IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

WindFlow: High-Speed Continuous Stream
Processing with Parallel Building Blocks

Gabriele Mencagli, Massimo Torquati, Andrea Cardaci, Alessandra Fais,
Luca Rinaldi, and Marco Danelutto

Abstract—Nowadays, we are witnessing the diffusion of Stream Processing Systems (SPSs) able to analyze data streams in near
realtime. Traditional SPSs like STORM and FLINK target distributed clusters and adopt the continuous streaming model, where inputs
are processed as soon as they are available while outputs are continuously emitted. Recently, there has been a great focus on SPSs
for scale-up machines. Some of them (e.g., BRISKSTREAM) still use the continuous model to achieve low latency. Others optimize
throughput with batching approaches that are, however, often inadequate to minimize latency for live-streaming applications. Our
contribution is to show a novel software engineering approach to design the runtime system of SPSs targeting multicores, with the aim
of providing a uniform solution able to optimize throughput and latency. The approach has a formal nature based on the assembly of
components called building blocks, whose composition allows optimizations to be easily expressed in a compositional manner. We use
this methodology to build a new SPS called WINDFLOW. Our evaluation showcases the benefits of WINDFLOW: it provides lower
latency than SPSs for continuous streaming, and can be configured to optimize throughput, to perform similarly and even better than

batch-based scale-up SPSs.

Index Terms—Data Stream Processing, Multicore Programming, Parallel Computing.

1 INTRODUCTION

With the increasing availability of large data volumes in
the form of streams, there has been an eager demand for
Stream Processing Systems (SPSs) able to process streams in
a continuous fashion on commodity hardware by providing
timely responses to the end users.

Streaming applications are modeled as Directed Acyclic
Graphs (DAGs) of operators exchanging data items called
tuples. Operators process tuples and produce outputs based
on their business logic code. Traditionally, streaming appli-
cations have been developed through dialects of SQL (e.g.,
CQL [1]), where the semantics of relational algebra has been
adapted to the streaming domain with proper constructs
to deal with unbounded streams rather than finite tables.
However, recent SPSs have extended the scope of their sup-
ported applications to go beyond the domain of relational
algebra. This is done by dealing with both structured and
unstructured data, and supporting the execution of complex
computational tasks, even adding the possibility to leverage
external tools for specific domains (e.g., TensorFlow and
PyTorch for Machine Learning [2]).

In terms of their runtime system, popular SPSs like
STORM [3] and FLINK [4] are based on the Java Virtual
Machine (JVM), and are designed to scale out on several
interconnected machines. This has an impact on a set of
aspects (data de-/serialization, inter-process communica-
tion and resource scheduling) that are inefficient when the
processing is done on a single scale-up machine [5], [6], [7].

e G. Mencagli, M. Torquati, A. Cardaci, L. Rinaldi, and M. Danelutto were
with the Department of Computer Science, University of Pisa, Italy. E-
mail: {mencagli, torquati, cardaci, luca.rinaldi, danelutto}@di.unipi.it

o A. Fais was with the Department of Information Engineering, University
of Pisa, Italy. E-mail: alessandra.fais@phd.unipi.it

The efficient exploitation of multicores requires to re-
think the runtime system (or simply runtime) design of
SPSs. Systems adopting the continuous streaming model allow
the processing of inputs as soon as they are available,
and operators are executed by independent threads. This
approach is adopted by popular SPSs like STORM and
FLINK, and by some research prototypes for multicores like
BRISKSTREAM [§]], with the ultimate goal of minimizing
latency. An alternative trend for designing new SPSs for
scale-up servers is to change the runtime system design to
enhance the throughput by fitting at best the memory band-
width of the machine. Some new prototypes implement
this approach by adopting the discretized streaming model
(inspired by the morsel-driven parallelism in [9]), where
inputs are buffered in batches that are then scheduled to
a pool of available threads. Threads execute entire pipelines
of operators as a tight loop on the batch elements, until a
pipeline breaker (e.g., a keyby distribution) is reached. Re-
cent research works (e.g., STREAMBOX [10] and others [11])
successfully adopt this approach, and are able to implement
applications composed of relational algebra operators ex-
changing structured records of data. However, most of their
optimizations (e.g., automatic code generation) are hard to
be extended to more general application domains. Further-
more, the buffering required to build properly sized batches
(often in the order of thousands of inputs to amortize the
scheduling cost) prevents achieving small end-to-end laten-
cies. For this reason, and thanks to their peak throughput
on multicores, such prototypes are mostly used to process
offline streaming tasks with in-memory data rather than real
live-streaming applications.

From this past experience, two main trends for designing
SPS runtimes on multicores can be identified: one more
latency oriented, and the other more throughput oriented.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

In this regard, the primary contribution of this work is to
present a novel software engineering strategy proposing a
unified approach that increases the abstraction level of the im-
plementation of SPS runtimes. To the best of our knowledge,
this has not been studied before from the software engineer-
ing perspective. Our approach inherits several features of
traditional runtimes for continuous streaming, like having
independent threads per operator connected by queues for
data exchange. In addition, it identifies a minimal set of
customizable building blocks that can be composed according
to a formal semantics. Building blocks are recurrent data-
flow compositions of interconnected activities, and they can
be used as an abstraction layer representing an algebra of
programs. Some features of our building blocks are:

o we provide formal transition rules and a grammar of
building blocks. This formal approach defines a pow-
erful abstraction layer able to describe many streaming
DAGs suitable for modeling applications in a wide set
of domains needing streaming support;

o our novel abstraction layer allows system designers
to reason about optimizations in an easier way, by
developing new strategies in terms of how building
blocks are composed;

o their compositions model operator chaining and the
removal of centralization points. Furthermore, the in-
put size and processing granularity can be tuned to
optimize latency or increase throughput;

o their producer-consumer semantics simplifies the ex-
plicit memory management in languages like C++, and
helps to make it transparent to the user;

o they help in mapping the operators onto the cores of the
machine in an effective manner through pinning strate-
gies leveraging the structured nature of the runtime;

o they can be implemented in different ways (e.g., with
thread-based, actor-based or task-based parallelism).

We provide an implementation of this methodol-
ogy within the WINDFLOW library targeting multicores.
WINDFLOW is written in modern C++17, and provides an
efficient implementation of building block compositions. In
particular, our contributions with the library are:

o our building blocks are implemented using thread-based
parallelism and lock-free queues with different concurrency
control mechanisms, to efficiently deal with backpressure
and exploitation of hardware multi-threading;

o the experimental validation is based on seven real-
world streaming applications. The evaluation shows
that WINDFLOW is able to model common DAGs, and
it is faster than FLINK and STORM and the recent JVM-
based prototype BRISKSTREAM [8];

o WINDFLOW has also been compared with the C++-
based solution STREAMBOX. This allows us to show
that high throughput can be achieved owing to a proper
combination of building blocks, configured to exchange
and process sufficiently sized inputs, rather than chang-
ing the runtime to schedule large batches dynamically;

o the source code of the library and all applications
implemented with all frameworks have been released
open-source for reproducibilityﬂ

1. WindFlow is available at this

ParaGroup/WindFlow

link  https://github.com/

2

The methodology developed in this paper extends our
prior work [12] in several directions: i) we provide a for-
mal description and semantics of our building blocks to
implement the whole runtime system of a SPS expressing
general streaming DAGs, while our previous publication
studied the implementation of specific parallel operators
(sliding-window operators) without providing any formal
semantics; ii) this new study analyzes the performance im-
pact of several implementation techniques in terms of pin-
ning strategies, concurrency control mechanisms, and small
batching not studied before; iii) the experimental evaluation
in this paper is done by comparing against research-based
SPSs (BRISKSTREAM and STREAMBOX), and not only against
traditional SPSs (STORM and FLINK).

The outline of the paper is as follows. Section 2| presents
an overview of the library with its C++17 APL Section
introduces our building blocks and their grammar. Section
describes the formal design of the WINDFLOW library. Sec-
tion |5| presents the experimental evaluation, with the con-
sidered applications and the results in terms of throughput
and latency. Section | provides a discussion of related works
and Section [7]draws the conclusions of this paper.

2 WINDFLOW OVERVIEW

WINDFLOW is a header-only library, designed by using
generic programming leveraging the recent features of the
C++17 standard for template argument deduction by the
compiler (Class Template Argument Deduction-CTAD [13]). In
this part, we will give an overview of the library with the
set of available operators and the API to create applications.

2.1 Operators

WINDFLOW provides a set of basic and windowed operators
that can be interconnected in data-flow graphs. Operators
can be internally replicated to increase their throughput,
with internal replicas working on a subset of the inputs re-
ceived by the operator. Table|[l|reports the operators offered
by WINDFLOW. The column distribution shows how inputs
are delivered to the operator replicas: forward means that
every input can be assigned to any replica, keyby sends all
the inputs having the same key attribute (e.g., a specific field
of the tuples) to the same replica, and complex distributions
deliver the same input to one or more replicas according to
some predefined policies. For the Source the distribution is
undefined since its replicas never receive inputs.

Operator Acronym Distribution
Source SRC -
Sink SNK Forward /KeyBy
-2 Filter F Forward /KeyBy
a Map M Forward /KeyBy
FlatMap FM Forward /KeyBy
Accumulator A KeyBy
Keyed Windows KW KeyBy
T Parallel - C 1
E Windows omplex
2  Paned Windows PAW Complex
b Map-Reduce
= Windows MRW Complex

TABLE 1: Standard operators available in WINDFLOW.


https://github.com/ParaGroup/WindFlow
https://github.com/ParaGroup/WindFlow

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

The Source is in charge of generating a stream of tuples
all having the same type. The Sink is responsible for ab-
sorbing the inputs without generating any output. The Filter
drops all the tuples not respecting a user-defined predicate.
The Map produces one output per input while the FlatMap
produces zero, one or more outputs per input (inputs and
outputs may have different data types). The Accumulator
maintains a state for each value of the key attribute. For
each input, a user-defined processing function works on that
input and on the corresponding state of its key, and the new
value of the state is produced in output by the operator.

Some applications require to periodically repeat user-
defined computations over finite portions of the stream
having often the form of moving windows [14], [15], which
can be of different types (e.g., tumbling, sliding and hopping).
WINDFLOW provides specific operators to express window-
based computations and to execute them in parallel when
windows activate very frequently.

Differently from relational algebra SPSs (e.g., historical
ones like in [16], and more recent ones like [10], [17]),
WINDFLOW operators work on inputs conveying structured
or unstructured data, and the transformation logic can
be fully defined by the user. Furthermore, stateful com-
putations (with keyby partitioning) can be configured in
customized operators, by keeping an internal state imple-
mented by a user-defined data structure in each replica.

22 API

We designed the API of WINDFLOW to be similar to the ones
of traditional SPSs, like STORM and FLINK. Hence, our goal
is to target general-purpose stream processing, with support
for generic operators as well as their stateful definition
(with user-defined states provided in input to the operator
business logic code). Therefore, our API is targeting end
users with data analytics problems. For specific application
domains like streaming queries, expressible with relational
algebra, we can design in the future a SQL-based domain
specific language on top of the WINDFLOW’s API, like in
other tools. However, this is not the scope of this paper. In
the following, we will focus on how operators can be created
and how applications are composed in WINDFLOW.

2.2.1 Creating Operators

WINDFLOW provides a compositional fluent interface based
on builder classes. Figure[I]shows how to create a Map using
its builder class Map_Builder. By leveraging the CTAD
feature of C++17, the template arguments for instantiating
the Map class (the data types input_t and output_t in
the figure) are automatically deduced by the signature of
the function provided to the builder constructor.

class Map
public:
output t operator() (const input t &t) {
.. // code here

Tunction {

}
}i
Map Function mapF;
Map map =
Map_Builder (mapF) .withName (“myMap”) .withParallelism(5) .build();

Fig. 1: Example of instantiation of the Map operator with
the C++17 fluent interface.

3

The library does not rely on class inheritance to define
the logic of the operators (to avoid the little overhead of vir-
tual function calls). WINDFLOW accepts several signatures
for each operator, where the logic can be provided either as
a plain function, as an anonymous lambda, or through functor
objects like in Figure [I} This latter option allows logics that
are not purely functional to be used by the operator: the
state can be implemented as internal variables of the functor
object, and the runtime system guarantees that each replica
uses a distinct copy of the object.

The customization is done with the method chaining
technique, where configuration options are set with specific
methods. Finally, the build () method creates the instance
of the properly configured operator. In the figure, the Map
is created with five replicas and with a name (the string
“myMap”) used for logging purposes. Other options are
available depending on the operator type.

2.2.2 Creating Applications

Applications are developed using the MultiPipe and the
PipeGraph constructs. In its basic definition, a MultiPipe
is a set of parallel pipelines of operator replicas, where a
replica of an operator in a pipeline communicates either
with one or with all the replicas of the next operator. When a
replica receives inputs only from one replica of the previous
operator (in the same pipeline), we call this communication
pattern direct connection. A shuffle connection is when a replica
receives inputs from all the replicas of the previous operator
(e.g., because tuples are distributed on a keyby basis).

A MultiPipe can be created by adding a Source to
the PipeGraph, which is the environment used to create
and run the application. Figure [2| shows an example of
instantiation, where the created MultiPipe is fed by a
Source (previously created, and not shown in the code
snippet for brevity). Then, two previously created operators
are added to the MultiPipe. Finally, a Sink is added to
the MultiPipe. The application is run by invoking the
run () method on the PipeGraph. It terminates when all
the Source replicas terminate, and all the generated values
have been fully processed.

oh app (“myApp”) ;
MultiPipe &mp = app.add source (mySource)
.add (myFilter) .add (myMap) .add_sink (mySink);

app.run();

Fig. 2: A simple WINDFLOW application.

To model more general DAGs, merge and split opera-
tions can be applied to MultiPipes. Figure (3| shows a
MultiPipe obtained by merging two MultiPipes fed by
different Sources, which is then split into two MultiPipes
having different Sinks. All the operators in the figure
have two replicas for simplicity. The API provides the
merge () and the split () methods, the latter invoked on a
MultiPipe by providing a splitting function stating how the
outputs are assigned to the destination MultiPipes (called
splitting branches). The function returns a vector of identi-
fiers, one for each destination, in order to model unicast,
multicast or broadcast distributions. In the last two cases, a
copy of the input tuple is provided to each destination. Each
MultiPipe in a branch is obtained with the select ()



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
[ Name [ Syntax [ Description |
Sequential Building Blocks (SBBs)
Seq wrapper Seq(f) Wraps the sequential function f into a data-flow node (an execution entity) executing f sequentially
on each input.
Combiner Comb(X1, X2) Merges two SBBs X; and X into a SBB executing the semantics of the sequential composition of

the processing logic computed by ¥; and 2.

Fan-out Combiner Comb«(X7, {Z:}7—1)

Merges ¥ and a listof n > 1 SBBs &, . . .
the logic of >’ is first executed, and then for each output of >’ the logic of one of 31, . .
selected based on the properties of the output delivered by the logic of %’) is applied to produce the
outputs of the combiner.

, 2, into a single SBB. For each input to the combiner,
2 (eg.,

Parallel Building Blocks (PBBs)

Pipe Pipe(X1e,..., ¢X,) Connects n > 0 SBBs in a pipeline, where X; receives from ¥;_; and sends to ;1. The unary
case Pipe(X) is admissible, and it has the same semantics of 3.

Parallel Container [Ad, Asetof Ay, ..., A, PBBs. The blocks are independent (not interconnected together), so they work
in parallel on different inputs and produce outputs.

All-to-All AZATALRT_ |, IAFT™,) | All the PBBs in the left side [AF]?_, send outputs that can be delivered to any PBB in the right

side [AF]™ | . The connection topology is fully connected (n x m block-to-block connections).

Legal compositions grammar
by w= Seq(f) | Comb(Zi,%2) | Comba(Z', {Z:}},)

A u= Ppe(Sie...., e, | [AdL,

| A2AMAFTL, [ATTL)

TABLE 2: BBs used to design the runtime system. The grammar shows which composition of BBs is admissible in the

description language.

method invoked on the parent Mult iPipe, and can be filled
with new operators.

PipeGraph app (“myApp”);
MultiPipe &mpl = app.add source (SRC1).add(OP1).add(0OP2) ;
MultiPipe &mp2 = app.add source (SRC2) .add(OP3);
MultiPipe &mp3 = mpl.merge (mp2); // merge of mpl and mp2 into mp3
mp3.add (OP4) .split (

[] (const tuple t &t) -> std::vector<int> {

.. // code returning either 0 or 1 or both per input

boo2);
mp3.select (0) .add (OP5) .add_sink (SNK1) ;
mp3.select (1) .add sink (SNK2) ;
app.run();

Fig. 3: Merge and split of MultiPipes in WINDFLOW with
the corresponding API.

Merged Mult iPipes must produce outputs of the same
type, and the first operator added in each splitting branch
must receive inputs with the same type of the outputs
produced by its parent. These checks are done in the run ()
method by using the RTTI (RunTime Type Identification)
feature of C++. In the next section, we present the formal
approach that we used to design the runtime system.

3 BUILDING BLOCKS

We adopt a formal software engineering approach based
on the concept of elementary concurrent components called
Building Blocks (BBs) [18], [19]. We point out that the ex-
istence of BBs, as well as their composition, is part of the
runtime system level, and thus invisible to the end users
of our library developing streaming applications. More
specifically, we will use the Sequential Building Blocks (SBBs)

and the Parallel Building Blocks (PBBs) described in Table @
Each SBB processes the inputs in a First-Come First-Served
manner and produces outputs. PBBs are structured graphs
of interconnected SBBs and PBBs.

SBBs are wrappers executing sequential code and com-
biners. Seq(f) wraps a function f into a SBB applying
f on each input sequentially. Each application of f may
produce zero, one or multiple outputs. Combiners are de-
fined based on other wrappers or even on other combin-
ers. The processing semantics of Comb(Seq(f1), Seq(f2)) is
the one of the sequential composition of functions: each
output produced by f; becomes the input of f,, and its
outputs become the outputs of the whole combiner block.
The application of the two functions is performed seri-
ally. This idea has been extended in the fan-out combiner
Comb<«(Seq(f), {Seq(g:)},), executing f on each input,
and then for each output produced by f the function g;
of one of the SBBs in the set {Seq(g;)};, is applied
(randomly chosen or selected based on the properties of the
output delivered by f). The outputs from g; finally become
the outputs of the combiner block. SBBs can be nested as in
the production ¥ of the grammar in Table 2] Figure @ shows
the graphical notation of BBs.

Sequential Building Blocks

-6 -0 -G8

Seq wrapper Combiner Fan-out Combiner

o
o8 e
- e

Parallel Container

Parallel Building Blocks

All-to-All

Fig. 4: The set of SBBs and PBBs.

PBBs allow SBBs to be interconnected in regular struc-
tures. An ordered chain of SBBs is allowed with the Pipe
block, where the outputs of a SBB become inputs to the next
one. Differently from the Comb, SBBs in the Pipe run in par-
allel on subsequent elements (stream). PBBs Ay, ..., A, can



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

be grouped into a container [A;, A, ..., A,]. We use the
succinct notation [A;]7_;. When all the PBBs are identical,
we use [A]"™ (without the index i on A). Furthermore, if the
container contains one PBB only, we use A directly in place
of [A]'. Finally, the all-to-all block (A2A) allows PBBs to be
interconnected in a shuffle communication pattern, where
the rightmost SBBs within each PBB in the left container
communicate with all the leftmost SBBs within the PBBs
in the right container. When a SBB has multiple outgoing
connections, each output is delivered to one of the out chan-
nels chosen randomly, or on the basis of some key attribute
field, or using other complex policies. The production A in
Table 2| shows the possible nesting of PBBs. The Pipe is
used to interconnect SBBs, while the A2A interconnects two
containers of PBBs allowing the nesting of A2A with Pipe
blocks and with other A2A blocks.

3.1 Utility Functions on PBBs

We introduce some utility functions performing transforma-
tions of PBBs that we use in our design in the next section:

o combine-with-last: > : A x ¥ — A combines a copy of
the SBB ¥ with all the rightmost SBBs in A;

o pipe-with-last: -: A x¥ — A appends a copy of the SBB
¥ to all the rightmost Pipes in A (which are extended
with this additional block at the end).

Figure [5| shows the semantics of these functions formally
described through some transition rules (having the usual
form of a set of premises and a consequence). One rule
per function (>pipe and Fpipe) is applied when A is a Pipe,
which represents the base case. Other two are applied when
Ais an A2A (> 424 and F-42,) or a parallel container (>, and
Fpe), where the transformations are applied recursively.

4 WINDFLOwW DESIGN

The WINDFLOW library has been designed leveraging the
previous set of BBs used with the formal composition
rules presented in this section. We introduce the concept of
Matryoshka (referred to as M), a compound BB obtained as
composition of our BBs. We show what Matryoshka models,
and how it has been used to build the Mult iPipe structure,
whose API has already been sketched in

4.1 Matryoshka

The Matryoshka is the basic element of the MultiPipe. It
models a set of pipelines that may have shuffle connections
from one pipeline to another one. Examples of this structure
are the ones within a rounded box in Figure 3| For example,
direct connections exist between the two replicas of SRC1
and OP1, while shuffle connections interconnect the replicas
of OP1 and OP2 in the first box of the figure.

We define these structures with the following grammar,
where @ is a Pipe with any arbitrary length m > 0:

) w= Pipe(Xi1e,..., 0%,) (1)
M [2]" [ A2A([2]", M)

A “Matryoshka doll”, in the Russian tradition, is a set of
decreasing size dolls placed one inside another. The inner-
most one is called seed. Following this analogy, our seed
is a parallel container of n > 0 identical pipelines, while

5

the recursive case are instances of the A2A block where a
new inner Matryoshka is nested in the right-hand side (fixed
to have one block only). We define three utility functions.
The first OutCard : M — N returns, given an input
Matryoshka, the number of Pijpes in its seed. The second
&t M x [@]" — M puts a parallel container of Pipes [$]"
(with any n) as the new seed of M. LastOP : M — 7T,
returns the type of the last operator added to the input
Matryoshka. 7,, will be defined shortly. The transition rules
of the utility functions are shown in Figure [6}

We introduce the three main operations that can be used
to create and to modify Matryoshkas:

o creation of a Matryoshka starting from an operator,
create

——: OP — M where OP is the set of operators;

e adding of an operator into a Matryoshka, M. OP x
M — M. Depending on the number of replicas of
the operator, and on its distribution logic (e.g., forward,
keyby or complex), the replicas are appended as SBBs
to the Pipes in the innermost Matryoshka (direct con-
nections) or, alternatively, by adding a new Matryoshka

as the new seed (shuffle connections);
chain

e chaining of an operator into a Matryoshka, —: OP x
M — M. If possible, this transformation combines the
SBB implementing the replica of the operator to each
rightmost SBB present in the Pipes of the seed.

Operators are denoted by a triple <fq, fop,n> € OP,
where f; is the distribution function returning for each
input ¢ one or more pairs <t, dst>, where dst is the index of
the replica in charge of processing ¢ (n > 0 is the number of
replicas). In case of multiple output pairs, the same input is
delivered to more than one replica. The operators M, FM,
F, and SNK use the forward distribution unless they are
created with the keyby modifier. The function TypeId(fq)
returns the type of the distribution f4. The element f,, is
the processing logic of the operator returning zero, one or
multiple outputs per input. We also introduce TypeId(fop)
to return the type of the operator, which is in the set 7, = {
SRC, SNK, M, FM, F, A, KW, PW, PAW, MRW}.

Figure [7] shows the rules of the create, add and chain op-
erations. The semantics describes well-formed Matryoshkas
where after a Sink no other operator can be added or
chained (the Matryoshka is closed). In the basic case, Ma-
tryoshkas are created starting from a Source operator. How-
ever, we have relaxed this constraint because Matryoshkas
can be created starting from any operator to model the split
and merge of MultiPipes (see the next section).

The rule “create” generates a new Matryoshka (a seed)
starting from an operator. Each replica is a Seq within a
Pipe running the operator logic f,,. The rule “add-direct” is
applied when the new operator has a forward distribution
and the number of its replicas is equal to the number of
Pipes in the seed of the input Matryoshka. In this case,
we append a new Seq running f,, to each Pipe of the
seed. The rule “add-shuffle” is executed if the distribution
type is not forward, or when the number of replicas is not
equal to the number of Pijpes in the seed of the input Ma-
tryoshka. The transformation inserts a new seed composed
of the replicas of the operator logic implemented by a set
of Seqs each within a Pipe. Before doing this, the input
Matryoshka is modified by combining with its rightmost



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

A =Pipe(X1e,..., 03,)

A = A2A([AFTEy, [ATTE)

A= [[Ai]]?:l

>a2a:

TP TN Y 5 Pipe(Sh e ..., e Comb(S,, 3))

A= Pipe(S1e,...,03,)

A Y — A2A([AFTL, . [AF], >Y)

A = A2A(AFTE., [ATTE)

A Y S [A s Y,

A= [[Ai]]?ﬂ

Fa2a:

Fpipe: B
PPOARY = Pipe(Sie,..., %, %)

AEY = AZA([AFTE,, [ATR )

AR Y S [AF YR,

Fig. 5: Transition rules of the utility functions applied to PBBs.

OutCard; : M= [[@]]n
vrerdy OutCard(M) — n
M — (I)/ m
<>base: II ]]

MO[P]" — A2A(M, [@]™)

M = [Pipe(S1e,..., o 5,)]"
Em = Seq(fop)

OutCards:

Orecur: MO[[(I)IITL N AQA([[CD/]]m, M/OH(D]]TL)

M= [[P’pe(zl ®,..., ® Zm)]]"
= Comb(X', Seq(fop))

M = AA([@]", M)
OutCard(M) — OutCard(M”)

M = A2A([®]™, M)

M = A2A([®]", M)

LastOP;: LastOP3: LastOP3:
ST LastOP (M) — Typeld(f.p) O 0StOP (M) — Typeld(fop) 0P T 3stOP (M) — LastOP (M)
Fig. 6: Transition rules of the utility functions applied to Matryoshka components.
— e fn> LastOP(M) = SNK
create: c:)e]j.te ! akld add/chain-noeffect: 2 (/d\:)h -
op =5 [Pipe(Seq(fop))]™ (op, M) 22H/chein pq
op = <fq, fop,n> Typeld(fq) = forward op = <fq, fop.n> M’ =M1 Seq(fs) LastOP(M) # SNK
OutCard(M) =n LastOP(M) # SNK (Typeld(fq) # forward V OutCard(M) # n)
add-direct: Y add-shuffle: i -
(op, M) — M F Seq(fop) (op, M) — M'$[Pipe(Seq(fop))]™
op = <fd, fop,n> Typeld(fs) = forward op = <f4,,n> LastOP(M) # SNK (op, M) odd
o OutCard(M) =n LastOP(M) # SNK - (Typeld(fq) # forward V OutCard(M) #n
chaing: N chalng: N
(op, M) % M > Seq(fop) (op. M) 25 M

before after

Add of op2 with direct connections

before

after before after

=5 fop1  fd

‘»‘

M fop1' fd

Sl fop1 fop2

Add of op2 with shuffle connections

Successful chain of op2

Fig. 7: Operational semantics of the main operations applied to Matryoshkas. Creation, adding and chaining of new
operators. The illustrative examples show two replicas per operator (src, opl and op2).

SBBs a Seq running the distribution logic of the new
operator (M > Seq(fq)). In this way, outputs are correctly
routed to the replicas of the new operator through the new
shuffle connections. Finally, the last two rules model the
chain, which has effect if the distribution type is forward and
the number of replicas coincide. Rule “chain;” combines a
Seq running f,, to the rightmost SBB within each Pipe
in the current seed, such that it is executed serially after the
logic of the previous operator (through a function call). Rule
“chains” models the case where the chain is not admitted,
and the add is executed otherwise.

4.2 MultiPipe

The MultiPipe allows Matryoshkas to be interconnected
in acyclic graphs called S/M graphs (Split-and-Merge). In
Figure 3] we used the merge operation to allow the replicas
of OP4 to receive inputs from the replicas of OP2 and OP3,

while the split operation is applied to distribute the outputs
from OP4 to OP5 and SNK2. The library is able to model all
the graphs generated by the following grammar:

r = M| A2A(IT:1,, T | A2A(T™, [T.12,)
4 u= M| AAM, [Ti]))
> = M|A2A(LIL,, M)

@
A MultiPipe I' is either: i) a Matryoshka (terminal
symbol), or ii) an A2A having n > 0 MultiPipes in the
left-hand side and one I'* in the right-hand side, or iii)
an A2A having one I'™ in the left-hand side and n > 0
MultiPipes in the right-hand side. I'* and I'™ are two
MultiPipe structures that are either terminal or an A2A
with one terminal symbol in the left-hand side (I') or with
one terminal symbol in the right-hand side (I'™). Figure
shows one of the derivation trees of the graph in Figure



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

The grammar does not generate graphs with n x m fully-
connected Matryoshkas (with both n, m > 1). Extending the
type of graphs supported can be done in the future.

Derivation Tree

A2A(T™, [T, T4])
\ N
My Ms

Application Topology

AA([Fa, Tyl M)
My My

Fig. 8: A possible derivation tree of the application in
Figure 3|

4.2.1 Split of MultiPipes

The split operation has effect on one of the rightmost Ma-

tryoshkas present in the WINDFLOW application, i.e. one

that has not already been split or merged before and that is
not closed (without a final Sink). We introduce the notion of
splitting descriptor ¢ € Z as a triple { = <M, {op;}1, fs>
with the following fields:
e M is one of the rightmost Matryoshkas, the one where
we want to apply the split;

o {op;}7_; is the set of n > 1 operators used to create
the Matryoshkas that will receive the output values
produced by M. The destinations of the split are called
branched}

o fs is the splitting function (§22.2) returning for each
input t a pair <t,?> where 7 = 0,1...,n — 1 is the
index of the branch where ¢ is delivered. In case of
multicast /broadcast distributions, fs returns more pairs
<t,1> with different 7 values for the same ¢.

The splitting is defined as ﬂx Z xI' — T, and it is
applied to the topmost MultiPipe describing the whole
application. The semantics is stated by the rules in Figure 9]
The first two rules call recursively the split operation in the
right-hand side. The third and fourth rule are applied to
terminal symbols (Matryoshkas). The rule “split-noeffect”
is applied when the visit reaches a terminal symbol that is
not the Matryoshka where the split must be applied, or, if
it is the right one, it has already been terminated by a Sink.
In both cases, the split operation does not have effect. The
last rule splits applies the split. The result is a new A2A
where the Matryoshka M is the only block in the left-hand
side, while the right-hand side is composed by n > 1 new
Matryoshkas, each created starting from the corresponding
operator in the splitting descriptor. The outputs delivered by
the replicas of the last operator in M (op in Figure [9) must
first be properly routed to one of the branches based on the
splitting function, and then to one of the replicas within the
destination operator based on its distribution function fg;.
This is done by combining with the rightmost SBBs in M a
fan-out combiner ¥’ defined starting from f, and {fq, }7;.

4.2.2 Merge of MultiPipes

The merge operation unifies the output streams from in-
dependent MultiPipes, or from different rightmost Ma-
tryoshkas of the same MultiPipe, into a unique flow of

2. Although the grammar (2) allows a split with one branch only, this
case is avoided in the API because it does not have a practical merit.

split —<

I = A2A(ID,, T9) (T4 25T

(. T) 2 A2A(IT]p,, T)

splity:

P spli
T = A2A(T™, [Tify) Viepon © (G T3) 25 T

splita:
pit2 split

(€.T) — A2A(T™, [T,
(=<M,,> I'=M
(M’ # MV LastOP(M) = SNK)

(€, 1) 24 1

split-noeffect:

¢=<M,{opi}i;, fs> LastOP(M) # SNK
Vie.n] : 0P = <fd;; fopi,i> T =M

create

Vie[l..n] L op; > ML Y= Comb<(fs, {f(l, ?:1)

splits:

(C.T) 2 A2AM > %, M)

before

fop

Split operation: op delivers outputs to op1 and op2 based on
the splitting function. The replicas of op1 and op2 receive
outputs according to their distribution logic

Fig. 9: Operational semantics of the split operation on
MultiPipes.

values to be processed by next operators. We identify two
different cases:
merge-ind

e ———: I x OP — I' models the merge of n > 1E|
independent MultiPipes into a new MultiPipe. In-
dependent means that the MultiPipes are not part
of the same outermost MultiPipe (i.e. they are all at
the topmost level). This operation takes as input the
MultiPipes I'y,...,I',, and the operator that will be
fed by the union of their out-coming streams;

o X% 2 x T — I. We introduce the notion of merge
descriptor £ € = defined as a pair £ = <{M;}7,,0p>.
Given a MultiPipe I', we want to merge the subset
{M;}, of its n > 12 rightmost Matryoshkas. The
unified stream will feed the new operator op.

The semantics is based on the rules in Figure They
use the utility function Rmost : I' — P(M) to get the set of
the rightmost Matryoshkas within a MultiPipe. The rule
“merge-ind” merges independent MultiPipes. The idea
is depicted in the first example (left) of the figure. The
result of the merge is an A2A having I'; and I's in the
left-hand side and the new Matryoshka in the right-hand
side with the new operator receiving the unified stream.
To do the distribution, a Seq running the distribution logic
of the operator is combined with all the rightmost SBBs
within I'; and I's. To be correct, independent MultiPipes
can be merged if none of their rightmost Matryoshkas are
closed (terminated by a Sink). We check this with the utility
function noSink: I' — {True,False}. Its formal semantics

3. The case n = 1 is allowed by the grammar although it is not
useful. The API avoids n to be equal to 1.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8
r=m I'= A2A([T4],, T9) [ = A2A(T™, [T3]7,)
MO T RMost(T) — {M]} O T RMost(I') — RMost(I'¥) et
RMost(I") — U RMost(T';)
]
op=<fa,",> Viep.n] : noSink(T';) = True &= <{M;},, 0p> I'= A2A([1:]7=,, T9)
op M M TV = A2A([T; > Seq(fa)]7y, M) (I'= MV Jig1. . : LastOP(M;) = SNK) (6,74 merve, 7
merge-ind: p—— merge-noeffect: merge mergey : merge —<
(<Dy...Tp>, 0p) 298 1 ¢r)——r (&T) —= A2A([T\]}L,. T)
M ™ O] &= <{Mi}jy,op> T'=A2A(T™, [I]2,)
§=<{Mi}ie,,0p> I'=A2A(C", [I4]3L, 3, : ( Rmost M;} A Rmost(T;) N {M; 0
e . < sty et + (Rmost(Ty) & (M}, 5 MY, #0)
Vieli.n) : LastOP(M;) £ SNK  (€,T;) =5 1 Vie1.n) : LastOP(M;) # SNK  Vie[1.m) : ({Mi}izl ¢ Rmost( Fj))
mergea: ‘merge merges: ‘merge
(6.1) % A2A(T™, [Ty, T g, T, T, .. Tl (¢,T) 2% 1
€= <{M;}P,0p> Vicpi n : LastOP(M );éswx I = A2A(T™, [,],)
op=<fa,> op TS M I saCim] U Rmost(T';,) = {M;}]
I’ = A2A([L;,>Seq(fa)lfoy, M) {in, -y k}—[l m]\{yl,...uk}
mergeq:
(£,T) M A2A(T™, [Ty, ... Ty, T
before after before
M r M
g [ L)
I i)
=\/.
Ts T L2
Merge OflndependentMult\Plpes Tiand Ty Merge of Matryoshkas M2, M3 and M4 Merge of Matryoshkas M1, M2 and M3

Fig. 10: Operational semantics of the merge operation applied to MultiPipes.

is straightforward, and we omit it for brevity. If noSink
returns False in at least one of the MultiPipes to be

merged, 178, i undefined (this is avoided by the API).

The other rules apply within a MultiPipe to merge
some of its rightmost Matryoshkas {M;}?;. The rule
“merge-noeffect” does not perform any change, because
we recursively reached a sub-structure not involved in the
transformation. The rule “merge;” applies recursively the
merge on the right-hand side, while rule “merge,” applies
recursively the merge on one branch I'; in the right-hand
side, because { M}, are all in I';. Rule “merge,” applies
the merge when {M; }I'_, are all the rightmost Matryoshkas
of n > 1 MultiPipes that are sibling branches of the same
split. In the second example in Figure Moy 34 are all
the rightmost Matryoshkas of the second and the third
branch of the same split. The merge operation creates a
new MultiPipe I having My and I'y in the left-hand
side and the new Matryoshka (with the operator receiving
the merged stream) in the right-hand side. Then, I'; is re-
structured to have M; and I" in its right-hand side. All the
rightmost SBBs within M5 and I'; are combined with a Seq
running the distribution logic of the new operator. The last
example is similar, where we want to merge the rightmost
Matryoshkas of all the sibling branches of the same split.
Rules “merges” does not modify the MultiPipe, because
the requested merge operation is not supported.

4.3 PipeGraph

The PipeGraph is the environment where the user can
add Source operators, get access to the MultiPipes to be
filled with new operators, and apply merge/split opera-
tions. The PipeGraph maintains the list of MultiPipes

and their relationships. When the user wants to merge/split
MultiPipes, the PipeGraph functionalities check if the
transformation can be applied according to the semantics
rules. The run () method builds the structure in terms of
BBs, instantiates the corresponding threads (see the next
part), and starts the application until the sources terminate
generating the streams and all the tuples are processed.

4.4

In this section, we present the implementation details of
the BBs. WINDFLOW leverages the BBs implementation
available in the FASTFLOW library (ver. 3.0) [18]. Since the
BBs can be useful to develop other streaming libraries, they
have been implemented in a separate software layer that
extends, and specializes for the streaming domain, the one
provided by FASTFLOWﬂ In the ensuing description, we
refer to a node as a SBB (a sequential wrapper or a combiner)
not used within another combiner block. A node is a parallel
execution entity receiving inputs from its incoming streams
and delivering outputs to its out-coming streams.

Implementation

Concurrency model. BBs are a layer decoupling the run-
time design from its implementation. Nodes can be im-
plemented in different ways, e.g., by dedicated threads, or
through logical executors like Actors [20] or Tasks [21] that
are scheduled on a pool of threads. Our current implemen-
tation is based on thread-based parallelism — each node is
executed by a dedicated thread — which is also the model
adopted by STORM, FLINK and by some research proto-
types [8]. This avoids the scheduling overhead of logical

4. FastFlow is an open-source parallel programming library available
at https:/ /github.com/fastflow


https://github.com/fastflow

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

executors and allows the use in the operator functions of
blocking calls with external devices/systems (e.g., key-value
storage and logging systems) that may be inefficient with
logical executors. However, in this model the use of more
threads than the available cores leads to over-subscription and
to time-sliced execution which might generate reduced per-
formance. Chaining (available in WINDFLOW and in FLINK)
is a practical approach to mitigate this problem by fusing
replicas of different operators into the same thread.

Data forwarding. Streams are implemented by Single-
Producer Single-Consumer (SPSC) lock-free queues, where
the positions are memory pointers and atomic instructions
protect the accesses to the queue without locks [22]. This
lock-free design has been proved to be very efficient [23].
While the default queue used in WINDFLOW has a bounded
capacity, the runtime can be configured to use an unbounded
lock-free version [24] leveraging the bounded SPSC queue
as memory buffers. The overhead of dynamic allocation of
memory buffers is mitigated by keeping them in a fixed size
cache. In terms of concurrency control, the queue supports
blocking and non-blocking policies [25]. In the blocking policy,
when the queue is empty or full (in case of fixed size
capacity), the thread can be put to sleep on a condition
variable, while for the non-blocking policy, it performs a
busy-waiting loop with a small back-off between retries
to improve responsiveness. The blocking variant is similar
to the behavior of existing SPSs, while the lock-free non-
blocking approach allows achieving highest performance as
long as the number of threads does not exceed the number
of physical cores. This will be shown in §5}

Thread pinning and mapping. In the WINDFLOW runtime,
threads are pinned onto specific cores of the machine. This
is in contrast with the design of traditional SPSs, where
threads are scheduled by the OS. However, finding the
best way to map threads onto cores is a complex problem,
and strongly dependent on the application and the plat-
form. Complex heuristics, based on profiling of the operator
functions, have been developed in the past [§] and are
orthogonal to our work since they can be adopted in any
framework. Instead, we use an approach that is application
and platform agnostic (and so not necessarily giving the
best mapping). The idea is to rely on the fact that operators
cooperate according to the producer-consumer paradigm, and
that it is generally more efficient to execute communicating
replicas on sibling cores sharing some levels of cache to
reduce the data forwarding latency and the overhead of
data accesses. Our approach leverages the structure of the
applications in terms of nested BBs. Cores are assigned to
nodes through a sort of Depth First Search visit of the BBs
derivation tree. Specifically, in the Pipe, cores are assigned
to the internal blocks in a leftmost manner, while in the A2A
the cores are assigned visiting the blocks from the left to the
right in an interleaved manner, since blocks within the same
parallel container do not communicate with each other. In
we will show the effectiveness of this heuristic strategy.

5 EVALUATION

We present a performance comparison between WINDFLOW
and traditional and research SPSs. We compare with STORM

9

(version 2.1 .0)and FLINK (version 1. 9. 0), two traditional
SPSs based on the continuous streaming model (we disabled
their fault-tolerance support since we execute on a single
machine). We extend the analysis with a comparison with
the scale-up prototype BRISKSTREAM [8] (still based on the
JVM). Although the use of a system-level programming lan-
guage like C++ brings a certain performance improvement
per se, this comparison is useful to assess the potential of
WINDFLOW with respect to existing (and in some cases)
widely utilized tools. However, to make the performance
evaluation stronger, we also compare with STREAMBOX [10],
a C++-based SPS that uses a different streaming model
(morsel-driven parallelism [9]).

We use Java 11.0.5and gcc 9.0.1 (-03 optimization
flag turned on). The machine is a two CPUs AMD EPYC
7551 with 128GB of RAM. Each CPU has 32 cores (64
hardware threads) with groups of four cores sharing an L3
cache of 8MB. Each core has a clock rate of 2.4GHz and an
L2 of 512KB. Except for one specific experiment, we keep
the logical thread contexts disabled to have stabler results.
For all Java tests, we configured the maximum heap space to
32GB in order to avoid memory shortage errors in reading
the input datasets. No significant performance difference
has been measured with larger heap sizes.

5.1 Applications

We analyze seven applicationsﬂ used in the literature [2]
and whose DAGs are in Figure FraudDetection (FD)
applies a Markov model [26] to calculate the probability of
a credit card transaction being a fraud. SpikeDetection (SD)
finds out the spikes in a stream of sensor readings using
a moving-average operator and a filter. TrafficMonitoring
(TM) processes a stream of events emitted from taxis in the
city of Beijing. An operator leverages a geospatial library
for detecting the road traveled by the vehicle given its GPS
coordinates in the input event. The next operator computes
the updated per-road average speed given the vehicle’s
speed and road ID received in each input event. WordCount
(WCQ) counts the number of instances of each word present
in a text file. An operator splits the sentences into words,
another operator counts the word instances. The Yahoo!
Benchmark (YB) emulates an advertisement application.
The goal is to compute 10-seconds windowed counts of ad-
vertisement campaigns that have the same type. LinearRoad
(LR) emulates a tolling system for the vehicle expressways.
The system uses a variable tolling technique [27] accounting
for traffic congestion and accident proximity to calculate
toll charges. Finally, VoipStream (VS) has been used in
the evaluation of BLOCKMON [28]. It detects telemarketing
users by analyzing call detail records using Bloom filters.
The applications have been originally developed in Java.
For porting them in WINDFLOW, we translated the source
code in C++17. We maintained the code identical by replac-
ing the use of Java containers and hash tables with the
equivalent ones available in the C++ Standard Template
Library. Only for the TM application, we needed to translate
the calls to an external library (GEOTOOLS) not available in
C++ into the equivalent calls available in GDAL, a C++

5. The source code is publicly available in GitHub: https://github.
com/ParaGroup/StreamBenchmarks,


https://github.com/ParaGroup/StreamBenchmarks
https://github.com/ParaGroup/StreamBenchmarks

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

FraudDetection (FD)

SpikeDetection (SD)

10

TrafficMonitoring (TM)

..........................

, .
Moving Spike "
(source JE>{ Moo {30, JEmlt>{ s )
! .

, ‘
Map Speed i

[Source}m*[Matcher}m'[ Calc. }m>[ Sink ]

. ' !

WordCount (WC)
‘

-
" Word "
A[s°urce}m{s,,..ner}m{mumr}m»[ sink |

] \ ]

LinearRoad (LR)
‘

[ ‘Ave. }m_,[ o= ]—ﬂ*[ LAs ]

..........................

..........................

Yahoo! Benchmark (YB)

e = ey

VoipStream (VS)

i -m—» CcT24
E KB
: Global i
] [o] [l

| (e HE (=)
' KB i
i i
H H
i i
H 1
i i
4 H

KB
PRE !
S SE
M = -
ﬂ'

Fig. 11: Suite of applications used in the evaluation of WINDFLOW. Five pipelines and two acyclic graphs.

library for geo-spatial data. For VS, the original source code
for STORM utilizes different stream identifiers to enable dif-
ferent distribution strategies for tuples transmitted onto the
same physical connection. To represent this in WINDFLOW,
we modified the graph in order to be semantically equiv-
alent but representable in the library. The same version
(shown in the figure) has been implemented in FLINK and
STORM to have a fair comparison. Figure [11|also shows the
tuple distribution policies between operators (BD, FW and
KB stand for broadcast, forward and keyby, respectively).

We point out that the selected applications belong to
different domains. While some of them are representable
with relational algebra operators (e.g.,, SD and LR), oth-
ers involve the processing of unstructured data and user-
defined functions. For example, VS instantiates several
Bloom filters, FD instantiates a Markov model through a
custom user-defined class, WC processes unstructured data
(i.e. texts) while TM implements a stateful filter using as
predicate the outcome of the evaluation of a geospatial
library. Therefore, most of the applications are not express-
ible with relational algebra languages for streaming, like
CQL and its dialects. Furthermore, in terms of code pro-
ductivity, the implementation of the seven applications in
STORM/FLINK/WINDFLOW consists of approximately the
same amount of lines of code.

5.2 Building Blocks Utilization

Table 3| reports the number of BBs used in the seven ap-
plications. They are automatically created and composed
following the formal transition rules described in §4] The
application programmer is only involved in the definition
of the operator business logic code, the used data struc-
tures, and in interconnecting operators through add/chain
and split/merge operations on MultiPipes. The chosen
applications allow us to test all the BBs, composing them in
complex patterns. This is especially true in the case of the
last two applications (LR and VS). Since they are both based
on a complex DAG, they require a rich composition of BBs.
Although there is not a unique way to compose our BBs
to represent a given DAG, the table reports the number of
used blocks based on the transition rules and the definitions
given before, which represent the design choice adopted by
the WINDFLOW runtime.

SBBs PBBs
Seqs  Combiners — Pipes ~ Containers  All-to-Alls
FD 4 1 2 2 1
SD 5 1 2 2 1
™ 5 1 2 2 1
WwC 5 1 2 2 1
YB 6 1 2 2 1
LR 16 5 5 4 2
VS 32 13 14 15 9

TABLE 3: Building blocks used in the seven applications.

5.3 Throughput Analysis

We first evaluate the applications configured with one
replica (i.e. thread) per operator. The sources generate tuples
at maximum speed for 300 seconds and each run is repeated
50 times. The best configuration for FLINK is to use one
task-manager process and to run its streaming environment
within the same JVM of the calling program. In this way,
all the threads share the same memory space by avoiding
inter-process communications [29]. For BRISKSTREAM, the
optimization proposed in [8] finds the best mapping of
operators onto the cores to reduce remote memory accesses.
Although bringing some performance improvements, we
did not use this feature for two reasons: i) we are interested
in the performance of the raw runtime system, while this
optimization would be useful in all the SPSs, not only in
BRISKSTREAM; ii) this optimization is hard-coded for the
experiments and the machines used in [8], since it needs
profiling of the operators in a representative workload be-
fore the real run (which is not always realistic) and requires
manual profiling of the memory latencies. For this reason,
we evaluated BRISKSTREAM in its standard execution mode.

Figure reports the throughput and Figure the
speedup of WINDFLOW against the other SPSs. On average,
WINDFLOW is 11.5, 9.2 and 9.8 times faster than STORM,
FLINK and BRISKSTREAM. The largest speedup is with TM,
where the improvement also depends on the differences
between the two libraries used (GEOTOOLS vs GDAL). In
general, FLINK is better than STORM, while BRISKSTREAM
outperforms STORM in all the applications. We found that
one of the main reasons for the superior throughput advo-
cated by BRISKSTREAM in [8] is the use of jumbo tuples,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Throughput (one replica per operator)
10M T T T

T
Storm
Flink EX=3
BriskStream ==z
WindFlow mmmmm

X,

RN

100K |-

tuples/second(-logscale)
Ll

XX

=
2

[ XXX
53
XXX

2

%
10K -

YB LR Vs

Applications

(a) Throughput (sequential operators)

11

Speedup (one replica per operator)
T

o ‘ ‘ Wln(‘JFIow/Storm
35 S WindFlow/Flink EZ=3
WindFlow/BriskStream Ex====a |

P © P
5 IS RO O SR
0 d MRS T7ACER — pasw
FD sb ™ wc YB LR Vs
Applications

(b) Speedup (sequential operators)

Speedup (parallel operators

Throughput (parallel operators)
40M T

T =
Storm
Flink EX=3
BriskStream Exzz=zza
WindFlow s

10M

0T

o
%al

M

XXX

tuples/second(-logscale)
0z

00

o4

P

100K

we YB LR Vs
Applications

(c) Throughput (parallel operators)

: g : : WindFlow/Storm
WindFlow/Flink === |
WindFlow/BriskStream Bz

<

Avawe
KL

oY%
K

XL

oY%
K

Ve %
oot

> )

o o? W‘)‘b o o 'sg’b
O it z
wcC YB LR Vs

Applications

(d) Speedup (parallel operators)

oY%
K

o O o
o

FD SD ™

Fig. 12: Comparison between WINDFLOW against STORM, FLINK and BRISKSTREAM. Throughput and speedup with
sequential and parallel configurations of the operators (one tuple-at-a-time processing).

while FLINK and STORM process tuples one-at-a-time to
minimize latency. To have a fair comparison, and to assess
the performance of BRISKSTREAM in processing the streams
in a continuous fashion, the results in the figure are collected
using jumbo tuples of one item only. The use of larger jumbo
tuples will be described later in this section.

Use of parallel operators. Finding the optimal replication
plan (amount of replicas for each operator) is a complex
task. We use an approximate method where we measure the
processing time per tuple spent in each operator and we
compute its selectivity (number of outputs produced per
input). Based on that, we compute the weighted average
of the operator processing time on each tuple. We use this
to understand how large/small should be the parallelism
degree of an operator compared with the others. Therefore,
the amount of replicas is assigned proportionally to these
weights. We tried several configurations using the propor-
tion found and minor manual adjustments to fill all the
available cores. It should be noted that sometimes the best
throughput is not achieved by using all the available cores
of the machine due to memory bandwidth saturation or for
load imbalance reasons. The best results are in Figure [12q
and for the parallel speedup. Using parallel replicas
brings some performance improvement, more significant in
some applications (FD and TM), while smaller in others.
As already stated in [5], this is also due to a not perfect
distribution of keys and the presence of operators with low
compute resource demand. The parallel scalability (ratio
between the throughput with parallel operators and the one
measured with sequential operators on the same SPS) are
reported in Table 4 Although WINDFLOW starts from a
faster baseline, its average scalability is similar to the other
SPSs.

Operator chaining. In FLINK and WINDFLOW the opera-
tors with the same number of replicas and connected with

FD SD TM WC YB LR VS

STORM 177 275 264 520 111 127 1.06
FLINK 248 238 216 648 846 123 1.39
BRISKSTREAM  17.0 6.14 163 857 120 130 120
WINDFLOW 271 270 382 325 648 176 146

TABLE 4: Use of parallel operators (scalability).

a forward distribution can be chained. Chained operators
are executed by one thread by replacing data forwarding
through queues with function calls. While this transforma-
tion reduces pipeline parallelism, it allows a potential better
utilization of the CPU cores provided that the performance
of the chained operators scales with more replicas. Figure[T]]
shows the groups of chainable operators with a red dashed
box. We run each application with various replication de-
grees for each chained box and we report in Figure [13| the
improvement/deterioration obtained in the best case.

Throughput improvement with chaining

" Flink EX=3 WindFlow Emmsm |

g
g 100 ‘?’s\,
£ & <
o 50 o o AP g
3 ,\‘Pip v hid RS
E 0 = ree = PR S—
= > g 3"
50 ® o’ N
-100
FD SD ™ wc Vs
Applications

Fig. 13: Impact of chaining.

In FD the effect is marginal since the additional cores
saved by chaining the sink with the predictor do not help to
increase throughput (FD has a scalability of about 27 even
if the architecture has 64 cores). In VS and LR chaining is
detrimental since the chainable operators have a negligible
impact on the overall application. In VS most of the opera-
tors communicate with a keyby distribution and cannot be



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

chained, while in LR throughput is limited by the broadcast
distribution after the dispatcher. In the other applications,
chaining allows increasing throughput significantly, since
the operators are very fine grained and handle high input
rates, and chaining reduces communication overheads.

Impact of small batching. To increase throughput,
BRISKSTREAM can be configured to batch inputs into jumbo
tuples. The reduction of the processor stalls achieved with
batching [8] is obtained by computing the whole jumbo
tuple within the same user function in the operators, which
implies that the original source code needs to be modified to
enable this optimization. We study the impact of this small
batching in WINDFLOW by implementing in WC the same
batching scheme applied with jumbo tuples of b > 0 items
in BRISKSTREAM (where b = 1 means that each jumbo tuple
contains one input only). We select WC because the splitter
operator has a high selectivity (it produces 11.3 words per
sentence on average) and it is the application in our suite
that most benefits from the use of jumbo tuples. The results
are shown in Figure [I4left) with one replica per operator.

TrafficMonitoring (TM)

Effect of batching (WordCount)

BriskStream Ez===a
WindFlow s

600K 60K

Non—ﬁluck\ng [ ]
Blockin

480K

tuples/second
I
&
5]
=

tuples/second

N
X
S
=

120K

8

2 4 4 1
Jumbo tuple size # logical cores

Fig. 14: Effect of batching in WC (left), and of logical
thread contexts in TM (right).

Both the SPSs benefit from processing batches within
a single operator function to reduce processor stalls as
advocated in [5]. Our library is 3.3 times faster than
BRISKSTREAM in processing items one-at-a-time. It main-
tains about the same advantage by using jumbo tuples.
Batches of b = 1 =+ 8 are typical values adopted in prior
works. To highlight WINDFLOW efficiency, we observe that
BRISKSTREAM with b = 8 obtains similar performance than
WINDFLOW with b = 1. Although this is not a general
result, WINDFLOW is a fast tuple-at-a-time SPS, whose
throughput can be further enhanced with small batching.

Use of concurrency control mechanisms. BBs are pro-
vided with two concurrency control mechanisms (blocking
vs non-blocking) to handle synchronizations on the lock-free
queues implementing the channels (see §4.4). Non-blocking
synchronizations (used in the previous experiments) en-
hance responsiveness, by aggressively checking if push/pop
operators succeed. This busy-waiting loop might impair
performance when more threads run on different contexts of
the same physical core. The busy-waiting thread contributes
to fill the core pipeline with “useless” instructions that may
interfere with the useful work of the other thread running
on the same core. We present a study of this effect in Fig-
ure [[4(right). We selected TM because it is the most coarse-
grained application in the suite. In the previous analysis,

12

we looked for the best parallel configuration by having at
most one thread per core. For TM, the highest throughput
is achieved with 50 replicas of the Map-Matcher operator
while the remaining 14 cores are used by the other three
operators. The figure shows that in this configuration, the
non-blocking policy obtains a small improvement (3%). We
repeated the experiments by using all the logical cores of
the machine (i.e. 128). In this configuration, some heavily
utilized threads of the Map-Matcher operator are placed on
the same core of some replicas of the other operators, which
are less utilized and, in the non-blocking configuration,
spend a significant fraction of time in the busy-waiting loop
of their input queues. In this case, the use of the blocking
mechanism increases the throughput of 12%, since it delays
the execution of idle threads until they can do useful work.
The library is configured to use the non-blocking policy if
the number of threads does not exceed the available physical
cores, otherwise it switches to the blocking mode.

i
1)
S}

T
]
S
25
s
S50

55

®
s}
T

.
B
5
5
S5
.
5

RS
gl
3

3

5
55

33

%
s
0%

R
Sessssees:

2z
3
55

7z
3
5

0308
%
3355

—

25

IS
S

Normalized throughput (%)
38 3

o

Applications

Fig. 15: Throughput drop (in percentage) by disabling the
WINDFLOW pinning strategy.

Effect of thread mapping and pinning. As stated in
WINDFLOW comes with a thread mapping and pinning
strategy driven by the BBs structure. This mapping is based
only on the topological connections between threads and
does not leverage statistics of previous runs of the applica-
tion as in more sophisticated strategies [8]. However, our
policy does not need profiling of the application before its
actual run. Figure reports the normalized throughput
of the applications executed in WINDFLOW without any
mapping policy (threads are scheduled by the OS) compared
with the previous results with mapping/pinning enabled.
The results show that for the first three applications, the
throughput loss is small (3.5%) while it becomes signifi-
cant in the other applications (43%). In general, with more
complex DAGs involving broadcast distributions (like in LR
and VS), our mapping strategy plays an important role,
where communicating threads are placed in sibling cores
potentially sharing the L3 cache. We compared the L3 cache
misses using the AMDuProf [30] profiling tool officially
provided by AMD. We selected LR for this analysis. With
threads scheduled by the OS, the application issued 9.12
misses/k events while only 1.89 misses/k events are issued
with mapping/pinning enabled. Interestingly, even without
this optimization WINDFLOW is still faster than the other
considered SPSs in all the seven applications.

Impact of different composition rules. The transition
rules in §4{avoid centralization points in the distribution of
outputs to the next operator, and they try to reduce thread
oversubscription by combining on the same threads the
tuple distribution tasks and the operator’s functional logic.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13
FD SD WC LR VS
— 3 - 24 — p— —
: e : : (=3 : :
= 2 ‘ BN - YT g
w | = : : : :
—~ N -~ -~ o H | -~ . P~
2 | — 2° 2 9+ 2 — 2 g ;
> 0 . ; > > ; > o : =91 -
2 < : 2 o | 2 84 : ; 297 - e
Q : — o N ; 0] — : Q [9] —_
g2 == g - 8 g i g g ~ B
0 - . . B == g . & E* - 81 = ; l___l*
1 ) BN — LSS =
ot : —— o1 : ; : °1 : ; : \ : ; : : : ; :
ST FL BS WF ST FL BS WF ST FL BS WF ST FL BS WF ST FL BS WF

Fig. 16: Latency (microseconds) between WINDFLOW (WF) against STORM (ST), FLINK (FL) and BRISKSTREAM (BS).

Experimentally, we have found that this strategy achieves
better performance results. However, other transition rules
could be used. We consider two alternative rules: i) every
time a shuffle connection is needed (e.g., for keyby or broad-
cast tuple distributions), the runtime could use dedicated
threads to perform the distribution, by removing the cost of
this activity from the threads executing the replicas of the
previous operator; ii) in the same case, the runtime could
use one centralized thread performing the distribution of
inputs to the replicas of the next operator. Both cases require
to modify the transition rule “add-shuffle” in Figure
Figure shows the effect of the composition rules (the
WINDFLOW ones and the two discussed alternatives) on the
structure of the SD application (we denote the distribution
task with D).

Moving [ spike [IRQ
Avg. Detect.
Moving [ spike [IRG
Avg. Detect.

a) WindFlow composition rules

Source

Moving
Avo. [

Spike

Detect, B Sink

Source

c) Centralized distribution threads

Fig. 17: Different composition rules applied to SD.

We report in Figure (18| the relative throughput obtained
by these two alternative composition rules compared to
WINDFLOW'’s rules. The results previously obtained in Fig-
ure[I2d serve as a baseline. The use of dedicated threads for
the distribution logic can be conceptually useful in specific
cases where the distribution is a bottleneck and the pre-
vious operator cannot be sufficiently replicated. However,
in practice, it proved to be useless and even detrimental
for performance, because the number of threads increases
significantly, and oversubscription leads to time sliced ex-
ecution which induces overheads. The use of centralized
distribution threads alleviates this problem. However, it
reduces performance for fine-grained applications because
it causes a throttling in the streaming flow, and throughput
is limited by the output rate of the centralized distributors.
Interestingly, the only application not suffering from this
choice is TM, because the MapMatcher operator is a major
bottleneck and the distribution tasks are not critical. We

point out that one of the benefits of our BBs-based approach
is the flexibility to easily implement new rules in the runtime
system, and eventually to make the end user of the library
able to select one specific composition approach by provid-
ing high-level hooks in the API for choosing the desired
behavior.

Dedicated distribution threads

)

Centralized distribution threads
0

£ 100 < 10
= ] S .
seorl I IFN IHEDT 2 e —]
2 8 AN A S =
o 60 FEAEEIEILA IRl & o 7
£ 5 b | | | | £
o 40 FEAEAES AElq o 40 - I
@ oon | 6% | %58 oo | 1ot 0]
N / N
s 20 FEWAIEIEIEIEIE] & 20 .
£ ||| | 8 = 5
g 0 < X] X X X X § 0
FD SD TMWC YB LR VS FD SD TMWC YB LR VS
Fig. 18: Impact of different composition rules of BBs.

5.4 Latency Evaluation

We present an analysis of the end-to-end latency, measured
as the elapsed time from when the input has been gen-
erated/received by the source (represented by the tuple’s
timestamp field) to its eventual arrival at the sink. The idea
is to generate inputs from the sources alongside with a
timestamp representing the time at which they have been
generated. Operators along the path from a source to a sink,
copy the timestamp of the input item into the timestamp of
all outputs produced by the same input. Finally, we collect
statistics shown in Figure [16] Boxplots report the 5-th, 25-th,
50-th, 75-th and 95-th percentile of the latency. We chose five
out of seven applications for this analysis. We excluded TM,
because it is based on a different external library, and YB,
which is based on 10-seconds windowed counts that make
the latency values similar among the systems.

The latency is affected by the specific features of the
SPSs, like the size of the message queues. To have a fair
comparison, the applications have been run with a con-
trolled input rate of 10K tuples/second, and we fixed the
size of the message queues to 32K entries. The results show
that WINDFLOW provides small and stable latency values.
The BRISKSTREAM latency (in its best case with jumbo
tuples equal to 1) is very similar to STORM (except in FD
and VS). Among the traditional SPSs, FLINK provides the
lowest latency. On average, the mean latency obtained by
WINDFLOW is 12.7, 8.49 and 9.28 times smaller than the
one of STORM, FLINK and BRISKSTREAM. Furthermore, we



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

point out that WINDFLOW is able to achieve a significantly
lower tail latency, which is of great importance for latency-
sensitive streaming domains like trading and real-time in-
trusion detection.

Latency breakdown. In this final part, we would like to
break down the latency to identify the impact of the user
code within each operator, which has been translated from
Java to C++, and the time spent in the runtime system
code (e.g., during the distribution and collection phases).
For this reason, we repeated the latency measurement on
LR and VS. To nullify the enqueueing time before operators,
results have been collected using a low input rate of 20
inputs/second. Figure [19 shows the latency breakdown on
WINDFLOW and FLINK, the two SPSs providing the smallest
latency values on these two applications.

LinearRoad (LR) VoipStream (VS)

T
system code =
user code EZZZE

80

T T
system code =
user code EZ=EZR

elapsed time (usec)
3

elapsed time (usec)

N
s}

0
Flink WindFlow Flink

Fig. 19: Latency breakdown: LR (left) and VS (right).

The system time dominates latency. The user time is
reduced by 5.2 and 1.3 times in LR and VS, while the system
time is reduced by 5.5 times for both LR and VS. Therefore,
besides a faster operator code thanks to the translation
from JAVA to C++, WINDFLOW has a faster runtime system
enabling efficient continuous stream processing.

WindFlow

5.5 Comparison with C++ SPSs

In this final part, we compare with the C++-based SPS
STREAMBOX [10]. STREAMBOX uses the morsel-driven par-
allelism model [9], where inputs are buffered in batches of
records (called bundles), and dynamically scheduled for pro-
cessing on a pool of threads. In STREAMBOX, the scheduling
activity of bundles is performed in a centralized fashion, by
leveraging lock-based primitives.

For the comparison we use the WC application, which
was developed by the authors of STREAMBOX. We modi-
fied the WINDFLOW version in order to split strings using
the same functions used by STREAMBOX (based on libc
instead of libcpp). This improves the throughput with
respect to the previous experiments with WC. The results
are shown in Figure 20| with two different bundle sizes of
b=10 (small) and b=100 (the default one). For WINDFLOW,
the value of b corresponds to the size of jumbo tuples.
In both systems, the two concepts have the same mean-
ing: operators exchange messages containing several inputs
(e.g., sentences between source and splitter, words between
splitter and counter). We plot the throughput (in MB/s)
achieved with different number of cores on our machine.

14
1hroughput (b=10) I hroughput (b=100)
150 500
StreamBox StreamBox
WindFlow === WindFlow e
120 400}
90 = 300
£ £
23] 28]
= =
60 = 200
30 100
[
0 16 :!5 4 0% s 16 32

cores cores

Fig. 20: Comparison with STREAMBOX (WC).

WINDFLOW provides better throughput and scales well
up to 16 and 32 cores, with small and larger batches
respectively. STREAMBOX, due to its centralized schedul-
ing, scales ideally up to few cores. Its maximum scalabil-
ity with (b=100) is of 14.35 with 32 cores, while in the
same scenario the scalability of WINDFLOW is of 27.8.
STREAMBOX exhibits latency times of at least one order
of magnitude greater than WINDFLOW ones (results are
omitted for brevity).

6 RELATED WORKS

The work in [5] analyzes two main inefficiencies of tra-
ditional SPSs when executed on a single multi-core archi-
tecture. First, the large instruction footprint between con-
secutive invocations of the operator business logic code.
Second, the cost of remote memory accesses in NUMA
machines. To mitigate them, BRISKSTREAM [8] proposes the
use of jumbo tuples and a profile-based mapping strategy
of operators onto physical cores. WINDFLOW shows su-
perior performance thanks to both the lock-free design of
our BBs and the use of combiner blocks to reduce thread
oversubscription. Furthermore, the mapping strategy of
BRISKSTREAM is generally hard to be configured by the end
users developing applications. WINDFLOW, instead, has an
implicit mapping strategy driven by the BBs composition,
which is transparent to programmers using WINDFLOW and
does not require offline profiling of the operators.

Another family of SPSs for scale-up systems adopt
the morsel-driven model [9]. STREAMBOX [10] makes use
of lock-based primitives to protect scheduling phases of
batches onto threads, and indeed exhibited limited scalabil-
ity compared with WINDFLOW. A recent work still adopting
morsel-driven parallelism has been described in [11]. It ad-
vocates a code generation approach to improve performance
by fusing in a single tight loop several operators in pipeline.
However, although useful for specific and important cases,
such generative approach has some limitations in practice.
First of all, the fact that it can only be applied when ap-
plications are expressed in terms of a declarative approach
like SQL, where operators are the ones of relational algebra.
This allows a high-level description of the query, that can
be compiled by generating efficient runtime code. However,
applications with generic DAGs and generic stateful opera-
tors with a user-defined state definition cannot be expressed.
Indeed, the only stateful operator supported is aggregation
(performed using sliding windows and standard aggrega-
tion functions).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

An interesting research direction is to design new SPSs
exploiting GPUs and FPGAs. For GPUs, the two main
contributions are SABER [17] and FINESTREAM [31]]. They
adopt the same model of STREAMBOX. Both works sup-
port relational algebra queries and stateful operators, which
are mostly window-based operators performing aggrega-
tion. When compared with traditional SPSs like STORM
and FLINK, they exhibit at least one order of magnitude
higher throughput. However, GPU processing for streaming
applications is still limited to the ones in the domain of
relational algebra queries, while no support for general-
purpose stateful stream processing (actually supported by
both STORM and FLINK) has been provided nor discussed.
When comparing systems, both performance and expressive
power should be considered. In this sense, the general-
purpose model of WINDFLOW can be a valuable candidate
to support general streaming on GPUs in the future. The
same model can also be exploited to support FPGAs. In-
deed, one prior work [32] in this regard still supports the
sole compilation of relational algebra queries on FPGAs.

Some recent C++ systems for big data computations
are PICO [33] and THRILL [34]. They target batch pro-
cessing and distributed architectures. An interesting SPS
for distributed architectures is STREAMMINE3G [35]. This
system has some commonalities with WINDFLOW (e.g.,
a C++ interface and the possibility to customize opera-
tors with user-defined code), but they target different sce-
narios. While WINDFLOW is targeting a single multicore,
STREAMMINE3G focuses on orthogonal properties like elas-
ticity and fault-tolerance. The two approaches are thus com-
plementary. The lightweight fault-tolerance approach devel-
oped in STREAMMINE3G can be adapted to our Building
Block design in the future, to target distributed domains.

7 CONCLUSIONS

WINDFLOW is a C++ library for data stream processing on
multicores. The design of its runtime system has been done
using a formal approach based on BBs, whose combinations
are based on a formal semantics. These rules model impor-
tant features of streaming applications, like shuffle commu-
nications and operator chaining. The experimental evalua-
tion has been done against traditional and research SPSs.
More specifically, WINDFLOW is in the worst/average/best
case 2.23/11.5/48 times faster than STORM, 1.15/9.2/47
times faster than FLINK, and 1.28/9.8 /50 times faster than
BRISKSTREAM. Furthermore, it exhibited twice the scalabil-
ity of the C++ micro-batching SPS STREAMBOX on a selected
benchmark application.

In the future, we would like to investigate the full
potential offered by our novel BBs abstraction layer. One
critical issue in most of the SPSs is the right configuration
of streaming applications in terms of both chaining and
parallelism per operator, which requires a lot of effort by the
application programmer. Moreover, our BBs could be used
to design Machine Learning predictive approaches built on
the structured domain of their possible composition and
nesting. This could help in the development of improved
auto-tuning approaches.

15

ACKNOWLEDGMENTS

This work has been partially supported by the European
H2020 Project TEACHING under Grant 871385.

REFERENCES

[1] A. Arasu, S. Babu, and J. Widom, “The cql continuous query
language: Semantic foundations and query execution,” The VLDB
Journal, vol. 15, no. 2, p. 121142, Jun. 2006. [Online]. Available:
https://doi.org/10.1007 /s00778-004-0147-z

[2] M. V. Bordin, D. Griebler, G. Mencagli, C. E. R. Geyer, and L. G. L.
Fernandes, “Dspbench: A suite of benchmark applications for
distributed data stream processing systems,” IEEE Access, vol. 8,
PP- 222900-222917, 2020.

[3] “Apache storm,” http://storm.apache.org/, 2020, [Online; ac-
cessed 26-Feb-2020].

[4] “Apache flink,” https://flink.apache.org/| 2020, [Online; accessed
26-Feb-2020].

[5] S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and T. Heinze,
“Revisiting the design of data stream processing systems on multi-
core processors,” in 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), April 2017, pp. 659-670.

[6] Z.Li, H.Shen, and L. Ward, “Accelerating big data analytics using
scale-up/out heterogeneous clusters,” in 2019 28th International
Conference on Computer Communication and Networks (ICCCN), 2019,
pp- 1-9.

[71 A. Addisie and V. Bertacco, “Collaborative accelerators for
in-memory mapreduce on scale-up machines,” in Proceedings
of the 24th Asia and South Pacific Design Automation Conference,
ser. ASPDAC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 747753. [Online]. Available:
https://doi.org/10.1145/3287624.3287636

[8] S. Zhang, ]J. He, A. C. Zhou, and B. He, “Briskstream:
Scaling data stream processing on shared-memory multicore
architectures,” in Proceedings of the 2019 International Conference
on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: ACM, 2019, pp. 705-722. [Online]. Available:
http://doi.acm.org/10.1145/3299869.3300067

[9] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-
driven parallelism: A numa-aware query evaluation framework
for the many-core age,” in Proceedings of the 2014 ACM
SIGMOD  International Conference on Management of Data,
ser. SIGMOD 14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 743754. [Online]. Available:
https:/ /doi.org/10.1145/2588555.2610507

[10] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and
F. X. Lin, “Streambox: Modern stream processing on a multicore
machine,” in Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC 17. USA: USENIX
Association, 2017, p. 617629.

[11] G. Theodorakis, A. Koliousis, P. R. Pietzuch, and H. Pirk,
“LightSaber: Efficient Window Aggregation on Multi-core Pro-
cessors,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, ser. SSIGMOD "20.  Portland,
OR, USA: ACM, 2020.

[12] G. Mencagli, M. Torquati, D. Griebler, M. Danelutto, and L. G. L.
Fernandes, “Raising the parallel abstraction level for streaming
analytics applications,” IEEE Access, vol. 7, pp. 131944-131961,
2019.

[13] ISO/IEC, “Programming languages — c++,” Draft
International Standard N4660, March 2017. [Online]. Available:
https:/ /web.archive.org/web/20170325025026 / http:/ / www.
open-std.org/jtcl/sc22/wg21/docs/papers/2017 /n4660.pdf

[14] H. C. M. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of
Stream Processing: Application Design, Systems, and Analytics, 1st ed.
New York, NY, USA: Cambridge University Press, 2014.

[15] B. Gedik, “Generic windowing support for extensible stream
processing systems,” Softw. Pract. Exper., vol. 44, no. 9, pp.
1105-1128, Sep. 2014. [Online]. Available: http://dx.doi.org/10.
1002/spe.2194

[16] J. Chen, D.]. DeWitt, E. Tian, and Y. Wang, “Niagaracq: A scalable
continuous query system for internet databases,” in Proceedings
of the 2000 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’00. New York, NY, USA: Association
for Computing Machinery, 2000, p. 379390. [Online]. Available:
https:/ /doi.org/10.1145/342009.335432


https://doi.org/10.1007/s00778-004-0147-z
http://storm.apache.org/
https://flink.apache.org/
https://doi.org/10.1145/3287624.3287636
http://doi.acm.org/10.1145/3299869.3300067
https://doi.org/10.1145/2588555.2610507
https://web.archive.org/web/20170325025026/http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4660.pdf
https://web.archive.org/web/20170325025026/http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4660.pdf
http://dx.doi.org/10.1002/spe.2194
http://dx.doi.org/10.1002/spe.2194
https://doi.org/10.1145/342009.335432

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf,
P. Costa, and P. Pietzuch, “Saber: Window-based hybrid
stream processing for heterogeneous architectures,” in Proceedings
of the 2016 International Conference on Management of Data,
ser. SIGMOD 16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 555569. [Online]. Available:
https:/ /doi.org/10.1145/2882903.2882906

M. Torquati, “Harnessing Parallelism in Multi/Many-Cores with
Streams and Parallel Patterns,” Ph.D. dissertation, University of
Pisa, 2019.

M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick,
and M. Torquati, “Design patterns percolating to parallel
programming framework implementation,” International Journal
of Parallel Programming, vol. 42, no. 6, pp. 1012-1031, Dec 2014.
[Online]. Available: https://doi.org/10.1007/s10766-013-0273-6
D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting
Actor Programming in C++,” Computer Languages, Systems &
Structures, vol. 45, pp. 105-131, April 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.c1.2016.01.002

M. Voss, R. Asenjo, and J. Reinders, C++ Parallel Programming with
Threading Building Blocks, 1st ed. Apress, 2019.

J. Giacomoni, T. Moseley, and M. Vachharajani, “Fastforward
for efficient pipeline parallelism: A cache-optimized concurrent
lock-free queue,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP '08. New York, NY, USA: ACM, 2008, pp. 43-52. [Online].
Available: http://doi.acm.org/10.1145/1345206.1345215

S. Schneider and K.-L. Wu, “Low-synchronization, mostly lock-
free, elastic scheduling for streaming runtimes,” in Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 648661. [Online].
Available: https://doi.org/10.1145/3062341.3062366

M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “An efficient unbounded lock-free queue for multi-
core systems,” in Euro-Par 2012 Parallel Processing, C. Kaklamanis,
T. Papatheodorou, and P. G. Spirakis, Eds.  Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 662-673.

M. Torquati, D. De Sensi, G. Mencagli, M. Aldinucci, and M. Dane-
lutto, “Power-aware pipelining with automatic concurrency con-
trol,” Concurrency and Computation: Practice and Experience, vol. 31,
no. 5, p. e4652, 2019, e4652 cpe.4652.

D.Iyer, A. Mohanpurkar, S. Janardhan, D. Rathod, and A. Sardesh-
mukh, “Credit card fraud detection using hidden markov model,”
in 2011 World Congress on Information and Communication Technolo-
gies, Dec 2011, pp. 1062-1066.

A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts, “Linear road: A
stream data management benchmark,” in Proceedings of the Thir-
tieth International Conference on Very Large Data Bases - Volume 30,
ser. VLDB 04. VLDB Endowment, 2004, p. 480491.

F. Huici, A. di Pietro, B. Trammell, ]. M. Gomez Hidalgo,
D. Martinez Ruiz, and N. dHeureuse, “Blockmon: A high-
performance composable network traffic measurement system,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, p. 7980,
Aug. 2012. [Online]. Available: https://doi.org/10.1145/2377677.
2377690

S. Wu, M. Liu, S. Ibrahim, H. Jin, L. Gu, E. Chen, and Z. Liu,
“Turbostream: Towards low-latency data stream processing,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), July 2018, pp. 983-993.

“uprof, amd,” https://developer.amd.com/amd-uprof/, 2020,
[Online; accessed 28-Feb-2020].

F. Zhang, L. Yang, S. Zhang, B. He, W. Lu, and X. Du,
“Finestream: Fine-grained window-based stream processing on
cpu-gpu integrated architectures,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, Jul.
2020, pp. 633-647. [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/zhang-feng

R. Mueller, J. Teubner, and G. Alonso, “Streams on wires:
A query compiler for fpgas,” Proc. VLDB Endow., vol. 2,
no. 1, p. 229240, Aug. 2009. [Online]. Available: https:
//doi.org/10.14778 /1687627.1687654

C. Misale, M. Drocco, G. Tremblay, A. R. Martinelli, and
M. Aldinucci, “Pico: High-performance data analytics pipelines
in modern c++,” Future Generation Computer Systems, vol. 87, pp.

[34]

[35]

16

392-403, 2018. [Online]. Available: https://iris.unito.it/retrieve/
handle/2318/1668444/414280/fgcs_pico.pdf

T. Bingmann, M. Axtmann, E. Jobstl, S. Lamm, H. C. Nguyen,
A. Noe, S. Schlag, M. Stumpp, T. Sturm, and P. Sanders, “Thrill:
High-performance algorithmic distributed batch data processing
with C++,” in IEEE International Conference on Big Data. IEEE,
Dec. 2016, pp. 172-183, preprint arXiv:1608.05634.

A. Martin, A. Brito, and C. Fetzer, StreamMine3G: Elastic and
Fault Tolerant Large Scale Stream Processing. Cham: Springer
International Publishing, 2018, pp. 1-10. [Online]. Available:
https://doi.org/10.1007 /978-3-319-63962-8_145-1

Gabriele Mencagli is an Assistant Professor in
the Computer Science Department of the Uni-
versity of Pisa, ltaly. He is coauthor of about
60 peer-reviewed papers appeared in interna-
tional conferences, workshops and journals, and
of one book. His research interests are in the
area of parallel and distributed systems and
data stream processing. He is a member of the
Editorial Board of Future Generation Computer
Systems and Cluster Computing.

Massimo Torquati is an Assistant Professor
in Computer Science at the University of Pisa,
Italy. He has published more than 100 peer-
reviewed papers in conference proceedings and
journals, mostly in the field of parallel and dis-
tributed programming. He has been involved in
several ltalian, EU, and industry-supported re-
search projects. He is the maintainer and main
developer of the FASTFLOW parallel program-
ming library.

Andrea Cardaci is a Master Student enrolled in
the Master Degree Program in Computer Sci-
ence and Networking at the University of Pisa,
Italy. He has experience in programming for mo-
bile devices and his research interests are in the
field of high performance computing and com-
puter security.

Alessandra Fais is a Ph.D. student in the De-
partment of Information Engineering, Univer-
sity of Pisa. She received both her Bachelor's
and Master's Degrees from the Department of
Computer Science, University of Pisa. Her main
research interests are related to data stream
processing applications in the networking do-
main, high performance network processing,
data plane acceleration, SmartNICs and soft-
ware defined networks.

Luca Rinaldi is a Ph.D. student in the Depart-
ment of Computer Science of the University of
Pisa, Italy. His research interests are in the area
of parallel programming, actor-based program-
ming and high-level languages for parallel com-
puting. He has co-authored more than 10 papers
related to his research interests.

Marco Danelutto is a Professor in the Depart-
ment of Computer Science, University of Pisa,
Italy. His main research interests are in the field
of parallel programming models, in particular in
the area of parallel design patterns and algo-
rithmic skeletons. He is author of more than
150 papers in refereed international journals and
conferences. He was responsible for the Univer-
sity of Pisa research unit in different EU funded
projects (CoreGRID, GRIDcomp, ParaPhrase,
REPARA, RePhrase).


https://doi.org/10.1145/2882903.2882906
https://doi.org/10.1007/s10766-013-0273-6
http://dx.doi.org/10.1016/j.cl.2016.01.002
http://doi.acm.org/10.1145/1345206.1345215
https://doi.org/10.1145/3062341.3062366
https://doi.org/10.1145/2377677.2377690
https://doi.org/10.1145/2377677.2377690
https://developer.amd.com/amd-uprof/
https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://www.usenix.org/conference/atc20/presentation/zhang-feng
https://doi.org/10.14778/1687627.1687654
https://doi.org/10.14778/1687627.1687654
https://iris.unito.it/retrieve/handle/2318/1668444/414280/fgcs_pico.pdf
https://iris.unito.it/retrieve/handle/2318/1668444/414280/fgcs_pico.pdf
https://doi.org/10.1007/978-3-319-63962-8_145-1

	Introduction
	WindFlow Overview
	Operators
	API
	Creating Operators
	Creating Applications


	Building Blocks
	Utility Functions on PBBs

	WindFlow Design
	Matryoshka
	MultiPipe
	Split of MultiPipes
	Merge of MultiPipes

	PipeGraph
	Implementation

	Evaluation
	Applications
	Building Blocks Utilization
	Throughput Analysis
	Latency Evaluation
	Comparison with C++ SPSs

	Related Works
	Conclusions
	References
	Biographies
	Gabriele Mencagli
	Massimo Torquati
	Andrea Cardaci
	Alessandra Fais
	Luca Rinaldi
	Marco Danelutto


