEE Trans. on Network and Service Management, 15(2):516-529, 2018.
Chunlin Li, YaPing Wang, Hengliang Tang, Yujiao Zhang, Yan Xin, and Youlong
Luo. Flexible replica placement for enhancing the availability in edge computing
environment. Computer Communications, 146:1-14, 2019.

P. Dazzi and M. Mordacchini. Scalable decentralized indexing and querying of
multi-streams in the fog. Journal of Grid Computing, 18(3):395-418, 2020.

A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro. Optimized
placement of scalable iot services in edge computing. In 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pages 189-197, 2019.
Zhaolong Ning, Peiran Dong, Xiaojie Wang, Shupeng Wang, Xiping Hu, Song Guo,
Tie Qiu, Bin Hu, and Ricky Kwok. Distributed and dynamic service placement in
pervasive edge computing networks. IEEE Transactions on Parallel and Distributed
Systems, 2020.

V. M. de Lira, E. Carlini, and P. Dazzi. Polar: Geographic placement optimization
for latency sensitive applications. In 2019 20th IEEE International Conference on
Mobile Data Management (MDM), pages 361-362. IEEE, 2019.

H. Kavalionak, C. Gennaro, G. Amato, C. Vairo, C. Perciante, C. Meghini, and
F. Falchi. Distributed video surveillance using smart cameras. Journal of Grid
Computing, 17(1):59-77, 2019.

H. Kavalionak, C. Gennaro, G. Amato, and C. Meghini. Dice: A distributed proto-
col for camera-aided video surveillance. In 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and Communica-
tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, pages 477-484. IEEE, 2015.

R. Beraldi, A. Mtibaa, and H. Alnuweiri. Cooperative load balancing scheme for
edge computing resources. In 2017 Second International Conference on Fog and
Mobile Edge Computing (FMEC), pages 94-100. IEEE, 2017.

E. Carlini, M. Coppola, P. Dazzi, M. Mordacchini, and A. Passarella. Self-
optimising decentralised service placement in heterogeneous cloud federation.
In 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), pages 110-119, 2016.

L. Ferrucci, D. Mandrioli, A. Morzenti, and M. Rossi. A metric temporal logic
for dealing with zero-time transitions. In 2012 19th International Symposium on
Temporal Representation and Reasoning, pages 81-88. IEEE, 2012.

C. Mechalikh, H. Takta, and F. Moussa. Pureedgesim: A simulation toolkit for
performance evaluation of cloud, fog, and pure edge computing environments. In
2019 International Conference on High Performance Computing Simulation (HPCS),
pages 700-707, 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Problem Definition and Model
	3.2 Solution Description and Pseudo-code

	4 Experimental evaluation
	5 Conclusions and future work
	Acknowledgments
	References

