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Abstract— Objective: Mobility assessment is critical in the 

clinical management of people with Multiple Sclerosis (pwMS). 

Instrumented gait analysis provides a plethora of metrics for 

quantifying concurrent factors contributing to gait deterioration. 

However, a gait model discriminating underlying features 

contributing to this deterioration is lacking in pwMS. This study 

aimed at developing and validating such a model. Methods: The 

gait of 24 healthy controls and 114 pwMS with mild, moderate, or 

severe disability was measured with inertial sensors on the shanks 

and lower trunk while walking for 6 minutes along a hospital 

corridor. Twenty out of thirty-six initially explored metrics 

computed from the sensor data met the quality criteria for 

exploratory factor analysis. This analysis provided the sought 

model, which underwent a confirmatory factor analysis before 

being used to characterize gait impairment across the three 

disability groups. Results: A gait model consisting of five domains 

(rhythm/variability, pace, asymmetry, and forward and lateral 

dynamic balance) was revealed by the factor analysis, which was 

able to highlight gait abnormalities across the disability groups: 

significant alterations in rhythm/variability-, asymmetry-, and 

pace-based features were present in the mild group, but these were 

more profound in the moderate and severe groups. Deterioration 

in dynamic balance-based features was only noted in pwMS with 

a moderate and severe disability. Conclusion: A conceptual model 

of gait for disease-specific mobility assessment in pwMS was 

successfully developed and tested. Significance: The new model, 

built with metrics that represent gait impairment in pwMS, 

highlighted clinically relevant changes across different disability 

levels, including those with no clinically observable walking 

disability. This shows the clear potential as a monitoring 

biomarker in pwMS. 

 
Index Terms—Accelerometry, gait monitoring, six-minute 

walk, wearable sensors. 
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I. INTRODUCTION 

ULTIPLE sclerosis (MS) is an inflammatory 

demyelinating disease of the central nervous system [1], 

typically characterized by gait impairment, poor balance, and 

loss of coordination [2], [3], which all lead to an increased risk 

of falling [4]–[6]. 

Assessment of gait and mobility is clearly of interest for the 

clinical management of this disease. As such, this forms a 

critical component of the Expanded Disability Status Scale 

(EDSS) [7], one of the most widely used outcome measures in 

clinical trials of MS. The EDSS ranges from 0 (normal status) 

to 10 (death from MS) in 0.5-unit increments, each representing 

a worsening disability. EDSS scores are calculated based on the 

findings of a neurological examination, which determines the 

scores of seven Functional Systems and the ability of the people 

with MS (pwMS) to walk up to 500 meters. EDSS scores up to 

3.5 are given to those who have no apparent gait impairment, 

whereas scores of 4.0 to 6.5 are largely informed by the 

maximum distance walked and the level of assistance needed 

for walking. Higher scores relate to more severe levels of 

disability and affecting bulbar and upper limb, as well as lower 

limb function. However, many pwMS suffer from gait 

alterations that are too subtle to be captured by a standard 

neurological examination but could be reliably quantified using 

instrumented gait analysis. This approach could also help assess 

concurrent motor and balance difficulties and provide clinicians 

with information about subtle changes in the pyramidal or 

cerebellar domains not captured by the EDSS system. 
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Changes in gait characteristics across different disability 

levels have been previously assessed in pwMS with moderate 

or severe disability by measuring spatiotemporal and 

kinematics metrics [8]–[15] and/or by investigating metrics 

more related to the overall quality and energetic efficiency of 

gait, such as regularity among steps and strides, symmetry, and 

gait intensity [11], [16]–[21]. Compared to healthy controls, 

pwMS with moderate or severe walking disability show 

reduced gait speed, shorter stride length, and prolonged swing 

phase, double limb support time, and stride time [22]. 

Moreover, greater step time variability has been observed in 

pwMS than in controls, which has also been associated with 

impaired balance and increased risk of falls [23], [24]. Few 

studies, however, have focused on identifying pathology 

specific characteristics of gait in pwMS with mild disability [5], 

[8], [10], [12], [19], [23], [25]–[27]. While all these studies 

reported some impairments in spatiotemporal and kinematic 

gait parameters, they failed to provide consistent results, likely 

due to the limited number of participants and the differences in 

the chosen EDSS cut-offs. For example, some studies showed 

a significant decrease in walking speed, shorter strides, and a 

prolonged double limb support phase [5], [23], [25], while 

others did not find any significant differences in those metrics 

when compared to healthy controls [8], [10], [27]. However, in 

all these studies, gait limitations resulting from poor balance 

control and/or altered coordination and tremor were not 

investigated, although these factors have been cited as 

mechanisms contributing to gait dysfunction in pwMS [2]. 

While the integration between spatiotemporal and gait 

quality metrics seems the ideal goal to pursue to thoroughly 

assess gait in pwMS [21], high potential covariance among 

these metrics may compromise their clinical interpretation. The 

need to reduce the number of gait metrics to a more manageable 

size, while retaining as much of the original information as 

possible has previously led to the development of several 

conceptual gait models. In particular, these models have been 

proposed for community-dwelling older adults [28]–[30], older 

adults with mild cognitive impairment syndromes [31], people 

with dementia [32], people with Parkinson’s disease (PD) [33]–

[36], people with early-stage neurological (peripheral 

vestibular, cerebellar, hypokinetic, vascular or functional) gait 

disorders [37], and people with hip fracture [38]. Overall, these 

studies showed that gait characteristics of different cohorts do 

not consistently load onto identical domains. Therefore, if a 

non-disease specific conceptual gait model is used, this might 

create ambiguity and limit gait metrics’ interpretation. To the 

best of our knowledge, a gait model of this kind is currently 

lacking for pwMS. This hinders the identification of the gait 

metrics best suited to act as biomarkers for disease progression 

or efficacy of an intervention in this cohort. The aims of this 

study were to a) propose a conceptual domain model of gait that 

is specific for pwMS; and b) test the model’s ability to detect 

and quantify gait and balance impairment across different levels 

of disability, including also those pwMS with mild disease 

severity, for whom these are not yet clinically detectable. 

II. MATERIALS AND METHODS 

A. Participants 

This study was approved by the NRES Committee Yorkshire 

& The Humber-Bradford Leeds (Ref: 15/YH/0300) and by the 

North of Scotland Research Ethics Committee (Ref: 

17/NS/0020). Following routine clinic appointments, 114 

pwMS provided written informed consent before entering the 

study (Table I). Of these, 32 pwMS were taking part in an 

observational study (STH18829; IRAS-183915), 31 pwMS in a 

double-blinded Investigational Medicinal Product clinical trial 

(CTIMP) attended for their baseline assessment (STH17249; 

IRAS-115286), while 51 pwMS participated in a double-

blinded, intervention-based, and non-CTIMP (STH19739; 

IRAS-224422). Post-intervention gait data from the subset 

enrolled in the latter trial were used to test the robustness of the 

proposed gait model. 

People with neurological conditions other than MS, 

coexisting cardiovascular disease, orthopedic pathologies 

causing lower limb disability, significant visual impairment, 

excessive alcohol consumption, or those taking vestibular 

sedatives were excluded from this study. People with relapsing-

TABLE I 

DEMOGRAPHIC CHARACTERISTICS OF PEOPLE WITH MULTIPLE SCLEROSIS AND HEALTHY CONTROLS 

 
Age  Gender  MS subtypes  Walking assistive devices 

Mean (SD)  N male  PP RR SP  None Unilateral Bilateral 

Healthy controls 

n = 24 
49.9 (8.3) a  8  ‒ ‒ ‒  24 0 0 

            

MSmild 

n = 25 
EDSS ≤ 3.5 

43.6 (10.5) b  8  1 21 3  25 0 0 

            

MSmod 

n = 48 

4.0 ≤ EDSS ≤ 5.5 

53.8 (11.7)  21  1 13 34  44 4 0 

            

MSsev 

n = 41 

EDSS ≥ 6.0 

54.1 (10.6)  14  1 7 33  7 18 16 

aDenotes significant difference in age as compared to MSmild (t(47) = 2.3; p-value = 0.023). 
bDenotes significant difference in age as compared to MSmod (t(71) = −3.7; p-value < 0.001) and to MSsev (t(64) = −3.9; p-value < 0.001). 
SD: standard deviation; EDSS: Expanded Disability Status Scale; MSmild: people with a mild MS disability; MSmod: people with a moderate MS disability; 

MSsev: people with a severe MS disability. 
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remitting MS were only included if no relapse had occurred for 

30 days prior to testing and were on stable treatments for the 

past three months. A group of 24 healthy controls (Ctrl) with no 

history of musculoskeletal or neurological disorders that might 

influence their balance or mobility also took part in the study.  

The level of disability in pwMS was scored according to the 

EDSS by a neurologist with experience in MS. Those pwMS 

who were able to walk independently and had EDSS scores of 

3.5 and below were classified as mild (MSmild), those who 

were able to walk limited distances independently and had 

EDSS scores ranging between 4.0 and 5.5 were classified as 

moderate (MSmod), and those who were only able to walk 

using a unilateral or bilateral assistive device with EDSS score 

of 6 and above were classified as severe (MSsev). Demographic 

data from the four groups were compared using the independent 

Mann-Whitney U for ordinal variables (e.g., age and EDSS 

scores) and the Pearson’s chi-square test for categorical 

variables (e.g., gender). 

 

B. Gait assessment 

Participants were instrumented with three tri-axial inertial 

measurement units (IMU; OPAL, APDM Inc., Portland, OR, 

USA, sampling frequency 128 Hz, accelerometer range ± 6 g) 

fixed through elastic bands on the anterior aspect of both lower 

shanks and at the lower back (L4-L5). Sensing axes were 

aligned approximately along the anatomical antero-posterior 

(AP), medio-lateral (ML), and vertical (V) directions. 

Participants were asked to walk for 6 minutes along a 10-m 

hospital corridor, going back and forth at their comfortable, 

self-preferred pace, and could rest if needed. Walking assistive 

devices such as canes or tripods were permitted if used in daily 

life. 

 

C. Gait metrics 

IMU signals were pre-processed using in-house developed 

routines (MATLAB R2019a, MathWorks, Inc., Natick, MA, 

USA). Acceleration raw data from the lumbar IMU were first 

reoriented to a horizontal-vertical coordinate system [39] and 

then filtered with a 10 Hz cut-off, zero phase, low-pass 

Butterworth filter. Resting breaks and turns were automatically 

removed [20], and only isolated bouts of steady-state walking 

were used for further analysis. Turns were detected by 

searching for steep positive or negative gradients in the trunk 

rotation angle (obtained as the integral of the lumbar IMU 

angular velocity around the V axis, filtered with a 1.5 Hz cut-

off frequency low-pass Butterworth filter), which exceeded a 

threshold of 115°. Resting breaks were identified by checking 

in non-overlapping 2 s windows if more than 50% of the 

samples had both the norm of the lumbar IMU angular velocity 

and the norm of the lumbar IMU acceleration lower than 0.5 

rad/s and within ± 10% of 9.81 m/s², respectively [40].  

An initial set of gait metrics to undergo the factor analysis 

was selected based on previous relevant literature on healthy 

older adults [28], [31], pwMS [16], [18]–[21], and people with 

PD [30], [36]. These led to the identification of 36 metrics 

(Table I-supplementary material). Of these, 23 described 

spatiotemporal gait features and were calculated from the gait 

events detected from shank angular velocity signals. The 

remaining 13, referred to as gait quality metrics, were extracted 

by processing in the time and frequency domain the resultant 

lumbar filtered accelerations and their AP, ML, and V 

components.  

Initial and final contacts were detected from the ML angular 

velocity of the right and left shank sensors [41] and used to 

isolate individual steps. The average spatiotemporal gait 

features were calculated over the total walking bouts: stride 

time, step time, stance time, swing time, single support time, 

double support time, swing phase, double support phase, and 

gait speed (determined as the ratio between the distance covered 

during testing and the ambulation time, excluding breaks and 

turns). Variability in stride time, step time, stance time, and 

swing time was also quantified across at least 50 steps [42] 

using both the coefficient of variance (CV) and the combined 

within-person standard deviation (SD). Asymmetry of the 

metrics was defined both as the absolute difference between the 

mean values for the right and left limbs [43] and as the natural 

logarithm of the absolute ratio of the shorter to the longer mean 

value of the metric [44]. The 13 gait quality metrics were 

computed using the first five strides of each walking bout and 

then averaged over the total walking bouts recorded over the 6 

minutes. These included: root mean square (RMS), RMS ratio, 

jerk, jerk ratio, step regularity, stride regularity, gait symmetry, 

and harmonic ratio. Details for each metric are reported in Table 

I-supplementary material. 

 

D. Factor analysis 

All statistical analyses were carried out in R (R Core Team, 

2017). A factor analysis, including Exploratory Factor Analysis 

(EFA) and Confirmatory Factor Analysis (CFA), was 

performed to identify which factors, referred to as domains, best 

describe MS gait in the investigated sample. EFA, based on the 

analysis of covariance, was chosen over similar techniques 

(e.g., Principal Component Analysis) to reach a theoretical 

solution that is minimally affected by error variability and to 

explain the underlying constructs of the metrics of interest. 

Our sample of 114 pwMS was large enough to achieve 

convergent and admissible solutions [45] (ratio of the number 

of metrics to the number of factors equal to 20:5 and mean level 

of communalities of 0.82 (0.65-0.92)). 

The suitability of the chosen EFA analysis was firstly 

ensured by inspecting the Pearson’s correlation matrix (R) and 

including only the gait metrics for which at least one correlation 

coefficient (r) exceeded 0.3. Secondly, if two metrics presented 

multicollinearity (i.e., a variable is explained by other variables 

in the analysis having r ≥ 0.9) or singularity (i.e., perfect 

correlation, r = 1), one of them was removed before further 

analysis [46]. This step was taken to avoid redundancy and 

duplication in the model while ensuring that the gait metrics 

accurately characterized the underlying construct in pwMS. 

Thirdly, the factorability of R and the appropriateness of EFA 

were tested by performing Kaiser-Meyer-Olkin (KMO) 
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statistics of sampling adequacy [47]. According to these 

criteria, if the overall and the individual KMO measures, 

calculated for all metrics combined and for each one separately, 

were lower than 0.7 and 0.5, respectively [48], the metrics were 

removed from the EFA analysis. Finally, Bartlett’s test of 

sphericity was used to verify the null hypothesis that R is an 

identity matrix (p-value < 0.05). Principal axis factoring was 

chosen as the extraction method, retaining only factors: (1) with 

eigenvalues above 1 [49]; (2) explaining at least 5% of the total 

variance; (3) with eigenvalues higher than those obtained for a 

randomly generated dataset having the same number of metrics 

and participants [50]; (4) satisfying the scree test criterion [51] 

(based on which the number of factors to retain is indicated by 

the number of eigenvalues above the point of inflection of the 

eigenvalues vs the number of factors curve). With the aim of 

improving the interpretability of the factor solution, a rotational 

method was then employed. This method allows for a simpler 

and theoretically more meaningful structure with minimal 

cross-loading of metrics. Since the retained factors were 

expected to be correlated to each other, an oblique rotation was 

selected. Specifically, promax was applied because of its 

computational speed [46]. To the best of the authors’ 

knowledge, no empirically based rules are currently available 

to guide the decision regarding the power (k) to which the 

loadings are raised in a promax rotation. Values between 2 and 

4 allow to stably reduce error and bias of the sample factor 

pattern [52]. We opted for k = 4, as previously suggested ([53], 

[54]). A threshold value of 0.45 was set as a minimum 

significant factor loading [55], which corresponds to a 20% 

overlapping variance. 

The robustness of the generated EFA model was finally 

tested, repeating the CFA using data collected in the post-

intervention gait test from the 51 participants enrolled in the 

non-CTIMP study. 

 

E. Group analysis 

The gait model resulting from the EFA analysis was applied 

to investigate changes in gait features across the Ctrl, MSsev, 

MSmod, and MSmild groups. Minimum, 25th percentile, 

median, 75th percentile, and maximum values were calculated 

for the identified gait metrics. Shapiro-Wilk test highlighted 

that most of the gait metrics were not normally distributed. 

Differences between Ctrl, MSsev, MSmod, and MSmild groups 

on gait performance in pwMS were evaluated with one-way 

non-parametric multivariate analysis of variance 

(PERMANOVA, [56]). Since one-way PERMANOVA was 

statistically significant, non-parametric Kruskal-Wallis tests 

were run to identify which specific metrics contributed to the 

significant global effect. Statistical significance was accepted at 

a Bonferroni-adjusted alpha level of 0.003, which corresponds 

to 0.05 divided by the number of statistical tests conducted (i.e., 

20 tests). Independent Mann-Whitney U tests were then used 

for post-hoc comparisons between groups (Ctrl vs MSmild; Ctrl 

vs MSmod; Ctrl vs MSsev; MSmild vs MSmod; MSmild vs 

MSsev; MSmod vs MSsev), with a Bonferroni correction 

applied to compensate for the use of multiple comparisons (p-

value < 0.05/6). Type II error was evaluated by calculating the 

effect size (d) for non-parametric tests as  𝑑 = 𝑧/√𝑁 (where z 

is the z-score, and N is the number of total observations) and 

values of 0.1, 0.3, and 0.5 were set as thresholds, defining small, 

medium, and large effect sizes, respectively [57]. 

The gait metrics for pwMS were normalized to those 

calculated for the healthy controls by computing the robust z-

scores, zR, as described in Iglewicz and Hoaglin [58]. This 

statistical metric is more robust to single outliers and computed 

by replacing the sample mean with the median and the sample 

standard deviation with the median absolute deviation (i.e., 

MAD) multiplied by a constant of 1.4826. ZR values were then 

reported in a radar plot, where the central line corresponds to 

controls (zR equal to 0), and radial deviations from this line 

indicate how pwMS with different levels of disability vary from 

controls. 

III. RESULTS 

A. Factor Analysis 

Fifteen of the initial 36 gait metrics were excluded from the 

EFA analysis (Fig. 1) since inspection of the correlation matrix 

(Fig. 1-supplementary material) highlighted that they had 

correlation coefficients lower than 0.3 or higher than 0.9. The 

correlation matrix was likely factorizable, with an overall KMO 

= 0.728, and gait symmetry was the only variable that had to be 

 
Fig. 1.  Flow-chart describing the initial selection of the gait metrics for EFA 
analysis. SD: standard deviation; CV: coefficient of variation; RMS: root mean 

square; JK: jerk; Ad1: step regularity; Ad2: stride regularity; HR: harmonic 

ratio; AP: antero-posterior; ML: medio-lateral; V: vertical. 

 



TBME-02355-2020.R1 

 

5 

eliminated for having an individual KMO < 0.5. Bartlett’s test 

of sphericity showed a statistically significant correlation 

between the tested metrics (χ2(190) = 3061, p-value < 0.0005). 

The EFA analysis carried out on the remaining 20 gait 

metrics yielded five correlated domains (Fig. 2a), which 

explained 82.9% of the total variance in gait performance. 

According to the characteristics of the metrics that they 

included, and to terminology proposed in similar studies, these 

domains were labeled as (1) rhythm/variability (accounting for 

47.6% of total variance), (2) asymmetry (13.0% of total 

variance), (3) pace (9.3% of total variance), (4) forward 

dynamic balance (7.7% of total variance), and (5) lateral 

dynamic balance (5.2% of total variance). All metrics except 

for stance time CV and RMS ratio in V direction showed no 

cross-loadings. The absolute values of r between 

rhythm/variability, asymmetry, pace, and lateral balance 

domains exceeded 0.32 (representing about 10% overlap in 

variance), which as a rule of thumb, necessitates the use of 

oblique rotation rather than orthogonal rotation (Fig. 2a, [46]). 

According to the results of EFA, our new model was built with 

structural equation modeling and reached convergence when 

examined using CFA. Factor loadings (i.e., regression weights) 

and correlations among the five domains obtained from EFA 

and CFA analysis were similar, as evident in Fig. 2.  

 

B. Model ability to discriminate across disability levels 

Significant alterations in gait dynamics were observed in 

MSmod and MSsev groups when compared to Ctrl (Fig. 3 and 

Table II). Some of these abnormalities were also evident in the 

MSmild group, with significant changes in rhythm/variability 

(step time, swing phase, and stride regularity with p-valueCtrl-

MSmild ≤ 0.01 and moderate effect size), asymmetry (step 

regularity with p-valueCtrl-MSmild = 0.02 and moderate effect 

size), and pace (jerk with p-valueCtrl-MSmild = 0.03 and moderate 

effect size) domains. Significant changes in these domains were 

also found in the MSmild compared to MSmod and MSsev 

groups. On the contrary, dynamic balance was only 

significantly deteriorated in pwMS with higher degrees of 

disability (RMS ratio AP, RMS ratio ML, and RMS ratio V with 

p-valueMSmild-MSsev ≤ 0.04 and moderate effect size; RMS ratio 

ML with p-valueCtrl-MSmod ≤ 0.03 and moderate effect size; RMS 

ratio AP, RMS ratio ML, and RMS ratio V with p-valueCtrl-MSsev 

≤ 0.004 and moderate or large effect size). MSmod and MSsev 

also walked at a slower pace with longer step and single limb 

support durations and more variable and asymmetric gait 

pattern than Ctrl (Fig. 3 and Table II). These abnormalities 

across all domains were exacerbated in the MSsev compared 

with the MSmod group (p-valueMSmod-MSsev ≤ 0.01 with 

moderate or large effect size). 

IV. DISCUSSION 

This study aimed to propose a conceptual model of gait 

specific for pwMS and identify the key gait metrics which could 

act as biomarkers of disease progression or intervention in these 

patients by detecting those that best discriminate between 

different levels of disability in pwMS.  

In a previous paper [21], we identified reliable metrics for 

assessing gait in pwMS and grouped them into domains that 

were inspired by literature from other disease populations. 

Conceptual models of gait have, in fact, already been proposed 

for older adults [28]–[30]. Most of these models were built with 

only spatiotemporal metrics and consisted of three domains 

(rhythm, pace, and variability). When additional metrics were 

 
Fig. 2.  (a) Exploratory factor analysis. (b) The standardized solution of confirmatory factor analysis. One-headed arrows represent factor loadings while two-

headed arrows represent covariance. 

SD: standard deviation; CV: coefficient of variation; RMS: root mean square; AP: antero-posterior; ML: medio-lateral; V: vertical. 
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integrated into the model, the number of domains increased to 

four or five and included asymmetry and/or postural control. 

Similar observations were reported for people with PD, where 

three-factor (pace/rhythm, variability, and asymmetry) [36] or 

five-factor models (pace, rhythm, variability, asymmetry, and 

postural control) [33], [35] were proposed depending on the 

inclusion of metrics related to postural control. The five-factor 

models were able to account for about 80% of gait variance in 

both lab-based [33] and real-world observations [35]. 

Interestingly, when additional motor tasks and metrics 

associated with static postural balance were introduced, six 

domains were reported as being of relevance in PD [34]. The 

results reported here for pwMS reflect the same pattern. The 

selected metrics, including both spatiotemporal and 

acceleration-related metrics, were represented by five 

independent domains (Fig. 2a), accounting for 82.9% of the 

total gait variance. In contrast to the mostly pace-based models 

proposed for PD gait, the domain that explained most of the 

variance in pwMS was rhythm/variability (i.e., 47.6% of total 

variance), thus confirming the increasing evidence that MS 

negatively impacts both temporal gait metrics [8]–[15] and their 

fluctuations between steps (i.e., gait variability, [24], [26], 

[59]–[62].  

The five domains identified in this paper reflect clinically 

distinctive characteristics of MS, such as poor balance control, 

altered movement coordination, and greater movement 

variability [3], [24]. Particularly, gait variability has been 

previously recognized as a clinical predictor of gait impairment 

TABLE II 

DESCRIPTIVE STATISTICS FOR THE INVESTIGATED GAIT METRICS, TOGETHER WITH P-VALUES FOR THE INDEPENDENT MANN-WHITNEY U TESTS WITH 

BONFERRONI CORRECTION AND ASSOCIATED EFFECT SIZES 

 Ctrl MSmild MSmod MSsev  
Ctrl vs 

MSmild 

Ctrl vs 

MSmod 

Ctrl vs 

MSsev 

MSmild vs 

MSmod 

MSmild vs 

MSsev 

MSmod vs 

MSsev 

Rhythm/Variability Median (min, 25th percentile, 75th percentiles, max)  p-value (d) 

Stride regularity (–) 
0.87 

(0.80, 0.84, 

0.90, 0.93) 

0.79 
(0.45, 0.64, 

0.87, 0.92) 

0.70 
(0.28, 0.59, 

0.75, 0.90) 

0.52 
(0.14, 0.41, 

0.59, 0.76) 

 
0.01 
(0.4) 

<0.001 
(0.7) 

<0.001 
(0.8) 

0.03 
(0.3) 

<0.001 
(0.6) 

<0.001 
(0.5) 

Swing phase (%) 
40 

(30, 39,  

41, 43) 

38 
(30, 37,  

39, 42) 

37 
(24, 36,  

38, 44) 

33 
(20, 28,  

36, 42) 

 
0.005 
(0.4) 

<0.001 
(0.5) 

<0.001 
(0.7) 

0.08 

(0.2) 
<0.001 
(0.6) 

<0.001 
(0.5) 

Single support time (s) 
0.79 

(0.70, 0.76, 

0.84, 0.96) 

0.84 
(0.75, 0.79, 

0.87, 1.04) 

0.87 
(0.70, 0.82, 

0.94, 1.10) 

1.01 
(0.45, 0.94, 

1.15, 1.72) 

 
0.17 

(0.2) 
<0.001 
(0.4) 

<0.001 
(0.6) 

0.52 

(0.1) 
<0.001 
(0.6) 

<0.001 
(0.5) 

Step time (s) 
0.49 

(0.44, 0.47, 

0.52, 0.64) 

0.54 
(0.49, 0.51, 

0.59, 0.70) 

0.59 
(0.49, 0.54, 

0.65, 0.75) 

0.76 
(0.50, 0.67, 

0.94, 1.98) 

 
0.003 
(0.4) 

<0.001 
(0.6) 

<0.001 
(0.7) 

0.06 

(0.2) 
<0.001 
(0.7) 

<0.001 
(0.6) 

Step time SD (ms) 
14 

(10, 12,  

20, 30) 

20 
(10, 13,  

27, 65) 

31 
(13, 24,  

43, 138) 

58 
(21, 44,  

101, 394) 

 
0.53 

(0.1) 
<0.001 
(0.6) 

<0.001 
(0.8) 

0.003 
(0.3) 

<0.001 
(0.7) 

<0.001 
(0.6) 

 

 
 

Fig. 3.  Gait metrics representative of rhythm/variability, asymmetry, pace, forward dynamic balance, and lateral dynamic balance domains with zR score indicating 

change compared to Ctrl cohort. 
Ctrl: healthy controls; MSmild: people with a mild MS disability; MSmod: people with a moderate MS disability; MSsev: people with a severe MS disability; SD: 

standard deviation; CV: coefficient of variation; RMS: root mean square; AP: antero-posterior; ML: medio-lateral; V: vertical. 
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and falls in pwMS [6], [24], [59], [61], and it has been shown 

to be more sensitive than walking speed in the identification of 

gait dysfunction in this cohort [63]. Gait variability has also 

been associated with relevant neurological clinical features, 

such as spasticity, muscle weakness, and impaired 

proprioception and balance [62]. Greater gait variability has 

further been linked to other clinically significant factors such as 

reduced motor control function [64], a higher energetic cost of 

walking [65], and fatigue [6].  

Step and swing time variability metrics loaded onto two 

different domains when quantified using the CV (asymmetry 

domain) as opposed to the SD (variability domain). This 

Swing time SD (ms) 

13 

(8, 11,  
15, 23) 

15 

(7, 12,  
23, 43) 

25 

(10, 19,  
31, 60) 

42 

(19, 31,  
53, 124) 

 
0.75 

(0.0) 
<0.001 
(0.7) 

<0.001 
(0.8) 

0.001 
(0.4) 

<0.001 
(0.7) 

<0.001 
(0.5) 

Stance time CV (%) 

3 

(2, 3,  
4, 5) 

4 

(2, 3,  
6, 11) 

6 

(3, 5,  
9, 18) 

10 

(6, 8,  
14, 30) 

 
0.54 

(0.1) 
<0.001 
(0.7) 

<0.001 
(0.8) 

<0.001 
(0.4) 

<0.001 
(0.7) 

<0.001 
(0.5) 

Asymmetry            

Step time CV (%) 

3 

(2, 3,  
4, 7) 

4 

(2, 3,  
6, 10) 

6 

(2, 5,  
9, 27) 

10 

(4, 7,  
15, 29) 

 
0.71 

(0.1) 
<0.001 
(0.6) 

<0.001 
(0.8) 

0.003 
(0.4) 

<0.001 
(0.6) 

<0.001 
(0.4) 

Swing time CV (%) 

4 

(2, 3,  
4, 5) 

4 

(2, 3,  
7, 12) 

7 

(2, 6,  
9, 19) 

11 

(4, 9,  
15, 26) 

 
1.00 

(0.0) 
<0.001 
(0.7) 

<0.001 
(0.8) 

<0.001 
(0.4) 

<0.001 
(0.7) 

<0.001 
(0.4) 

Step time asym ln (%) 

2 

(0, 1,  
4, 8) 

3 

(0, 1,  
5, 15) 

6 

(0, 2,  
12, 40) 

8 

(0, 4,  
15, 43) 

 
1.00 

(0.0) 
0.002 
(0.4) 

<0.001 
(0.5) 

0.08 

(0.2) 
0.003 
(0.4) 

0.67 

(0.0) 

Swing time asym ln (%) 

3 

(0, 1,  
4, 6) 

3 

(0, 1,  
7, 14) 

7 

(1, 3,  
13, 26) 

13 

(0, 4,  
19, 39) 

 
1.00 

(0.0) 
<0.001 
(0.4) 

<0.001 
(0.6) 

0.02 
(0.3) 

<0.001 
(0.5) 

0.25 

(0.1) 

Step regularity (–) 

0.79 

(0.46, 0.73, 
0.85, 0.93) 

0.65 

(0.30, 0.47, 
0.80, 0.89) 

0.50 

(0.06, 0.31, 
0.63, 0.88) 

0.34 

(0.05, 0.17, 
0.44, 0.64) 

 
0.02 
(0.3) 

<0.001 
(0.6) 

<0.001 
(0.8) 

0.02 
(0.3) 

<0.001 
(0.6) 

0.003 
(0.3) 

Pace            

Gait speed (m/s) 

1.59 

(1.21, 1.42, 
1.73, 2.07) 

1.53 

(0.68, 1.18, 
1.62, 1.87) 

1.00 

(0.46, 0.83, 
1.22, 2.17) 

0.63 

(0.23, 0.52, 
0.80, 1.10) 

 
0.30 

(0.1) 
<0.001 
(0.7) 

<0.001 
(0.8) 

<0.001 
(0.5) 

<0.001 
(0.8) 

<0.001 
(0.6) 

RMS (m/s2) 

3.84 

(2.37, 3.43, 
4.25, 5.31) 

3.38 

(1.79, 2.70, 
4.02, 4.64) 

2.63 

(1.69, 2.24, 
3.28, 5.41) 

2.06 

(1.08, 1.65, 
2.47, 3.75) 

 
0.25 

(0.2) 
<0.001 
(0.5) 

<0.001 
(0.7) 

0.04 
(0.2) 

<0.001 
(0.6) 

<0.001 
(0.4) 

Jerk (m/s3) 

44.62 

(20.57, 36.36, 

50.75, 80.04) 

32.69 

(18.01, 26.92, 

42.87, 56.74) 

31.92 

(14.95, 23.77, 

37.02, 63.89) 

20.64 

(7.33, 14.96, 

26.08, 47.72) 

 
0.03 

(0.3) 

<0.001 

(0.4) 

<0.001 

(0.7) 

0.99 

(0.0) 

<0.001 

(0.5) 

<0.001 

(0.4) 

Forward dynamic 

balance 
           

RMS ratio AP (–) 
0.46 

(0.34, 0.40, 

0.51, 0.57) 

0.49 
(0.38, 0.44, 

0.52, 0.67) 

0.43 
(0.27, 0.40, 

0.50, 0.58) 

0.55 
(0.32, 0.46, 

0.64, 0.75) 

 
1.00 

(0.0) 

1.00 

(0.0) 
0.003 
(0.4) 

0.38 

(0.1) 
0.04 
(0.3) 

<0.001 
(0.4) 

Jerk ratio AP/V (–) 
−1.34 

(−2.67, −2.00, 

−0.38, 1.25) 

−1.15 
(−3.77, −2.06, 

−0.31, 0.76) 

−2.03 
(−4.23, −2.80, 

−0.93, −0.03) 

−1.64 
(−3.48, −2.37, 

−1.04, 2.49) 

 ‒* 

Lateral dynamic balance            

RMS ratio V (–) 
0.70 

(0.46, 0.65, 

0.74, 0.84) 

0.66 
(0.51, 0.58, 

0.70, 0.73) 

0.66 
(0.49, 0.61, 

0.68, 0.82) 

0.55 
(0.20, 0.48, 

0.63, 0.74) 

 
0.19 

(0.2) 

0.10 

(0.2) 
<0.001 
(0.5) 

1.00 

(0.0) 
0.01 
(0.3) 

<0.001 
(0.4) 

RMS ratio ML (–) 

0.36 

(0.24, 0.30, 

0.42, 0.48) 

0.41 

(0.25, 0.36, 

0.51, 0.55) 

0.42 

(0.31, 0.37, 

0.50, 0.66) 

0.50 

(0.29, 0.43, 

0.55, 0.81) 

 
0.10 

(0.2) 
0.01 
(0.3) 

<0.001 
(0.6) 

1.00 

(0.0) 
0.02 
(0.3) 

0.01 
(0.3) 

Jerk ratio ML/V (–) 
−1.74 

(−4.88, −2.69, 

−0.65, 1.27) 

−0.59 
(−4.85, −1.84, 

0.14, 1.81) 

−1.10 
(−3.79, −2.28, 

−0.05, 3.25) 

−0.20 
(−3.81, −1.09, 

0.60, 2.08) 

 ‒* 

kp-value < 0.05 (k = number of multiple comparisons, equal to 6) are in bold. 

*Note that Kruskal-Wallis tests for Jerk ratio AP/V and Jerk ratio ML/V were not statistically significant. Therefore, independent Mann-Whitney U tests were not 

performed.  
Ctrl: healthy controls MSmild: people with a mild MS disability MSmod: people with a moderate MS disability MSsev: people with a severe MS disability; SD: 

standard deviation; CV: coefficient of variation; RMS: root mean square; AP: antero-posterior; ML: medio-lateral; V: vertical 
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confirms previous reports that the combined within-person SD 

reflects step-to-step variability, while the CV is associated with 

the variation originating from the asymmetry between the left 

and right steps [42]. Similarly, step regularity, which compares 

the acceleration signals between the left and right feet, loaded 

onto the asymmetry domain, whereas stride regularity loaded 

onto the variability domain [19], [66], [67]. It has previously 

been shown that in patients post-stroke, step regularity in AP 

and V directions is strongly correlated with asymmetry in step 

time and in swing time [66], with similar results also seen in 

people with PD [67]. Not surprisingly, both jerk and RMS 

metrics loaded onto the pace domain. In fact, jerk-based 

measures are highly sensitive to movement amplitude and 

duration, with smaller values being associated with increased 

movement durations [68]. Acceleration is also strongly 

correlated to gait speed in older adults [69]. Indeed, both jerk 

and RMS are also strongly correlated with other pace variables 

in people with PD [67]. 

The goodness of the overall content structure of the five-

factor model of gait in pwMS here proposed was confirmed by 

the preliminary CFA data analysis (Fig. 2b). This led to very 

similar loading factors and correlation results when the model 

was run on a new data set. However, caution is required before 

the model can be considered fully validated for a generic MS 

population since the small sample size used for CFA did not 

allow for a sound calculation of goodness-of-fit indexes. 

Further studies involving a larger cohort are needed for this 

purpose.  

Testing of the identified conceptual gait model across data 

from pwMS with different levels of disability showed that 

wearable sensor-based gait analysis can detect gait alterations 

not only in pwMS with higher disability levels, as confirmed in 

previous literature [10], [13], [19], [21], [24], but also in people 

who are still fully ambulatory and generally have gait 

impairment that is too subtle to be captured by a standard 

neurological examination. At present, there are no clinical tools 

that can predict the progression of disease in pwMS with mild 

disability. Our study addressed this issue and demonstrated a 

reliable method of capturing subclinical impairments in the 

early stage of MS disease. 

The MSmod and MSsev groups showed a lower ability to 

control dynamic stability and to regulate their walking pattern, 

which was more variable, less rhythmic, and more 

asymmetrical compared to Ctrl. The MSmild cohort also 

exhibited unique patterns of gait deterioration (Fig. 3 and Table 

II), emphasized by significant changes in rhythm/variability, 

asymmetry, and pace domains. Specifically, minimally 

disabled pwMS walked with prolonged steps and spent a 

smaller percentage of their gait cycle with a single foot on the 

ground, as partially found before [5], [25]. Furthermore, when 

looking at the gait quality metrics, the jerk value was 

significantly lower, as reflected in the reduced self-selected gait 

speed. Gait quality metrics also highlighted a reduced gait 

coordination ability, which to our knowledge, has not been 

reported before in the MSmild group. This is demonstrated by 

an increased variability between steps (i.e., step regularity) and 

a greater asymmetry between the two limbs (i.e., stride 

regularity). On the contrary, dynamic balance did not seem to 

be affected in the early stage of MS but was significantly 

compromised in people with greater disability. This is partly in 

contrast with an earlier study, which suggested that some 

degree of forward and lateral instability exists in pwMS with a 

mild disability [5]. However, the authors based their 

observation on postural tasks rather than on walking gait tasks 

and only found significance for those pwMS with pyramidal 

signs on clinical examination. Further studies are needed to 

understand the reasons for these contrasting results.  

This study has several limitations that should be 

acknowledged. Patients were recruited after their scheduled 

clinic appointments, and an effect of fatigue on gait and balance 

performance cannot be excluded [19]. However, this was 

mitigated by asking all subjects to sit and rest before 

undergoing further assessments and by asking them to walk at 

their self-selected speed without any specific encouragement. 

Other environmental factors such as obstructions from other 

patients or hospital personnel who were nearby at the time of 

testing or the short walking pathway of 10-m used for the 

walking test might have also affected the subject’s performance 

and the reliability of the gait metrics investigated. Nonetheless, 

differences in testing site characteristics were previously noted 

to influence only marginally the proposed gait metrics [20]. 

Another limitation of this study relates to the inclusion of 

patients with a different clinical course of MS. Further 

investigations are needed to establish whether this factor could 

have affected the reported results. 

V. CONCLUSIONS 

A new conceptual gait model has been proposed, which 

describes the essential features that contribute to gait 

dysfunction in pwMS. A comprehensive description of changes 

in the gait patterns across groups of pwMS with different levels 

of disability was also provided. Alterations in selected gait 

domains were detected in pwMS with no clinically observable 

walking disability and were significantly worsened in pwMS 

with higher degrees of disability. As such, the suggested 

quantitative approach to gait analysis has clear potential as a 

biomarker for disease progression and as a tool for patient 

stratification in clinical trials. While the data presented here 

were recorded within a clinical setting and represent 

quantification of mobility capacity, the applicability of the 

proposed approach might also be tested on data continuously 

acquired during daily life to include an assessment of mobility 

performance. 
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This article has supplementary material. 
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