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Abstract— Mobile bimanual manipulation in a dynamic and
uncertain environment requires the continuous and fast adjust-
ment of the robot motion for the satisfaction of the constraints
imposed by the task, the robot itself and the environment. We
formulate the pick-and-place task as a sequence of mobile
manipulation tasks with a combination of relative, global
and local targets. Distributed distance sensors on the robot
are utilized to sense the surroundings and facilitate collision
avoidance with dynamic and static obstacles. We propose an
approach to kinematically control the robot by solving a priority
constrained optimization problem online. Experimental results
on the YuMi bimanual robot mounted on the Ridgeback mobile
platform validate the performance of the proposed approach.

I. INTRODUCTION

Dual-arm manipulation and manipulators have been pre-
sented in detail in several review papers [1], [2]. The recent
developments in the areas of humanoid robots and the work on
learning by imitation has motivated the construction and use
of dual-arm setups. As bimanual robots can mimic human
behaviors, act and manipulate objects in ways similar to
humans, human bimanual skills can be transferred to them.
Consequently, the robot can work interchangeably and in
collaboration with humans in the same task. Furthermore,
mobile manipulation increases in popularity due to advance-
ments in the control approaches and performance, the reduced
costs and the need for mobility in robotic applications [3], [4].
Although, multiarm and mobile robots increase the complexity
of the system, they offer multiple end-effectors to interact
with the environment and the mobility to work on a broader
workspace executing more complex tasks. Their intrinsic
redundancy can be further exploited to satisfy constraints that
ensure the safety of the robot and its environment, such as
avoiding collisions and respecting its joint limits, as well as
satisfying additional objectives. The majority of the works on
dual-arm coordinated motion have focused on the cooperative
task space representation via absolute and relative velocity
variables ignoring environmental and self constraints that are
present in such problems in practice [5], [6], [7].

Distance sensors provide a solution of low price and
computational cost with fewer occlusion problems as opposed
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to cameras for obstacle detection. The majority of research on
collision avoidance with distance sensors focuses on repulsive
motions using potential fields which force the robot to move in
the opposite direction not taking advantage of all the feasible
directions, e.g. [8]. In particular, in [8] external distance
sensors are distributed on a mobile robotic arm to sense its
surroundings and reactively avoid collisions by modifying pre-
planned trajectories in the task space. Priority constraint based
optimization is used in [9] for a robotic arm equipped with
artificial skin consisting of multiple near-sighted proximity
sensors with equality constraints for collision avoidance. In
[10] inequality constraints are utilized; obstacles are sensed
by distance sensors mounted on a robotic arm but no priority
among the tasks and constraints is defined. Notice that the
above works focus on single-arm robots.

In bimanual robots both collision avoidance with external
obstacles and self-collision should be addressed. In [11] the
danger field method is used for collision avoidance of a
bimanual robot with external obstacles utilizing distance
sensors. A task hierarchy is adopted where non-critical
tasks are activated and deactivated depending on a scalar
danger field metric, while evasive motions are projected
into the null-space of the active tasks. Other works for
bimanual robots with collision avoidance either assume known
obstacle position or detect the obstacles visually. Self-collision
avoidance and collision avoidance with known obstacles is
addressed in [12] for a humanoid robot using a task priority
strategy where each successive task is projected into the null
space of the previous higher priority tasks. In our previous
work [13], self and obstacle collision avoidance for a dual-
arm robot is addressed together with relative motion tasks
and performance metrics optimization utilizing a priority
constrained optimization method.

Mobile platforms are predominantly used to navigate
the environment and move the robot to a specific location
followed by the execution of the manipulation task without
further utilization of the mobile platform. However, with
this strategy the mobile platform is not fully exploited since
apart from mobility it provides additional degrees of freedom
(dofs) that may be used to satisfy secondary objectives and
constraints. Mobile manipulation involves the consideration
of the dofs provided by the mobile platform and the arm as
one kinematic chain. Mobile manipulation with single arm
robots has been proposed for a service robot in [14] and for
door opening in [15].

Mobile bimanual pick-and-place tasks are addressed in
[16]. However, it relies on planning rather than real-time
motion generation given the current visual input which is



used to reconstruct the environment. It is claimed that the
real-time nature of this representation allows the robot to
react by replanning to unforeseen obstacles.

In this work we propose a mobile dual-arm robot equipped
with distance sensors distributed on its body and a kinematic
control method for a mobile bimanual pick-and-place task
in a dynamic environment. We restrict our analysis in cases
the manipulation target is near the robot, e.g. within the
field of view of the robot, as a navigation solution is out
of scope of this work. The pick-and-place task involves a
sequence of tasks with local, global and relative targets. We
formulate each task as a priority constrained optimization
problem that is solved online to avoid collisions with dynamic
and static obstacles and achieve the goal. The primary
contribution of this work is an integrated framework for
mobile bimanual robots with distributed proximity sensors
applied in bimanual pick-and-place tasks in the presence of
static and dynamic obstacles. Proximity sensing for obstacle
avoidance enables high responsiveness for reactive collision
avoidance, but existing works have not so far fully exploited
their potential. This work focuses on pick-and-place tasks,
however this framework can be generalized to other tasks that
can be defined using the subtasks and constraints described
in the following sections.

II. PROBLEM DESCRIPTION AND CONCEPT
SOLUTION

A mobile bimanual manipulator is inherently a system
of multiple kinematic chains and subchains. Thus, mobile
bimanual tasks may involve a number of motion tasks that are
more conveniently defined with respect to different frames of
reference. These are the world frame {w}, the mobile platform
frame {m} and the left {l} and right {r} end-effector frames.
By combining such motion tasks a robot is able to execute
various complex tasks in many applications. Four types of
motion tasks are distinguished on the basis of the reference
frame used for their most convenient description:

1) The global end-effector motion task defined in {w}
which can involve the left, right or both end-effectors
(6 or 12 dofs),

2) the local end-effector motion task defined with respect
to {m} which can involve the left, right or both end-
effectors (6 or 12 dofs). Notice that in this case the
target is invariant to the motion of the mobile platform,

3) the relative end-effector motion task (6 dofs) that is
defined either in {l} or {r},

4) the mobile platform motion task (3 dofs) that is defined
in {w}.

Additional tasks can be also defined on the basis of an opti-
mization objective, such as velocity or force manipulability
metrics for more efficient task execution. Examples of a
global end-effector motion task is the unimanual or bimanual
reaching of a pregrasp pose of an object located in the world.
A local end-effector motion task is for example the placing
of a grasped object on a tray that is located on the mobile
platform. A relative end-effector motion task is the assembly
of two small parts or the pose maintenance of a bimanually

grasped object during transfer. Finally, a mobile motion task
is the motion of the mobile platform to reach near a place
of interest, e.g. a desk or workbench.

Moreover, effective mobile bimanual task execution in a
dynamic environment involve a number of constraints that
should be respected. In this work three types of constraints
are detailed, namely:

1) Joint limit avoidance, that involves position and velocity
constraints,

2) self-collision avoidance, that involves collision avoidance
of the arms with each other and the mobile platform

3) obstacle collision avoidance, that involves collision
avoidance with static and dynamic obstacles, like humans
moving in the workspace of the robot.

One can also list other types of constraints such as field of
view, positioning of the center of mass, etc.

In this work a kinematic control approach with a hierarchi-
cal constrained optimization framework is adopted [17]. Robot
tasks are defined by equality constraints which relate the
desired velocity of the end-effector(s) to reach a global, local
or relative target with the robot configuration space velocities
via the forward kinematics of the appropriate kinematic
chain. Inequality constraints are used to model structural
or environmental constraints perceived by the sensors of
the system, which should be respected during execution.
The hierarchical optimization framework given equality and
inequality constraints associated with an appropriate priority
level, generates a configuration level velocity reference
which is then commanded to the controllers of the robotic
system. Thus, this control approach may be implemented on
robots that offer position and/or velocity interfaces. Given
all the equality and inequality constraints the robotic system
cannot guarantee their satisfaction at all times, as conflicts
between them may arise. The reference motion generated
by a hierarchical optimization algorithm is optimal for the
highest priority tasks, while lower priority tasks are satisfied
only when they do not cause the violation of higher priority
ones. Hence the definition of the appropriate priority between
them influences the quality of the derived solution regarding
the task objective.

In the hierarchical optimization framework the following
hierarchical constrained optimization problem is solved at
each control cycle to generate reference velocities for the
robot dofs that optimally satisfy them.

q̇∗ = lexmin
q̇,w1,...,wn

{‖w1‖...‖wn‖}

subject to Akq̇ ≤ bk + wk ∀k = 1 : n
(1)

where k denotes the index of a given priority level with 1
being the highest, n is the total number of hierarchical levels,
matrix Ak and vector bk describe the linear equality and
inequality constraints, wk are slack variables used to relax
the constraints in case of non-feasibility, while lexmin denotes
that the solution is minimal with respect to a lexicographic
order of priority [17]. Lastly, q̇ is the velocity vector provided
to the mobile dual-arm robot dofs. The position vector q may
be decomposed to q = [qTl qTr qTm]T, where ql, qr are the



joint position vectors of the left and right arm respectively,
while qm is the mobile platform dofs vector. Assuming an
omnidirectional mobile platform moving on a planar surface
its motion may be modelled as two prismatic and one revolute
joints, thus qm ∈ R3.

In this work we define the general framework for addressing
the specific challenges related to mobile bimanual robot tasks
in terms of the detailed design of tasks, constraints and
hierarchies and test it in a complex bimanual pick-and-place
operation. The implemented hierarchy is quite rich involving
all the tasks and constraints defined in this section given the
distributed sensing system of the robot. We thus demonstrate
the effectiveness of the approach in a realistic non-trivial case.
The following section details the formulation of equality and
inequality constraints.

III. CONSTRAINT FORMULATION

A. Equality constraints

In this work a kinematically controlled robot is assumed.
Let a reference trajectory in SE(3) be described by the
position pd and orientation Qd expressed as a unit quaternion,
as well as their velocities vd and ωd respectively. A quaternion
is given by Q = [η εT]T with η being the scalar and ε
the vector part of the quaternion. The relation between the
quaternion rate Q̇d and the rotational velocity ωd is given by:

Q̇d = 1
2

[
η −εT
ε ηI3 − ε̂

] [
0
ωd

]
where ε̂ is the skew symmetric

matrix of the quaternion vector part ε and I3 is the identity
matrix of size 3.

1) Global end-effector motion task: In the global motion
task, the reference trajectories involve motion generation to
a target pose for the end-effector(s) with respect to {w}. To
reach the target pose, end-effector reference trajectories can
be either planned or generated in real-time by a dynamical
system, e.g. a Dynamic Movement Primitive (DMP) [18].

In the hierarchical framework we construct equality con-
straints for this task by providing the kinematic relationship
between the task velocities vdi, ωdi with i = {l, r} for the
left and right end-effector and q̇:[

vdl
ωdl

]
=

[
Jl 0r Jml

]
q̇, left arm[

vdr
ωdr

]
=

[
0l Jr Jmr

]
q̇, right arm

(2)

where Jl, Jr ∈ R6×7 denote the respective individual arm
Jacobians and Jmi ∈ R6×3 with i = {l, r} denotes the
Jacobian which maps the mobile platform velocity to the
end-effector velocity and 0l, 0r are zero matrices of the same
dimensions as Jl and Jr respectively. Jacobian Jmi has zero
values in all coordinates of SE(3) that are not affected by
the platform motion. In (2) the motion of an end-effector is
generated by both the motion of the platform and the motion
of the respective arm.

2) Local end-effector motion task : In case the task is
defined in {m}, when for example the target is static with

respect to {m} (for e.g. an object on the platform), it
constitutes a local motion task and the respective Jacobian is:[

mvdl
mωdl

]
=

[
mJl 0r 0m

]
q̇, left arm[

mvdr
mωdr

]
=

[
0l

mJr 0m
]
q̇, right arm

(3)

where the upper left superscript denotes the frame of reference
{m} and 0m is the zero matrix of the same dimensions as
Jmi.

If a task involves only one end-effector, only one of the
equality constraints in (2) or (3) is needed in this level. When
both end-effectors are involved in this task type e.g. the
reaching of a bimanual pre-grasping pose (12 dofs), we
concatenate both the equality constraints of (2) or (3). Notice
that the additional dofs of the platform generate a redundancy
(total dofs ≥ 15) that facilitates the existence of a solution.

3) Relative end-effector motion task: In relative tasks the
reference trajectory is expressed with respect to either the left
{l} or the right {r} end-effector frame following [13]. In this
work {r} is selected. The equality constraint on the relative
motion task level is formed by utilizing the relative Jacobian
which connects the relative velocities rvdl, rωdl with q̇:[

rvdl
rωdl

]
=

[
mRT

r 03
03

mRT
r

] [
mJl −Γrl

mJr 0m
]
q̇ (4)

where mJl, mJr denote the respective individual arm Jaco-

bians, Γrl =

[
I3 −p̂rl
03 I3

]
with prl = mpl − mpr is used to

compute the velocity of a point coincident with the origin of
frame {l} that is induced by the velocity of frame {r}, and
03 denotes the zero square matrix of size 3.

4) Mobile platform motion task: This task is used to
move the mobile platform with respect to {w}. The equality
constraint is formed by utilizing the forward kinematics of
the mobile platform.[

vdm
ωdm

]
=

[
0l 0r Jm

]
q̇ (5)

where vdm are ωdm are the linear and rotational velocities of
the mobile platform with respect to {w}. Note that the rows
of Jm, vdm and ωdm have non-zero values only for the two
tangent and one normal directions to the planar surface of
motion for the linear and rotational velocity respectively.

B. Self-collision Avoidance Constraints

For the purpose of self-collision avoidance a similar
methodology as in our previous work [13] is followed to
construct the constraints. The links and the body of the
robot are modeled as capsules (Fig.1a). The method of
Velocity Damper [19] is used to derive the general form
of the constraint:

nT
[
mJli −mJrj 0m

]
q̇ ≥ −εc(dij − ds) (6)

where εc is a positive damping parameter, ds is a safety
distance between the two moving capsules, dij = ||pi − pj ||
and nij = (pi−pj)/||pi−pj || with p1 and p2 being the closest



points between the two capsules (Fig.1b) whose computation
is analytically described in [20]. Matrices mJli, mJrj are the
translational Jacobians of left and right robot arm considering
the beginning of the capsule as end-effector transformed to the
point pi and pj respectively; these Jacobians are augmented
with zero columns for the subsequent joints. In case a collision
pair involves a body capsule, which is static with respect to
{m}, the respective Jacobian is zeroed out. Each capsule pair

(a)

1capsule 2capsule

d

1 segmentline 2 segmentlinen1p

1r

2r

2p

(b)

Fig. 1: a) The capsule-based collision model of the YuMi robot, b)
a capsule-capsule collision pair.

constitutes a single inequality constraint. Collision pairs that
cannot collide due to their geometry and structural limits of
the robot are removed to reduce the number of constraints in
the solver.

C. Obstacle Collision Avoidance constraints

obstacledistance
sensor

fi

measurement
cone

ni

di

pi

Fig. 2: Distance sensor view and measurement of an obstacle.

The utilization of distance sensors allows sensing of static
and dynamic obstacles in the environment of the robot which
in turn allows for environment-agnostic safe motion. Let fi
denote a given distance sensor attached to the robot with
i = 1...F where F is the total number of distance sensors.
Let the position and unit view direction of sensor fi be pi(q)
and ni(q) respectively, as seen in Fig.2. In this work, we use
inequality constraints for sensor-based collision avoidance
which are formulated as follows:

nTi
[
Jli 0 Jmi

]
q̇ ≥ −εr(di − dsi), left arm

nTi
[
0 Jri Jmi

]
q̇ ≥ −εr(di − dsi), right arm

(7)

nTi
[
0 0 Jmi

]
q̇ ≥ −εr(di − dsi), platform (8)

with di being the distance measured, dsi a preset safety
distance associated with fi, εr is a positive damping parameter
and Jli, Jri, Jmi are the translational Jacobians mapping
the left, right arm joint velocities and the mobile platform
velocity respectively to the velocity of a point where sensor fi
is located. Notice that the measured distance di is the distance

from the sensor to the closest intersection point between the
measurement cone of the sensor and the obstacle (Fig.2).

It is important to identify whether the sensors view an
external obstacle or a part of the robot. If the measured
distance corresponds to a point obstacle that lies inside
a collision capsule of the robot, it is identified as a self-
measurement and the corresponding constraint is deactivated.

D. Joint Limit Avoidance

Finally, joint limits are strict limits of the robotic hardware
and must be respected at all costs. Joint limits usually
include position and velocity limits. Their constraints can
be implemented by damping the joint velocities near their
mechanical limits as well as near their velocity limits via the
following inequalities:

max

(
εl(qmin − q)
−Vq

)
≤ q̇ ≤ min

(
εl(qmax − q)

Vq

)
(9)

where εl are positive damping parameters, qmin, qmax are
the lower and upper joint limits respectively, Vq is the vector
of the absolute joint velocity limits limits, while max and
min denote the element-wise maximum and minimum of the
provided vectors respectively.

IV. MOBILE BIMANUAL PICK-AND-PLACE APPLICATION

The above framework has been applied in a mobile
bimanual pick-and-place task utilizing the various tasks
described in Sec. II. In particular, a mobile motion task was
utilized in the initiation of the pick-and-place task to reach
near the pick-up location and also to reach the place-down
location. Global motion tasks were utilized to reach the pre-
grasping poses and in combination with a relative motion task
to grasp, to reach a pre-release pose and to release the object.
A local in combination with a relative motion task was used
to lift and retract the grasped object. Furthermore, to ensure
the safety of the robot and the environment the constraints
described in Sec. II were also utilized. Joint limit constraints,
self-collision constraints and obstacle collision avoidance
constraints along with the motion tasks were incorporated in
a prioritized scheme in order to complete the pick-and-place
task. Violation of joint limits not only generates infeasible
motion, but can also damage the robot, while violation of the
collision avoidance constraints might damage the robot and
the environment. Thus, it is reasonable to adopt the following
hierarchical order of constraints in descending order:

cjl � ccol � crel �
cglo
cloc
� cmob (10)

where cjl, ccol refer to joint limits and collision avoidance
that includes self and dynamic obstacle collision avoidance,
while crel, cglo, cloc and cmob refer to equality constraints
for relative, global, local and mobile tasks respectively. Task
crel has the highest priority among the equality constraints
since its violation may cause drop or squeeze of the grasped
object while the lowest priority equality constraint is cmob

since the mobile platform pose is a secondary objective in
comparison to the pose of the end-effectors in this task.



(a) (b)

Fig. 3: a) The YuMi robot mounted on the Ridgeback mobile
platform with the frames of reference displayed. b) The distance
sensors placed on YuMi.

A. Experimental setup and implementation details

Our hardware setup consists of a YuMi bimanual robot
mounted on a Ridgeback mobile platform (Fig.3a). Further-
more, 16 VL6180X distance sensors are placed on the arms of
the robot (Fig.3b) taking measurements every 40ms, as well
as two Hokuyo UST-10LX lidar sensors are installed on the
Ridgeback to perceive obstacles in the environment. Each of
the utilized lidar sensors is offering 270o measurement angle
with 0.25o resolution every 25ms. Each such measurement
constitutes a single obstacle collision avoidance constraint
resulting in 2178 external collision avoidance constraints for
all the utilized distance sensors. However only a small subset
of them is active at every control cycle depending on the
environment allowing for real-time performance.

The distribution of the sensors on the robot shown in Fig.3b
was selected empirically, however a more optimized distribu-
tion may be computed through an optimization algorithm [21].
The calibration of the pose of the sensors with respect to the
mobile frame {m} was done manually through a graphical
user interface. Furthermore, the AMCL ROS package was
utilized for the localization of the mobile platform in a known
map using lidar measurements and the odometry of the wheels.
Finally, the constrained optimization problem formulated in
the previous sections is solved using the HQP solver [17] as
it is capable of computing a solution in real-time in similarly
sized problems.

The reference trajectories for cglo, cloc, crel and cmob are
generated by utilizing a second order dynamical system both
for translation and rotation given by:

v̇d = α(−vd − β(pd − pT ))
ω̇d = α(−ωd − β2ηeεe)

(11)

where α = 5, β = 0.8 are positive constant gains and
pT , QT the target position and orientation expressed as
a unit quaternion. The system is integrated to provide a
reference translational and rotational velocity vd, ωd ∈ R3

and the reference position and orientation expressed as a
unit quaternion pd, Qd. Variables ηe and εe in (11) denote
the scalar and vector part of the quaternion error Qd ∗Q−1

T .
During execution static and dynamic obstacles, tables and

human respectively, are present in the scene. Safety distance
values ds are chosen empirically to trade off the distance
required to allow reaching the pick-and-place locations with
avoidance of dynamic obstacles. For the sensors on the wrist
the safety distance is 0.1m, on the forearm 0.15m and on the
mobile platform it ranges from 0.25m to 0.45m depending
on their location. Damping parameters in (6), (7), (8) and (9)
are set at values εr = 2, εc = εl = 0.5, to allow a smooth
reaction. The control cycle period is set to 8ms as a solution
to the optimization could be reached under this time period.
In cluttered scenes where the number of the active constraints
increases, the solver may take more than 8ms to reach an
optimal solution. In such cases the solver was interrupted
prematurely at 8ms and the current suboptimal solution was
considered without noticeable degradation of the quality of
the solution.

B. Pick-and-place experiment

The goal of the experiment is to grasp bimanually an object
from the pick-up location and release it on top of the container
(place-down location) shown in the snapshots of Fig.4. The
pick-and-place task can be segmented in multiple motion
sequences that must be executed sequentially to successfully
complete it. The target key-frames of each task may be
provided by a higher level planning module or extracted
by learning from demonstration [22]. In this experiment the
object pose, pick-up and place-down location are considered
known. The experiment is initiated with a mobile motion task
in order to position the robot close to the pick-up location.
At t = 10s during the mobile motion a person walks near
the robot and disturbs its task (Fig.4a). The robot senses the
human with the distance sensors and avoids collision with
him by modifying the mobile platform motion and by moving
the robot arms away from collision. Two global motion tasks
follow, one per end-effector, in order to reach a pregrasping
pose. Then while the right end-effector global task is active,
a relative motion task is executed to grasp the object. This
relative motion task is maintained until the object release.
Once the object is grasped, a local motion task is executed
in order to lift and retract the grasped object, followed by a
mobile motion task to reach close to the place-down location.
At t = 65s once again a person disturbs the robot which
avoids him (Fig.4b). A global motion task is executed to
reach a prerelease and a release pose and finally a relative
motion task to release the object (Fig.4c) .

The time evolution of the right end-effector with respect to
{w} and the relative pose between the two end-effectors are
given by Fig.5 and Fig.6 respectively. The green and cyan
vertical dotted lines denote the initiation of a task and the
human disturbance respectively, while the dashed lines denote
the commanded target pose. It is clear that the target key-
frames are successfully reached. In Fig.7 the distance sensor
measurements are displayed. Measurements from f4, f7 and
f8 are omitted since there were no obstacles in their view.
Notice the distance sensors sensing the human at t = 10s
(left: d1 − d3, d5 − d6) and t = 65s (left d1, d2, d5, d6 and
right d1). Then the robot quickly adjusts its motion and moves



(a) t = 10s (b) t = 65s (c) t = 100s

Fig. 4: Pick-and-place: Snapshots. See attached video.
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Fig. 5: Pick-and-place: Time evolution of the right arm end-effector
pose with respect to the world frame.
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Fig. 6: Pick-and-place: Time evolution of the relative pose between
the end-effectors.

away to avoid possible collisions. Notice that at t = 65s in
Fig.5 and Fig.6 the relative pose is maintained while the
right arm pose is disturbed by the presence of the human.
This happens due to the higher priority of the relative task
compared to the right arm task. In comparison at t = 10s
where there is no active relative or end-effector task, the
relative pose Fig.6 is visibly disturbed to avoid collision.
Slight violations occur momentarily due to low measurement
and control frequency with respect to human speed. After
85s the table is sensed (left:d1 and right: d2, d3). The rest of
the measurements correspond to self-measurements.
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Fig. 7: Pick-and-place: Distance sensors measurements saturated at
0.5m for left and right arm (a) and lidar measurements (b). Dashed
lines denote the safety distance.

C. Pose maintenance experiment

In order to further demonstrate the efficacy of the proposed
method in case of demanding tasks such as maintaining the
pre-release pose, an additional experiment was performed.
In particular, the robot is commanded to maintain the right
end-effector and the relative pose at at their initial values.



The human is purposely approaching the mobile platform
multiple times (at 7, 10, 12, 20, 22 and 25s) as seen in
Fig.8. The robot is avoiding the person while the arms are
adjusting their configuration in order to keep the relative
pose and right end-effector pose unaffected. The relative
pose is maintained with position errors less than 10−3m and
orientation errors less than 5 ·10−3rad. The right end-effector
orientation is maintained with error less than 5 · 10−3rad,
but the position error may reach up to 2.5 · 10−2m indicating
considerable constraint violations. This can be explained by
the lower priority of the right end-effector task with respect
to the relative task. Nevertheless, it converges to the desired
target as soon as the higher priority constraints allow it. Also,
small violations of the distance sensor constraints occur only
momentarily for the same reasons discussed in the previous
experiment.

Fig. 8: Pose maintenance at t = 15s. See attached video.

V. CONCLUSIONS

In this work we formulate the pick-and-place task as a
sequence of mobile manipulation tasks with relative, global
and local targets in each task. Constraints for avoidance of
joint limits, self-collisions and dynamic obstacles as well as
equality constraints for task goals are defined in a hierarchical
order. A hierarchical constrained optimization problem is then
solved at each control cycle to generate reference velocities
for the robot dofs that optimally satisfy them. The robot
perception of the environment is robot centric with multiple
distance sensors placed on the robot. Experiments with the
YuMi robot mounted on the Ridgeback mobile platform
demonstrate the efficacy of the proposed method even in
case of demanding tasks. The developed methodology is
modular thus allowing our framework to be easily adapted
to new mobile bimanual robotic tasks.
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