

1

A Survey on Application Layer Protocols for the Internet of Things

Vasileios Karagiannis1, Periklis Chatzimisios1, Francisco Vazquez-Gallego2, Jesus Alonso-Zarate2

1 CSSN Research Lab, Department of Informatics, Alexander TEI of Thessaloniki, Greece
basilkaragiannis@gmail.com, peris@it.teithe.gr

2 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Spain
[francisco.vazquez, jesus.alonso]@cttc.es

ABSTRACT

It has been more than fifteen years since the term Internet of Things (IoT) was introduced. However, despite
the efforts of research groups and innovative corporations, still today it is not possible to say that the IoT is
upon us. This is mainly due to the fact that a unified IoT architecture has not yet been clearly defined and
there is no common agreement in defining communication protocols and standards for all the IoT parts. The
framework that current IoT platforms use consists mostly in technologies that partially fulfill the IoT
requirements. While developers employ existing technologies to build the IoT, research groups are working
on adapting protocols to the IoT in order to optimize communications. In this paper, we present and compare
existing IoT application layer protocols as well as protocols that are utilized to connect the “things” but also
end-user applications to the Internet. We highlight IETF’s CoAP, IBM’s MQTT, HTML 5’s Websocket
among others, and we argue their suitability for the IoT by considering reliability, security, and energy
consumption aspects. Finally, we provide our conclusions for the IoT application layer communications based
on the study that we have conducted.

Keywords: Internet of Things (IoT), Application Layer Protocols, Request/Response, Publish/Subscribe.

1. INTRODUCTION

The IoT envisions hundreds or thousands of end-
devices with sensing, actuating, processing, and
communication capabilities able to be connected to
the Internet [1]. These devices can be either directly
connected using cellular technologies, such as
2G/3G/Long Term Evolution and beyond (5G), or
through a gateway, forming a local area network, to
establish connection to the Internet. The latter is the
case where the end-devices usually form Machine
to Machine (M2M) area or capillary networks using
various radio technologies, such as Zigbee (based
on the IEEE 802.15.4 Standard), Wi-Fi (based on
the IEEE 802.11 Standard), 6LowPAN over Zigbee
(IPv6 over Low Power Personal Area Networks), or
Bluetooth (based on the IEEE 802.15.1).

Regardless the specific wireless technology used
to deploy the M2M network, all the end-devices
should make their data available to the Internet [2].
This can be achieved either by sending the
information to a proprietary web server accessible
from the Internet or by employing the cloud. Online
platforms such as ThingSpeak.com or Open.Sen.se,
among many alternatives, are M2M clouds able to
receive, store, and process data. Besides acting as
remote data bases, M2M clouds also provide the
following key services:

1. They offer Application Programming
Interfaces (API) with built-in functions for
end-users, thus providing the option to
monitor and control end-devices remotely
from a client device.

2. They act as asynchronous intermediate nodes
between the end-devices and final applications
running on devices such as smart phones,
tablets or desktops.

Figure 1. IoT architecture

2

Our paper focuses on the protocols that handle
the communication between the gateways, the
public Internet, and the final applications (Figure
1). They are application layer protocols that are
used to update online servers with the latest end-
device values but also to carry commands from
applications to the end-device actuators.

The rest of the paper is organized as follows.
Section 2 describes our research motivation,
whereas each of the other sections is dedicated to a
specific application layer protocol. At the first part
of each section, we introduce an application layer
protocol, we present its usage, we discuss its
reliability and security features, and we then
compare its suitability for the IoT with other
application layer protocols. Finally, in Section 9, we
present overall conclusions based on the previous
sections and we provide further research areas.

2. RESEARCH MOTIVATION

The IoT is a term used for a huge wave of
innovation originated in industries, but currently
heading to urban centers, in-home environments,
and individuals.

Our main motivation was to create an IoT
testbed in which we could test communications
protocols and also innovative applications that
could be applied to a gamut of scenarios. While
searching for the appropriate application layer
protocols to use, we found out that while
comparisons can be found between two protocols,
there is no paper overviewing all the possible
alternatives with pros and cons.

The main motivation of this paper is to fill this
gap and to provide a brief yet accurate description
of the key protocols that are being used today to
implement the IoT. More specifically, we will
discuss the following list of protocols being used
alternatively or jointly to solve different needs of
the communication between machines:

1) CoAP: Constrained Application Protocol.

2) MQTT: Message Queue Telemetry Transport.

3) XMPP: Extensible Messaging and Presence
Protocol.

4) RESTFUL Services: Representational State
Transfer.

5) AMQP: Advanced Message Queuing Protocol

6) Websockets.

3. COAP

The Constrained Application Protocol (CoAP)
[5] is a synchronous request/response application-
layer protocol that was designed by the Internet
Engineering Task Force (IETF) to target
constrained-recourse devices. It was designed by
using a subset of the HTTP methods making it
interoperable with HTTP [3].

CoAP runs over UDP to keep the overall
implementation lightweight. It uses the HTTP
commands GET, POST, PUT, and DELETE to
provide resource-oriented interactions in a client-
server architecture. CoAP is a request/response
protocol that utilizes both synchronous and
asynchronous responses. The reason for designing a
UDP-based application layer protocol to manage
the resources is to remove the TCP overhead and
reduce bandwidth requirements [4]. Additionally,
CoAP supports unicast as well as multicast, as
opposed to TCP, which is by its nature not
multicast-oriented.

 Running on the unreliable UDP, CoAP
integrated its own mechanisms for achieving
reliability. Two bits in the header of each packet
state the type of message and the required Quality
of Service (QoS) level. There are 4 message types:

1. Confirmable: A request message that requires
an acknowledgement (ACK). The response
can be sent either synchronously (within the
ACK) or if it needs more computational time,
it can be sent asynchronously with a separate
message.

2. Non-Confirmable: A message that does not
need to be acknowledged.

3. Acknowledgment: It confirms the reception of
a confirmable message.

4. Reset: It confirms the reception of a message
that could not be processed.

There is also a simple Stop-and-Wait
retransmission mechanism for confirmable
messages and a 16-bit header field in each CoAP
packet called Message ID which is unique and used
for detecting duplicates.

CoAP–HTTP Mapping enables CoAP clients to
access resources on HTTP servers through a reverse
proxy that translates the HTTP Status codes to the
Response codes of CoAP [5].

Even though CoAP was created for the IoT and
for M2M communications, it does not include any
built-in security features. The protocol that is

3

proposed to secure CoAP transactions is the
Datagram Transport Layer Security (DTLS). DTLS
runs on top of UDP and is the analogous of TLS for
the TCP. It provides authentication, data integrity,
confidentiality, automatic key management, and
cryptographic algorithms [6]. Even though DTLS
secures UDP transfers, it was not designed for the
IoT, thus its suitability can be argued. To begin
with, DTLS does not support multicast [6], which is
a prime advantage of CoAP compared to other
application layer protocols. DTLS handshakes [7]
require additional packets that increase the network
traffic, occupy additional computational resources,
and shorten the lifespan of mobile devices that run
on batteries, an essential part of the IoT. Being
designed for the IoT, CoAP is HTTP-compatible,
but CoAP over DTLS might create additional
confusion to the HTTP servers due to its diverse
packet structure. Other protocols (IPsec, Lithe) for
securing CoAP can be found in the literature
including approaches that are still being under
research [6]-[7].

4. MQTT

Message Queue Telemetry Transport (MQTT)
[8] was released by Andy Stanford-Clark of IBM,
and Arlen Nipper of Arcom and targets lightweight
M2M communications. It is an asynchronous
publish/subscribe protocol that runs on top of the
TCP stack. Publish/subscribe protocols meet better
the IoT requirements than request/response since
clients do not have to request updates thus, the
network bandwidth is decreasing and the need for
using computational resources is dropping.

In MQTT there is a broker (server) [8] that
contains topics. Each client can be a publisher that
sends information to the broker at a specific topic
or/and a subscriber that receives automatic
messages every time there is a new update in a
topic he is subscribed. The MQTT protocol is
designed to use bandwidth and battery usage
sparingly, which is why, for example, it is currently
used by Facebook Messenger [9].

MQTT ensures reliability by providing the option
of three QoS levels:

1. Fire and forget: A message is sent once and
no acknowledgement is required.

2. Delivered at least once: A message is sent at
least once and an acknowledgement is
required.

3. Delivered exactly once: A four-way
handshake mechanism is used to ensure the
message is delivered exactly one time.

Even though MQTT runs on TCP, it is designed
to have low overhead compared to other TCP-based
application layer protocols [10]. Moreover, the
publish/subscribe architecture that it used, is more
suitable for the IoT than request/response of CoAP,
for example, because messages do need to be
responded. This means lower network bandwidth
and less message processing that actually extends
the lifetime of battery-run devices.

To ensure security, MQTT brokers may require
username/password authentication which is handled
by TLS/SSL (Secure Sockets Layer), i.e., the same
security protocols that ensure privacy for HTTP
transactions all over the Internet.

By comparing MQTT with the aforementioned
CoAP, it is possible to see that the UDP-based
CoAP has lower overhead than the TCP-based
MQTT. However, due to the lack of TCP’s
retransmission mechanisms, packet loss is more
likely to happen when using CoAP. According to a
recent research study [10], MQTT experiences
lower delays that CoAP for low packet losses, but
CoAP generates less extra traffic for ensuring
reliability. However, results can vary depending on
the network conditions. Additionally packet loss
and delays depend on the QoS of the messages. In
both protocols, packet loss degrades and delays
increase when the QoS level is higher.

5. XMPP

The Extensible Messaging and Presence Protocol
(XMPP) was designed for chatting and message
exchanging. It was standardized by the IETF over a
decade ago, thus being a well-proven protocol that
has been used widely all over the Internet.
However, being an old protocol, it falls short to
provide the required services for some of the new
arising data applications. For this reason, last year,
Google stopped supporting the XMPP standard due
to the lack of worldwide support [11]. However,
lately XMPP has re-gained a lot of attention as a
communication protocol suitable for the IoT.

XMPP runs over TCP and provides
publish/subscribe (asynchronous) and also
request/response (synchronous) messaging systems.
It is designed for near real-time communications
and thus, it supports small message footprint and
low latency message exchange [12]. As the name
explicitly states, XMPP is extensible and allows the
specification of XMPP Extension Protocols (XEP)
that increase its functionality.

XMPP has TLS/SSL security built in the core of
the specification. However, it does not provide QoS

4

options that make it impractical for M2M
communications. Only the inherited mechanisms of
TCP ensure reliability.

XMPP supports the publish/subscribe
architecture that is more suitable for the IoT in
contrast to CoAP’s request/response approach.
Furthermore, it is an already established protocol
that is supported all over the Internet as a plus with
regard to the relatively new MQTT [13]. However,
XMPP uses XML messages (eXtensible Markup
Language) that create additional overhead due to
unnecessary tags and require XML parsing that
needs additional computational ability which
increases power consumption.

6. RESTFUL SERVICES

The Representational State Transfer (REST) is
not really a protocol but an architectural style. It
was first introduced by Roy Fielding in 2000 [14],
and it is being widely used ever since.

REST uses the HTTP methods GET, POST,
PUT, and DELETE to provide a resource-oriented
messaging system where all actions can be
performed simply by using the synchronous
request/response HTTP commands. It uses the
built-in accept header of HTTP to indicate the
format of the data that it contains. The content type
can be XML or JSON (JavaScript Object Notation)
and depends on the HTTP server and its
configuration. REST is already an important part of
the IoT because it is supported by all the
commercial M2M cloud platforms. Moreover it can
be implemented in smartphone and tablet
applications easily because it only requires an
HTTP library which is available for all the
Operating Systems (OS) distributions. The features
of HTTP can be completely utilized in the REST
architecture including cashing, authentication, and
content type negotiation [15].

RESTful services use the secure and reliable
HTTP which is the proven worldwide Internet
language. It can make use of TLS/SSL for security.
However, today most commercial M2M platforms
do not support HTTP requests. Instead, they
provide unique authentication keys that need to be
in the header of each request to achieve some level
of security.

Even though REST is already used widely in
commercial M2M platforms, it is unlikely that it
will become a dominant protocol due to not being
easily implementable. It uses HTTP which means
no compatibility with constrained-communication
devices. This leaves its use for final applications.

Given the current tendency for applications
running on smartphones, tablets and pads, the
additional overhead associated to request/response
protocols affect battery usage, as it also does the
continuous polling or long polling for values
especially when there are no new updates and the
overhead becomes useless. Issues that can be
avoided if a publish/subscribe protocol is used such
as MQTT or XMPP. CoAP on the other hand,
which is the lightweight version of REST, bears the
same disadvantages of the request/response
architecture. However it is designed to run over
UDP making it capable of being used by
constrained resource devices, counter to REST.

7. AMQP

The Advanced Message Queuing Protocol
(AMQP) is a protocol that arose from the financial
industry. It can utilize different transport protocols
but it assumes an underlying reliable transport
protocol such as TCP [16].

AMQP provides asynchronous publish/subscribe
communication with messaging. Its main advantage
is its store-and-forward feature that ensures
reliability even after network disruptions [17]. It
ensures reliability with the following message-
delivery guarantees [16]:

1. At most once: means that a message is sent
once either if it is delivered or not.

2. At least once: means that a message will be
definitely delivered one time, possibly more.

3. Exactly once: means that a message will be
delivered only one time.

Security is handled with the use of the TLS/SSL
protocols over TCP.

Recent research has shown that AMQP has low
success rate at low bandwidths, but it increases as
bandwidth increases [17]. Another study shows that
comparing AMQP with the aforementioned REST,
AMQP can send a larger amount of messages per
second [18]. Additionally, it has been reported that
an AMQP environment with 2,000 users spread
across five continents can process 300 million
messages per day [18]. Furthermore, JPMorgan
which is an American banking and financial
services company uses AMQP to send 1 billion
messages per day [19].

AMQP is already in use and its performance has
been outstanding. Its main difference comparing it
to MQTT and CoAP is that AMQP targets
transactions and aims at being an efficient
messaging system, while CoAP and MQTT target

5

hardware devices and M2M networks. Nonetheless,
implementing the IoT requires both messaging
systems and lightweight protocols for the machines.

8. WEBSOCKET

The Websocket protocol [20] was developed as
part of the HTML 5 initiative to facilitate
communications channels over TCP. Websocket is
neither a request/response nor a publish/subscribe
protocol. In Websocket, a client initializes a
handshake with a server to establish a Websocket
session. The handshake process is intended to be
compatible with HTTP-based server-side software
so that a single port can be used by both HTTP and
Websocket clients [20]. However, what comes after
the handshake does not comply with the HTTP
rules. In fact, during a session, the HTTP headers
are removed and clients and servers can exchange
messages in an asynchronous full-duplex
connection. The session can be terminated when it
is no longer needed from either the server or the
client side. Websocket was created to reduce the
Internet communication overhead while providing
real-time full-duplex communications. There is also
a Websocket sub-protocol called Websocket
Application Messaging Protocol (WAMP) that
provides publish/subscribe messaging systems.

Websocket runs over the reliable TCP and
implements no reliability mechanisms on its own. If
needed, the sessions can be secured using the
Websocket over TLS/SSL.

During the session, Websocket messages have
only 2 bytes of overhead. As reported by relevant
studies [21], the HTTP polling (in REST) repeats
header information when the data transmission rate
increases, thus increasing latency. Websocket is
estimated to provide a three-to-one reduction in
latency against the half-duplex HTTP polling.
Websocket is not designed for resource constrained
devices as the previous protocols and its
client/server based architecture does not suit IoT
applications. However it is designed for real-time
communication, it is secure, it minimizes overhead
and with the use of WAMP it can provide efficient
messaging systems. Thus, it can compete any other
protocol running over TCP.

9. CONCLUSIONS & FUTURE WORK

 In this paper, we have presented a common IoT
architecture by describing the parts where
application layer protocols are needed to handle
communication. We have presented the most
representative application layer protocols that have
gained attention for IoT while providing a

comparison among each other and argue their
suitability for the future of the IoT. Among them,
we have identified IETF’s CoAP as the only one
that runs over UDP, thus making it the most
lightweight, followed by HTML 5’s Websocket that
significantly reduces the communication’s overhead.
The computational and communication ability of
the devices involved should also be taken into
consideration when choosing the most appropriate
protocol. If constrained communication and battery
consumption is not an issue, RESTful services can
be easily implemented and interact with the Internet
using the worldwide HTTP. This can be proved
very useful in testbeds as it can work as proof of
concept for final applications. On the contrary,
MQTT, which is used by Facebook Messenger, is
not as widely used as HTTP but has proved to be
more energy efficient for battery-operated devices.
Additionally if the target applications require
massive updates of the same value,
publish/subscribe protocols (e.g. MQTT, XMPP,
AMQP) are more suitable.

To sum up, there are several factors that
influence the selection of an application layer
protocol. The most important factors are the
computational and communication ability of the
end-devices, energy consumption and final
application in mind. For this reason, opinions differ.
An overview of major differences among the
aforementioned protocols can be found above
(Table 1).

 Having seen this paper purely qualitatively,
future work will be aimed at implementing all these
protocols in order to obtain an experimental and
quantifiable comparison among them. Moreover,
we plan to explore the possibility of creating a
server that supports multiple application layer
protocols and dynamically chooses the most
appropriate according to the network’s conditions.

Protocol Transport
QoS

options
Architecture Security

CoAP UDP YES Request / Response DTLS

MQTT TCP YES Publish / Subscribe
TLS/
SSL

XMPP TCP NO
Request / Response
Publish / Subscribe

TLS/
SSL

REST HTTP NO Request / Response HTTPS

AMQP TCP YES Publish / Subscribe
TLS/
SSL

Web
socket

TCP NO
Client / Server

Publish / Subscribe
TLS/
SSL

Table 1. Major differences among protocols

6

Such an innovative approach not designed so far,
would optimize the overall performance of the IoT
in various application scenarios.

REFERENCES

[1] Tasos Kaukalias and Periklis Chatzimisios,
“Internet of Things (IoT) – Enabling
technologies, applications and open issues”, in
Encyclopedia of Information Science and
Technology (3rd Ed.), IGI Global Press, 2014.

[2] Periklis Chatzimisios, Industry Forum &
Exhibition Panel on "Internet of Humans and
Machines", IEEE Global Communications
Conference (Globecom 2013), Atlanta, USA,
December 2013.

[3] Angelo P. Castellani, Mattia Gheda, Nicola Bui,
Michele Rossi, Michele Zorzi, “Web Services
for the Internet of Things through CoAP and
EXI”, IEEE International Conference on
Communications Workshops (ICC), 5-9 June
2011, pp. 1 – 6.

[4] Sye Loong Keoh, Sandeep S. Kumar, Hannes
Tschofenig, “Securing the Internet of Things: A
Standardization Perspective”, Internet of Things
Journal IEEE (Volume: 1, Issue: 3), June 2014,
pp. 265 – 275.

[5] Maria Rita Palattella, Nicola Accettura, Xavier
Vilajosana, Thomas Watteyne, Luigi Alfredo
Grieco, Gennaro Boggia, Mischa Dohler,
“Standardized Protocol Stack for the Internet of
(Important) Things”, Communications Surveys
& Tutorials IEEE (Volume:15 , Issue: 3),
2013, pp. 1389 – 1406.

[6] Thamer A. Alghamdi, Aboubaker Lasebae,
Mahdi Aiash, “Security Analysis of the
Constrained Application Protocol in the Internet
of Things”, Second International Conference on
Future Generation Communication Technology
(FGCT), 12-14 Nov. 2013, pp. 163 – 168.

[7] Shahid Raza, Hossein Shafagh, Kasun Hewage,
René Hummen, Thiemo Voigt, “Lithe:
Lightweight Secure CoAP for the Internet of
Things”, Sensors Journal, IEEE (Volume:
13, Issue: 10), Oct. 2013, pp. 3711 – 3720.

[8] Shinho Lee, Hyeonwoo Kim, Dong-kweon
Hong, Hongtaek Ju, “Correlation Analysis of
MQTT Loss and Delay According to QoS
Level”, International Conference on
Information Networking (ICOIN), 28-30 Jan.
2013, pp. 714 – 717.

[9] http://mqtt.org/2011/08/mqtt-used-by-facebook-
messenger, cited 28 Jul 2014.

[10] Dinesh Thangavel, Xiaoping Ma, Alvin Valera,
Hwee-Xian Tan, Colin Keng-Yan Tan,
“Performance Evaluation of MQTT and CoAP
via a Common Middleware”, IEEE Ninth
International Conference on Intelligent Sensors,
Sensor Networks and Information Processing
(ISSNIP), 21-24 April 2014, pp. 1 – 6.

[11] http://www.zdnet.com/google-moves-away-
from-the-xmpp-open-messaging-standard-
7000015918/, cited 28 Jul 2014.

[12] Sven Bendel, Thomas Springer, Daniel
Schuster, Alexander Schill, Ralf Ackermann,
Michael Ameling, “A Service Infrastructure for
the Internet of Things based on XMPP”, IEEE
International Conference on Pervasive
Computing and Communications Workshops
(PERCOM Workshops), 18-22 March 2013, pp.
385 – 388.

[13] Michael Kirsche, Ronny Klauck, “Unify to
Bridge Gaps: Bringing XMPP into the Internet
of Things”, IEEE International Conference on
Pervasive Computing and Communications
Workshops (PERCOM Workshops), 19-23
March 2012, pp. 455 - 458.

[14] Roy Thomas Fielding, "Architectural Styles and
the Design of Network-based Software
Architectures", PhD thesis, University of
California, Irvine, USA, 2000.

[15] Bipin Upadhyaya, Ying Zou, Hua Xiao, Joanna
Ng, Alex Lau, ”Migration of SOAP-based
Services to RESTful Services”, 13th IEEE
International Symposium on Web Systems
Evolution (WSE), 30 Sept. 2011, pp. 105 – 114.

[16]http://en.wikipedia.org/wiki/Advanced_Message
_Queuing_Protocol, cited 28 Jul 2014.

[17] Frank T. Johnsen, Trude H. Bloebaum, Morten
Avlesen, Skage Spjelkavik, Bjørn Vik,
“Evaluation of Transport Protocols for Web
Services”, Military Communications and
Information Systems Conference (MCC), 7-9
Oct. 2013, pp. 1 – 6.

[18] Joel L. Fernandes, Ivo C. Lopes, Joel J. P.
C.Rodrigues, Sana Ullah, “Performance
Evaluation of RESTful Web Services and
AMQP Protocol”, Fifth International
Conference on Ubiquitous and Future Networks
(ICUFN), 2-5 July 2013, pp. 810 – 815.

[19] Notable AMQP users,
http://www.amqp.org/about/examples, cited 28
Jul 2014.

[20] I.Fette, A.Melnikov, “The WebSocket
Protocol”, RFC 6455, Dec 2011.

7

[21] Victoria Pimentel, Bradford G. Nickerson,
“Communicating and Displaying Real-Time
Data with WebSocket”, Internet Computing
IEEE (Volume: 16, Issue: 4), July-Aug. 2012,
pp. 45 – 53.

