arXiv:2105.07674v2 [cs.LG] 28 Jun 2021

Continual Learning with Echo State Networks

Andrea Cossu®?, Davide Bacciu!, Antonio Carta®,
Claudio Gallicchio® and Vincenzo Lomonaco® *

1- University of Pisa - Department of Computer Science
Largo B. Pontecorvo, 3, 56127, Pisa - Italy

2- Scuola Normale Superiore
Piazza dei Cavalieri, 7, 56126, Pisa - Italy

Abstract. Continual Learning (CL) refers to a learning setup where
data is non stationary and the model has to learn without forgetting ex-
isting knowledge. The study of CL for sequential patterns revolves around
trained recurrent networks. In this work, instead, we introduce CL in the
context of Echo State Networks (ESNs), where the recurrent component
is kept fixed. We provide the first evaluation of catastrophic forgetting in
ESNs and we highlight the benefits in using CL strategies which are not
applicable to trained recurrent models. Our results confirm the ESN as a
promising model for CL and open to its use in streaming scenarios.

1 Introduction

Real world environments where data is highly non stationary represent a chal-
lenge for current machine learning solutions. Continual Learning (CL) focuses
on the design of new models and techniques able to learn new information while
preserving existing knowledge [I]. CL models receive a (possibly infinite) stream
of experiences eq, es, €3, ..., where each experience e; contains data sampled from
an associated distribution D;. Drifts in data distribution usually occur during
a known transition to a new experience. We study CL from the perspective
of catastrophic forgetting: when trained sequentially on multiple experiences,
neural networks tend to forget previous knowledge, that is, they reduce their
performance on previously seen data and tasks.

We address CL in sequential data processing (where each pattern is a sequence)
with a family of randomized recurrent neural networks called Echo State Net-
works (ESNs) [2]. ESNs process sequences by means of a fixed recurrent compo-
nent initialized with stable dynamics (reservoir) whose output is fed to a train-
able output layer (readout). ESNs are promising architectures for challenging
contexts such as neuromorphic hardware and embedded intelligence applications.
The topic of CL with recurrent neural networks has started to gain attention from
the CL community. Recent works on the behavior of recurrent models in non
stationary environments highlighted the fact that common CL strategies may
behave differently than expected when applied to recurrent models (e.g. their
performance may be influenced by the sequence length) [3]. While these studies
focus on fully trained recurrent models, we instead provide the first experimen-
tal analysis of catastrophic forgetting in ESNs, and their use with popular CL

*This work has been partially supported by the H2020 TEACHING project (GA 871385).

http://arxiv.org/abs/2105.07674v2

strategies. By treating the untrained reservoir of an ESN as a feature extractor
for sequences, we were able to 1) restrict the application of CL strategies to the
final, linear readout and 2) to leverage efficient CL strategies operating solely on
the final layer. The latter point marks a clear advantage in using ESNs, since
many approaches in CL for computer vision often exploit pretrained feature ex-
tractors. While such methods could be directly applied to ESNs, it is generally
difficult to do the same for other recurrent models, where the use of pretrained
networks is not as effective. Our results indicate that ESN exhibits competitive
performance with respect to LSTM and it is amenable to be applied with CL
solutions operating in challenging settings like streaming learning.

2 Continual Learning and Recurrent Models

Continual Learning The study of recurrent models in CL currently focuses
on deep recurrent networks trained by backpropagation [3, [4]. The problem
has been tackled both by designing new techniques and learning algorithms [5]
and by applying popular CL strategies not designed for sequential data [6, [4].
Notably, the CL performance of alternative recurrent paradigms like spiking
neural networks [7] and reservoir computing [§] is under-documented. To the
best of our knowledge, there is only one work about CL and ESNs [8] which,
however, focuses on a specific application and does not give insights on how to use
ESNSs in different CL contexts. This highlights the need for a broad experimental
evaluation with different families of CL strategies on popular benchmarks.

Continual Learning strategies Here, we briefly introduce the CL strategies used
in our experiments. These strategies are not specifically designed for sequential
data processing. Therefore, they allow us to draw more general conclusions on
the model behavior.

Elastic Weight Consolidation (EWC) [9] and Learning without Forgetting (LwF)
[10] are regularization strategies: they add a penalty to the loss function to
improve model stability. EWC prevents large changes in parameters deemed
important for previous experiences. The loss penalty at experience n takes the
form of Z;:ll Q¢ (0 — 0n)?, where ¢ are the model parameters at experience
t and € their corresponding importances. At the end of each experience, the
parameters importances for that experience are computed by freezing the model,
performing an additional pass over training data and averaging the squared gra-
dients across all patterns.

LwF enforces stability in the output layer activations by keeping a copy of the
previous model and by taking its output on the current training patterns as soft
targets in the distillation loss. Therefore, the loss penalty takes the form of the
the KL-divergence KL[pg, (xt)||po,_, (Xt)], where pg, (x¢) represents the output
of the model parameterized by 6.

Replay [I1] leverages a different paradigm: on each experience, it randomly
samples a number of patterns from the training set and adds them to the replay
memory. During training, the current minibatch is augmented with an addi-

tional minibatch of patterns sampled directly from the memory. This is one of
the most effective strategies in CL [12].

Finally, Streaming Linear Discriminant Analysis (SLDA) [13] is a strategy which
leverages a pretrained feature extractor G (a ResNet-18 in the original paper)
combined with a linear layer to compute the final output y = WG(x)+b, where
X is the current input pattern. This strategy operates in a streaming setting,
where patterns are seen one at a time and only once (one epoch only). The
parameters W and b of the linear layer are computed through an online approx-
imation of the Linear Discriminant Analysis. The algorithm keeps a mean vector
together with an associated counter per class and a shared covariance matrix,
updated during training. Since SLDA requires a fixed feature extractor, we can
only apply it to ESNs thanks to its untrained recurrent layer.

To provide lower and upper bounds performance, we ran experiments with other
2 strategies: Naive, which simply finetunes the network across experiences with-
out any CL strategy, and Joint Training, which trains the model in an offline
setting with all the data available from the beginning.

Echo State Networks Reservoir Computing provides a general framework to
build recurrent networks [I4]. ESNs [2] belong to the reservoir computing
paradigm since they are composed by an untrained reservoir and a trained linear
readout. The reservoir is composed by a set of randomly connected units and
it represents the recurrent component of the architecture. The initialization of
recurrent weights matrix in the reservoir is a crucial hyperparameter: usually,
the matrix values are scaled such that its spectral radius is slightly smaller than
one (necessary condition for the Echo State Property). The linear readout pa-
rameters can be trained with closed-form solutions like pseudo-inverse or ridge
regression, which however requires to store the entire set of reservoir activations.

3 Experiments

We compared the performance of LSTM and ESN when equipped with the 4
CL strategies already presented: EWC, LwF, Replay, SLDA. We tested our
methods on 2 different sequence classification tasks, in which each pattern (a
sequence) is associated to a target class. We chose 2 popular class-incremental
CL benchmarks, where each experience provides examples from new classes,
which will be present only in that experience. At the end of training on the last
experience, the model performance is measured against data coming from all
experiences. During testing, the model has no knowledge about the experience
from which each pattern is coming from.

Ezperimental setup We used Split MNIST (SMNIST) and SSC [3] as the bench-
marks for our experiments. SMNIST provides 5 different experiences, each of
which contains examples of MNIST dataset from 2 digit classes. In order to use
SMNIST as a sequence classification task, we took each image one row at a time,
resulting in input sequences with 28 steps. SSC is a dataset of spoken words.

SMNIST LSTM' ESN SSC LSTMT ESN

EWC 0214002 0.2010.00 EWC 0.1040.00 0.0940.02
LWF 0'31i0.07 0-47i0.07 LWF 0-12i0.01 0'12i0.02
REPLAY 0.85.003 0.8410.02 REPLAY 0.74:007 0.7610.04
SLDA — 0.88.10.01 SLDA — 0.57£0.03
NAIVE 0.2010.00 0.2010.00 NAIVE 0.104000 0.1040.00
JOINT 0.9710.00 0.9710.01 JOINT 0.891002 0.9140.00

Table 1: Mean ACC and standard deviation over 5 runs on SMNIST and SSC
benchmarks. SLDA is applied only to ESN since it assumes a fixed feature
extractor. SMNIST contains 5 experiences, while SSC contains 10 experiences.
t results are taken from [3], except for replay which has been recomputed to
guarantee the use of the same replay policy (200 patterns in memory).

We took 10 experiences, each of which containing patterns representing 2 words.
Sequences have 101 steps. We performed grid search on all the strategies for ESN
and on Replay for LSTM. The other results for LSTM are taken from [3], since
the experimental setup is the same. To perform grid search for SSC, we took 3
held-out experiences for model selection and 10 for model assessment. To fairly
compare ESN and LSTM, we select a model configuration whose only require-
ment is to be able to learn effectively at training time. Then, the performance
in terms of forgetting depends mostly on the CL strategy (subjected to grid
search) and not on the specific model setting. We train the ESN readout with
Adam optimizer and backpropagation, since CL requires to update the model
continuously, possibly without storing its activations. We used the Avalanche
[15] framework for all our CL experiments. We make publicly available the code
together with configurations needed to reproduce all experimentsﬂ We moni-
tored the average accuracy (ACC) metric: after training on all experiences we
measure the accuracy averaged over test patterns from all the experiences.

Results Tablereports the ACC metric and its standard deviation over 5 runs
for the best configuration found in model selection. Our results show that ESN
performs better or comparably to the LSTM network. EWC is not able to tackle
class-incremental scenarios, neither with LSTM nor with ESN. It achieves a per-
formance equal to the Naive one. LwF, instead, manages to reduce forgetting
in the simplest SMNIST benchmarks. In this context, applying LwF only on
the feedforward component results in a better performance with respect to the
LSTM. This is compatible with results presented in [3] and highlights one of the
advantage in using ESNs for CL. However, when facing more complex scenarios
like SSC, LwF fails to provide any benefits with respect to Naive finetuning.
Replay strategies are very effective in class-incremental settings across different
benchmarks and for both recurrent models. We studied the performance of ESN

Ihttps://github.com/Pervasive-AI-Lab/Continuallearning-EchoStateNetworks

https://github.com/Pervasive-AI-Lab/ContinualLearning-EchoStateNetworks

1.0 1.0
0.81 bt 8 §
4 et

0O 0.61 A 0 0.61 o= |
L Zon AT

04 4= lstm 0 T 4= lstm

0.2] esn 0211 esn

0.0 0.0

25 50 75 100 125 150 175 200
Replay memory size

25 50 75 100 125 150 175 200
Replay memory size

(a) Split MNIST (b) SSC

Fig. 1: Accuracy over increasing replay memory sizes.

and LSTM with different replay memory sizes. As showed in Fig. [l ESN per-
forms slightly better than LSTM for small memory sizes.

The advantage in using ESNs clearly emerges when studying the behavior of
SLDA strategy. This strategy effectively tackles class-incremental benchmarks
like SSC and even surpasses the performance of Replay on SMNIST. The ab-
solute performance of SLDA in SSC remains lower than the one achieved by
replay. However, when looking at forgetting values (difference between the ac-
curacy after training on a certain experience and the corresponding accuracy
after training on all experiences) SLDA performs better than replay. In fact,
SLDA achieves an average experience forgetting of 0.14 4+ 0.02, while replay ob-
tains 0.21 4+ 0.06. The difference between the performance in terms of ACC
and forgetting is explained by the fact that SLDA is a streaming strategy which
trains the model only on a single epoch. Therefore, on complex scenarios like
SSC it achieves a lower accuracy.

4 Conclusion and Future Work

We studied the ability of ESNs to mitigate forgetting in CL environments.
We provided the first experimental evaluation of ESNs trained with popular
CL strategies. Our analysis showed that ESNs perform comparably with fully
trained recurrent networks like LSTM. Moreover, since the reservoir is a fixed
feature extractor, it is possible to train ESNs with CL strategies like SLDA
which are not applicable to LSTM. SLDA obtains a good performance in class-
incremental scenarios, surpassing even replay on SMNIST.

This work could foster new studies and applications of CL with ESNs: the
renowned computational efficiency of ESNs may be particularly interesting for
streaming or task-free CL. The possibility to implement ESNs in neuromorphic
hardware opens to the continuous training of such models on low resources de-
vices. ESNs are not the only family of models with an untrained component.
More in general, CL with partially trained networks constitutes an interesting
avenue of research, due to the fact that fixed connections are not subjected to

catastrophic forgetting. Alternatively, reservoir in ESNs may also be finetuned
during training to better adapt to new experiences. In particular, unsupervised
finetuning through backpropagation-free methods (e.g. Hebbian learning, intrin-
sic plasticity) may provide quicker adaptation and more robust representations.
The design of new CL strategies which exploit reservoir finetuning while keeping
forgetting into consideration would provide us with a deeper understanding of
the CL learning capabilities of ESNs.

References

(1]

(2]

(9]

[10]
[11]
[12]
[13]
[14]

(15]

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and
Natalia Diaz-Rodriguez. Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information Fusion, 58, 2020.

Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. Science, 304, 2004.

Andrea Cossu, Antonio Carta, Vincenzo Lomonaco, and Davide Bacciu. Continual Learn-
ing for Recurrent Neural Networks: An Empirical Evaluation. arXiv, 2021.

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. Toward Training Recurrent Neural
Networks for Lifelong Learning. Neural Computation, 32, 2019.

Lea Duncker, Laura N Driscoll, Krishna V Shenoy, Maneesh Sahani, and David Sussillo.
Organizing recurrent network dynamics by task-computation to enable continual learning.
In Advances in Neural Information Processing Systems, volume 33, 2020.

Andrea Cossu, Antonio Carta, and Davide Bacciu. Continual Learning with Gated In-
cremental Memories for sequential data processing. In International Joint Conference on
Neural Networks, 2020.

Alexander Ororbia. Spiking Neural Predictive Coding for Continual Learning from Data
Streams. arXiv, 2020.

Taisuke Kobayashi and Toshiki Sugino. Continual Learning Exploiting Structure of Frac-
tal Reservoir Computing. In ICANN, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural networks. PNAS, 114, 2017.

Zhizhong Li and Derek Hoiem. Learning without Forgetting. In Furopean Conference on
Computer Vision, 2016.

Anthony Robins. Catastrophic Forgetting; Catastrophic Interference; Stability; Plasticity;
Rehearsal. Connection Science, 7, 1995.

Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. GDumb: A Simple Approach
that Questions Our Progress in Continual Learning. In ECCV, 2020.

Tyler L Hayes and Christopher Kanan. Lifelong Machine Learning with Deep Streaming
Linear Discriminant Analysis. In CLVision Workshop at CVPR, 2020.

Mantas LukoSevic¢ius and Herbert Jaeger. Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3, 2009.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graf-
fieti, Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de
Ven, Martin Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone
Calderara, German I. Parisi, Fabio Cuzzolin, Andreas Tolias, Simone Scardapane, Luca
Antiga, Subutai Amhad, Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne
Tuytelaars, Davide Bacciu, and Davide Maltoni. Avalanche: An End-to-End Library for
Continual Learning. In CLVision Workshop at CVPR, 2021.

	1 Introduction
	2 Continual Learning and Recurrent Models
	3 Experiments
	4 Conclusion and Future Work

