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Abstract

Detection of visual anomalies refers to the problem of
finding patterns in different imaging data that do not con-
form to the expected visual appearance and is a widely
studied problem in different domains. Due to the nature of
anomaly occurrences and underlying generating processes,
it is hard to characterize them and obtain labeled data. Ob-
taining labeled data is especially difficult in biomedical ap-
plications, where only trained domain experts can provide
labels, which often come in large diversity and complexity.
Recently presented approaches for unsupervised detection
of visual anomalies approaches omit the need for labeled
data and demonstrate promising results in domains, where
anomalous samples significantly deviate from the normal
appearance. Despite promising results, the performance
of such approaches still lags behind supervised approaches
and does not provide a one-fits-all solution. In this work,
we present an image-to-image translation-based framework
that significantly surpasses the performance of existing un-
supervised methods and approaches the performance of su-
pervised methods in a challenging domain of cancerous re-
gion detection in histology imagery.

1. Introduction
The capability to detect anomalies in different data

modalities has important applications in different domains,
including medical imaging [9]. Detecting visual anomalies
is a particularly challenging problem that has recently seen
a significant rise of interest, due to the prevalence of deep-
learning-based methods. Nevertheless, large part of this
success can be attributed to the availability of large-scale
labeled data, which is hard to obtain, as anomalies gener-
ally occur rarely, in different shapes and forms, and are thus
extremely hard or even impossible to label.

Supervised deep-learning-based anomaly detection ap-
proaches have seen great success in different industrial and
medical application domains [12, 23]. The success of such
methods is the most evident in the domains with well-
known characterization (and possibly a finite set) of the
anomalies and abundance of labeled data. Specific to the
detection of visual anomalies, we usually also want to lo-
calize the actual anomalous region in the image. Obtaining
such detailed labels to learn supervised models is a costly
process and in many cases also impossible. There is an
abundance of data available in the biomedical domain, but
it is usually of much higher complexity and diversity. Usu-
ally only trained biomedical experts can annotate such data,
preventing large-scale crowd annotation efforts.

Weakly-supervised approaches address such problems
by requiring only image-level labels (e.g. disease present
or not) and are able to detect and delineate anomalous re-
gions solely from such weakly labeled data, without the
need for detailed pixel or patch-level labels [8]. On the con-
trary, few-shot approaches reduce the number of required
labeled samples to the least possible amount [24], which
can be further boosted with active learning, where the aim
is to come up with the most informative and effective subset
of samples for labeling [27, 29].

In an unsupervised setting, only normal appearance sam-
ples are available (e.g. healthy, defect-free), which are usu-
ally available in larger quantities and are easier to obtain.
Deep generative methods, in a form of autoencoders (AE) or
generative adversarial networks (GAN), have been recently
applied to the problem of unsupervised detection of visual
anomalies and have shown promising results in different
industrial and medical application domains [21, 6, 4, 7].
Current approaches require normal appearance samples for
training, in order to detect and segment deviations from that
normal appearance, without the need for labeled data. They
usually model normal appearance with low-resolution AE
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or GAN models and the overall performance still lags sig-
nificantly behind supervised approaches.

In this work, we present a novel high-resolution image-
to-image translation-based method for unsupervised de-
tection of cancerous regions in histology imagery, that
significantly surpasses the performance of existing GAN-
based unsupervised approaches in that domain and also ap-
proaches the performance of the supervised counterparts.

2. Related Work

2.1. Unsupervised Detection of Visual Anomalies

In an unsupervised setting, we only have access to nor-
mal samples (e.g. healthy, defect-free), which are used
to model normal visual appearance. This is achieved by
learning deep generative models, which results in the ca-
pability to generate realistic-looking artificial normal sam-
ples [22, 20]. An anomalous (i.e. out-of-distribution)
sample is detected by comparing the original input (i.e.
query sample) with its reconstruction, by thresholding on
a domain-specific similarity metric. This is possible due to
the learned manifold of normal appearance and its inability
to reconstruct anomalous samples, resulting in higher visual
dissimilarity [22, 20].

Different approaches have been proposed for normal ap-
pearance modeling, as well as anomaly detection. Learn-
ing the normal visual appearance is based on autoencoders
(AE) [6], generative adversarial networks (GAN) [20, 21],
or combined hybrid models [1, 2] and was already investi-
gated for the histology domain [22]. Most of the approaches
learn the space of the normal sample distribution Z, from
which latent vectors z ∈ Z are sampled, that generate the
closest normal appearance, to the presented query image.
Different solutions have been proposed for latent vector op-
timization, that are usually independent of the used normal
appearance modeling method (i.e. AE, GAN).

Autoencoders (AE) represent an approach towards mod-
eling normal appearance and have a major advantage with
their ability to reconstruct images with low reconstruction
errors, due to a supervised training objective. Unfortu-
nately, they suffer from memorization and usually produce
images that are blurry and of a much lower resolution,
quality, and diversity, in comparison with GAN-based ap-
proaches [5]. Variational implementation (VAE) turns AE
into a generative model, which enables modeling of data
distribution and they are usually also combined with a GAN
discriminator, in order to produce sharper images [5, 1, 2].

In comparison with autoencoders, GANs do not auto-
matically yield the inverse mapping from the image to la-
tent space, which is needed for closest-looking normal sam-
ple reconstruction and consequently anomaly detection. In
AnoGAN [20] an iterative optimization approach was pro-
posed to optimize the latent vector z via backpropaga-

tion, using the residual and discrimination losses. In the
f-AnoGAN method [21], an autoencoder replaces the iter-
ative optimization procedure, using the trainable encoder
and the pre-trained generator (normal appearance model-
ing), as the decoder. In comparison with AnoGAN [20],
StyleGAN2 [17] enables high-resolution normal appear-
ance modeling, while a similar iterative optimization pro-
cedure is used for latent space mapping.

2.2. Image-to-Image Translation

The goal of image-to-image translation is to learn a
mapping between an input image and an output image of
different domains. In the supervised setting, paired cor-
responding images from different domains are available
(e.g. grayscale-color of the same image) and conditional
GANs [16] are used to learn the mapping. In the unsu-
pervised setting, only two independent sets of images are
available from source and target domains, with no paired
examples (e.g. grayscale-color of different images). Cycle-
consistency loss, presented with CycleGANs [30], is a pre-
dominately used constraint for such inherently ill-posed
problems. CycleGANs [30] enforce original image recon-
struction, when mapping the source image to target domain
and back, thus capturing special characteristics of the tar-
get domain and figuring it how to transfer it to the source
domain, while preserving source domain image character-
istics.

It was recently discovered, that CycleGANs are mas-
ters of steganography [10], as it learns to ”hide” informa-
tion about the source image into images it generates, for
almost perfect reconstruction. This intriguing property was
exploited by SteGANomaly [4] for unsupervised anomaly
detection. They used image-to-image translation to learn
a mapping between the healthy brain MR images and a
simulated distribution of healthy brain MR images with
lower entropy. CycleGANs encode the source image infor-
mation into the target image with a nearly imperceptible,
high-frequency signal [10], thus enabling the reconstruc-
tion of unseen anomalous samples during the inference. In
SteGANomaly [4] they alleviate this problem by removing
high frequency, low amplitude signal during training using
Gaussian filtering in the target domain, before performing
a complete cycle. The choice of intermediate distribution
with lower entropy is very important, for the Gaussian fil-
tering to effectively remove the hidden information, that is
not relevant to the target domain. Together with the size of
the Gaussian kernel, which needs to be manually fine-tuned,
this represents a major limiting factor for general applicabil-
ity.

2.3. Anomaly Detection in Medical Imagery

In this work, we particularly focus on a challenging
task of cancerous region detection from gigapixel histol-



Figure 1: Our proposed unsupervised anomaly detection method, based on the image-to-image translation. We disentangle
a latent space into shared content and style spaces, implemented via domain-specific (blue and green colors) encoders E and
decoders G. Anomaly detection is performed with an example-guided image translation.

ogy imagery, which has been already addressed in a super-
vised [12], as well as in a weakly-supervised setting [8].
There is a limited number of approaches in the literature
that would approach that problem in an unsupervised fash-
ion [19, 25]. Extremely large histology imagery (patch-
based processing) and the highly variable appearance of the
different tissue regions represent a unique challenge for ex-
isting unsupervised approaches. Unsupervised approaches
for the detection of visual anomalies are also applied to
other biomedical imaging data, especially brain MRI data
analysis, where brain lesion segmentation is the predomi-
nantly addressed problem [11, 5, 4].

3. Methodology

We argue that image-to-image translation can be effec-
tive for unsupervised detection of visual anomalies and
that this can be achieved with a direct mapping between
unpaired sets of healthy cohorts, with an appropriate ar-
chitecture, which successfully disentangles content, that
needs to be preserved, apart from the style, which needs
to change. CycleGAN [30] based methods perform this im-
plicitly using the adversarial and cycle-consistency losses,
which assumes a strong bijection between the two domains
- resulting in steganography [10]. Inspired by the mul-
timodal image-to-image translation methods [15, 18], we
propose an example guided image translation method (Fig-
ure 1), which in comparison with SteGANomaly [4] enables
anomaly detection without cycle-reconstruction during the
inference, specially crafted intermediate domain distribu-
tion, and Gaussian filtering. Similar to MUNIT [15], we

assume that the latent space of images can be decomposed
into content and style spaces. We also assume that images
in both domains share a common content space C, as well
as style space S. This differs from MUNIT [15], where
style space is not shared, due to semantically different do-
mains X and Y . Similar to MUNIT [15], our translation
model consists out of encoder Eij and decoder Gj net-
works for each space i ∈ {C, S} and domains j ∈ {X,Y }.
Those subnetworks are used for autoencoding, as well as
cross-domain translation, by interchanging encoders and
decoders from different domains. Style latent codes sx and
sy are randomly drawn for cross-domain translation and
used as Adaptive Instance Normalization (AdaIN) [14] pa-
rameters in residual blocks of decoders Gx and Gy , ad-
ditionally transformed by a multilayer perceptron (MLP)
network f . For autoencoding, Esx and Esy encoders are
used directly, to extract style codes. This randomness dur-
ing cross-domain translation in training prevents the ef-
fect of memorization, largely present in autoencoder-based
anomaly detection approaches. Different losses between in-
puts and its reconstructions (e.g. x and x) are used to train
autoencoders (L1 loss), cross-domain translations (adver-
sarial loss), as well as reconstructions (cycle-consistency
loss). The architecture and training objectives closely fol-
low the implementation of MUNIT [15], with the exception
of the selection of X and Y domains.

During anomaly detection (Figure 1), an input image x
is encoded with Ecx, to produce content vector cx, which is
then joined with the style code sy , extracted from the orig-
inal image x, with the style encoder Esy of the target do-
main Y . This presents an input to decoder Gy , which gen-



(a) Original WSI (b) Filtered WSI (c) Tissue patches (d) Cancer patches

Figure 2: Preprocessing of the original WSI presented in a) consists of b) filtering tissue sections and c) extracting tissue
patches, based on the tissue (green ≥ 90 %, orange ≤ 10 % and yellow in-between) and d) cancerous region coverage (green
≥ 90 %, orange ≤ 30 % and yellow in-between). Best viewed in a digital version with zoom.

erates y. This is basically an example guided image transla-
tion, used also in MUNIT [15] and DRIT++ [18] methods.
Content-style space decomposition is especially well suited
for histopathological analysis due to different staining pro-
cedures, which causes the samples to significantly deviate
in their visual appearance. Style-guided translation ensures
that the closest looking normal appearance is found, taking
into account also the staining appearance. We then mea-
sure an anomaly score using distance metric d (e.g. per-
ceptual LPIPS distance [28] or Structure Similarity Index
(SSIM) [26]), between the original image x and its recon-
struction x.

4. Experiments and Results
4.1. Histology Imagery Dataset

We evaluate the proposed anomaly detection pipeline on
whole-slide histology images (WSI), which are used for
diagnostic assessment of the spread of the cancer. This
particular problem was already addressed in a supervised
setting [12], as a competition1, with provided clinical his-
tology imagery and ground truth data. A training dataset
with (n=110) and without (n=160) cancerous regions is pro-
vided, as well as a test set of 129 images (49 with and
80 without anomalies). Raw histology imagery, presented
in Figure 2a, is first preprocessed, in order to extract the
tissue region (Figure 2b). We used the approach from
IBM2, which utilizes a combination of morphological and
color space filtering operations and was also used in prior
work [22] of synthesizing realistically looking histology

1https://camelyon16.grand-challenge.org/
2https://github.com/CODAIT/deep-histopath

samples. Patches of 512 x 512 are then extracted from the
filtered image and filtered according to the tissue (Figure 2c)
and cancer (Figure 2d) coverage. We only use patches
with tissue and cancerous region coverage over 90 %
(i.e. green patches).

We train the models on random 80,000 healthy tissue
patches extracted from a training set of healthy and can-
cerous (cancer coverage=0%) WSIs (n=270). The base-
line supervised approach is trained on randomly extracted
healthy (n=25,000) and cancerous patches (n=25,000). The
methods are evaluated on healthy (n=7673) and cancerous
(n=16,538) patches extracted from a cancerous test set of
WSIs (n=49). We mix healthy training patches of both
cohorts (i.e. healthy patches from cancerous WSIs) in or-
der to demonstrate the robustness of the proposed approach
against a small percentage of possibly contaminated healthy
appearance data (e.g. non-labeled isolated tumor cells).

4.2. Unsupervised Anomaly Detection

We compare the proposed method against GAN-based
f-AnoGAN [21] and StyleGAN2 [17] methods. Both
methods separately model normal appearance and per-
form latent space mapping for anomaly detection. The f-
AnoGAN method models normal appearance using Wasser-
stein GANs (WGAN) [3], which is limited to a resolution
of 642 and uses an encoder-based fast latent space mapping
approach. The StyleGAN2 method enables high-resolution
image synthesis (up to 10242) and also implements an it-
erative optimization procedure, based on Learned Percep-
tual Image Patch Similarity (LPIPS) [28] distance metric.
We evaluate the performance of the proposed and Style-
GAN2 methods on patches of 5122, while center-cropped



(a) Proposed (SSIM) (b) Proposed (LPIPS) (c) f-AnoGAN (original) (d) StyleGAN2 (LPIPS)

Figure 3: Distribution of anomaly scores on healthy and cancerous histology imagery patches (a) for the proposed method
(SSIM metric), (b) proposed method (LPIPS metric), (c) f-AnoGAN (original metric), and (d) StyleGAN2 (LPIPS metric).
Results for the proposed and StyleGAN2 methods are reported for 5122 patches, while 642 patches are used for f-AnoGAN.

642 patches are used for the f-AnoGAN method. Addition-
ally, we compare the performance against the supervised
DenseNet-121 [13] baseline model, trained and evaluated
on 5122 patches. We evaluate the proposed method us-
ing Structural Similarity Index Measure (SSIM) [26] and
LPIPS reconstruction error metrics as an anomaly score.
We use the same metrics as also as an alternative to orig-
inal f-AnoGAN anomaly score implementation, as well as
to measure StyleGAN2 reconstruction errors.

We first evaluate the methods by inspecting the dis-
tribution of anomaly scores across healthy and cancerous
patches, as presented in Figure 3. We compare our pro-
posed approach (Figures 3a and 3b) against f-AnoGAN
(Figure 3c) and StyleGAN2 (Figure 3d) methods and report
significantly better distribution disentanglement.

Area under the ROC curve (AUC) scores are reported in
Table 1 for all the methods and different anomaly scores.
Corresponding ROC curves are presented in Figure 4. We
also report F1 and classification accuracy measures, calcu-
lated at the Youden index of the ROC curve. We notice
that the performance of the proposed method approaches
the performance of the supervised baseline in terms of both
reconstruction error metrics (i.e. LPIPS and SSIM). The
performance of the f-AnoGAN significantly improves using
SSIM and LPIPS metrics, in comparison with the originally
proposed anomaly score. This shows the importance of the
selection of the appropriate reconstruction error metric. The
styleGAN2 method shows good distribution disentangle-
ment using the LPIPS distance metric, while the SSIM met-
ric fails to capture any significant differences between the
two different classes (i.e. healthy and anomalous). The pro-
posed method demonstrates consistent performance across
both anomaly score metrics, as well as different evaluation
measures.

In Figure 5 we present example reconstructions of
healthy and cancer tissue samples for all the methods. The
proposed method reconstructs healthy samples much more
accurately in comparison with the StyleGAN2 method.
Some level of artificial healing is visible on cancerous sam-
ples (i.e. visual appearance much more closely reassem-

Table 1: Performance statistics (F1, Classification Accu-
racy - CA) calculated at Youden index of Receiver Operat-
ing Characteristic (ROC) curve and the corresponding area
under the ROC curve (AUC) and Average Precision (AP)
scores summarizing ROC and Precision-Recall (PR) curves.

AUC AP F1 CA

Supervised 0.954 0.974 0.925 0.901

Proposed (SSIM) 0.947 0.976 0.920 0.895
Proposed (LPIPS) 0.900 0.914 0.886 0.847

StyleGAN2 (LPIPS) 0.908 0.940 0.872 0.836
StyleGAN2 (SSIM) 0.580 0.711 0.674 0.588

f-AnoGAN (original) 0.650 0.443 0.502 0.637
f-AnoGAN (SSIM) 0.887 0.916 0.886 0.846
f-AnoGAN (LPIPS) 0.865 0.902 0.875 0.830
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Receiver Operating Characteristic (ROC)

Supervised AUC = 0.954
Proposed (SSIM) AUC = 0.947
Proposed (LPIPS) AUC = 0.899
StyleGAN2 (SSIM) AUC = 0.580
StyleGAN2 (LPIPS) AUC = 0.908
f-AnoGAN (SSIM) AUC = 0.887
f-AnoGAN (LPIPS) AUC = 0.865
f-AnoGAN (original) AUC = 0.650

Figure 4: ROC curves for different methods and different
reconstruction error metrics (i.e. anomaly scores).

bles healthy samples). The f-AnoGAN method is only
able to operate on 642 resolution tissue samples, where
similarly we notice better reconstructions of healthy ap-



Figure 5: Example reconstructions of ground truth healthy and cancerous tissue samples with the proposed and StyleGAN2
methods for 5122 resolution and f-AnoGAN method for 642. Best viewed in a digital version with zoom.

pearances. The visual patterns in the StyleGAN2 method
reconstructions demonstrate significantly lower variability
in the visual appearance, especially in comparison with
its demonstrated capability to synthesize realistically look-
ing, highly variable, high-resolution histology tissue sam-
ples [22]. In comparison, the proposed image-to-image
translation-based enables high-resolution image synthesis,
as well as example-based reconstruction, that can be effec-
tively utilized for the detection of visual anomalies.

5. Conclusion

Detection of visual anomalies is an important process in
many domains and recent advancements in deep generative-
based methods have shown promising results towards ap-
plying them in an unsupervised fashion. This has sparked
research in many domains, that did not benefit much from
traditional supervised deep-learning-based approaches, due
to difficulties in obtaining large quantities of labeled data.
The medical image analysis domain is one such notable ex-
ample, where the availability of imaging data in large quan-
tities is usually not a problem, but the real challenge lies in
the scarcity of human-expert annotations.

In this work, we presented an image-to-image
translation-based unsupervised approach that signifi-
cantly surpasses the performance of existing GAN-based
unsupervised approaches for the detection of visual

anomalies in histology imagery and also approaches the
performance of supervised methods. The method is capable
of closely reconstructing presented healthy histology tissue
samples, while unable to reconstruct cancerous ones and is
thus able to detect such samples with an appropriate visual
distance measure.

The image-to-image translation-based framework offers
a promising multi-task platform for a wide range of prob-
lems in the medical domain and can be now further ex-
tended with the capabilities for anomaly detection. Addi-
tional research is needed to investigate effectiveness in other
biomedical modalities, as well as to exploit the benefits of
using such a framework in a multi-task learning setting.

Acknowledgment

This work was partially supported by the European Com-
mission through the Horizon 2020 research and innovation
program under grant 826121 (iPC) and by the Slovenian
Research Agency (ARRS) project J2-9433 (DIVID).

References

[1] Samet Akcay, Amir Atapour-Abarghouei, and Toby P
Breckon. Ganomaly: Semi-supervised anomaly detection
via adversarial training. In ACCV, pages 622–637. Springer,
2018.
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