

Controlling the power of the ground by integration

D5.5

Overall cost/benefit analysis for hybridGEOTABS buildings

Author(s): Energoklastr

Date: March 1st, 2021

Version: 1.2

Dissemination level: Public

Lead beneficiary:

Author(s):	EK (Energoklastr, Czech Republic)
	Lukáš Ferkl (<u>lukas.ferkl@cvut.cz</u>)
	Jiří Cigler
	UGent (Ghent University, Belgium)
	Mohsen Sharifi
	BOY (Studiebureau Boydens Raymond NV, Belgium)
	Frederik Maertens
	LC (Lemon Consult, Switzerland)
	Anne Caminade
	Martin Ménard
Reviewer(s):	Qian Wang (Uponor)
	Hector Cano Esteban (GEOTER)
	Anne Caminade (Lemonconsult)
	Damien Picard, Iago Cupeiro Figueroa (KU Leuven)
Dissemination level:	Public

The WP-leader: EK (Energoklastr, Czech Republic)

Summary

We have performed a detailed cost/benefit analysis (CBA) for the four case study buildings of our project – Haus M, Líbeznice, Infrax/Fluvius and Ter Potterie. For the CBA, we followed the EC directive number 244/2012 (1), which brings templates and methods to calculate the global financial cost in the sense of the net present value. The CBAs have been calculated according to national price levels and specific parameters (such as discount rate or primary energy conversion ratio). For all the case study buildings, the hybridGEOTABS solution with MPC was recommended – with slightly higher global financial cost, this solution ensures much lower environmental impact than the baseline variants. In addition, a variant with added photovoltaic panels was also considered, and this brought additional decrease in both global financial value and environmental impact in terms of ETS.

In order to extend our CBA study on the EU level, we have used the models from D2.2 to calculate global financial costs and environmental impacts in a more general way. We have chosen a typical building, placed it into three climatic zones (represented by Madrid, Brussels and Warsaw) and modified the used technologies, which resulted in 36 variants in total. Based on the CBA of the case study buildings and the comparison study, we can conclude:

- The use of photovoltaics in hybridGEOTABS buildings decreases the global financial cost by 0.4–1.5 % (typical value 1 %) and decreases the CO₂ emissions by 20-50 % (typical value 30 %).
- The baseline variant is always cheaper than the hybridGEOTABS solution, but its environmental impact is higher. It is usually around 1-2 % cheaper than the hybridGEOTABS with photovoltaics but has 2–10 times higher environmental impact.
- Even for the worst-case scenarios, the hybridGEOTABS solution is only 3 % more expensive than the baseline, which makes the price difference negligible compared to the environmental impact.
- The more we invest into the building, the larger the environmental impact is. In terms of numbers, we have found in our study that for the increase in investments of about 7 %, we can decrease the CO₂ emissions from the operation of the building by more than 95 % (Warsaw scenario), 70 % (Brussels scenario) or 20 % (Madrid scenario).
- It appears from our study that hybridGEOTABS buildings have increased effect on the performance of buildings (in terms of the cost X environment dilemma) for harsher climates.

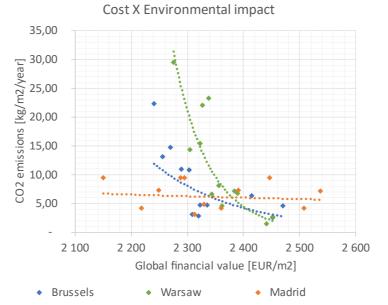


Figure 1 – The effect of the global financial cost on the environmental impact of buildings.

Table of Contents

Summa	ry3
Table c	f Contents4
Nomen	clature
Acro	nyms8
1. CE	A Method9
1.1.	Methodology and assumptions9
1.2.	CBA outline9
1.3.	Scope 10
1.4.	Net Present Value concept
1.5.	Investment horizon
1.6.	Discount rates
1.7.	Earning from produced energy 12
1.8.	Disposal costs
1.9.	CO ₂ emission costs
1.10	Investment costs
1.11	Running costs
1.12	Energy costs
1.13	Main parameters used in the CBA 14
1.14	Sensitivity analysis
1.15	Final cost performance overview 15
2. Ha	us M
2.1.	Project identification
2.2.	Presentation of the context - social, environmental, economic
2.3.	Definition of objectives
2.4.	Technical feasibility

	2.5.	Financial and environmental analysis 17
	2.6.	Financial net present value
	2.7.	Economic value
	2.7.1.	Financial value
	2.7.2.	Energies and Environmental impact 20
	2.7.3.	Indoor environment quality 20
	2.8.	Sensitivity analysis and risk assessment
	2.9.	Conclusions 23
3.	. Líbe	znice School
	3.1.	Project identification
	3.2.	Presentation of the context - social, environmental, economic
	3.3.	Definition of objectives
	3.4.	Technical feasibility
	3.5.	Financial and environmental analysis 26
	3.6.	Financial net present value 28
	3.7.	Economic value
	3.7.1.	Financial value
	3.7.2.	Energies and Environmental impact 29
	3.7.3.	Indoor environment quality 29
	3.8.	Sensitivity analysis and risk assessment
	3.9.	Conclusions
4.	Infra	ax/Fluvius
	4.1.	Project identification
	4.2.	Presentation of the context - social, environmental, economic
	4.3.	Definition of objectives
	4.4.	Technical feasibility
	4.5.	Financial and environmental analysis

	4.6.	Financial net present value
	4.7.	Economic value
	4.7.1.	Financial value
	4.7.2.	Energies and Environmental impact 38
	4.7.3.	Indoor environment quality 38
	4.8.	Sensitivity analysis and risk assessment
	4.9.	Conclusions 42
5.	Ter	Potterie
	5.1.	Project identification
	5.2.	Presentation of the context - social, environmental, economic
	5.3.	Definition of objectives
	5.4.	Technical feasibility
	5.5.	Financial and environmental analysis 45
	5.6.	Financial net present value
	5.7.	Economic value
	5.7.1.	Financial value
	5.7.2.	Energies and Environmental impact 48
	5.7.3.	Indoor environment quality 48
	5.8.	Sensitivity analysis and risk assessment 49
	5.9.	Conclusions
6.	Anal	ysis of cases for various climatic zones
	6.1.	Objectives
	6.2.	Method 55
	6.3.	Heavy building, medium insulated, low density occupancy 57
	6.3.1.	CBA Parameters
	6.3.1.	Global financial value
	6.3.2.	Economic value

6	5.3.1.	Conclusions
(5.4. I	Heavy building, well insulated, low density occupancy61
(5.4.1.	CBA Parameters
(5.4.2.	Global financial value
(5.4.3.	Economic value
(5.4.4.	Conclusions
(5.5. l	ight building, poorly insulated, high density occupancy
(5.5.1.	CBA Parameters
(5.5.2.	Global financial value
(5.5.3.	Economic value
(5.5.4.	Conclusions
(5.6. l	ight building, moderately insulated, low density occupancy
e	5.6.1.	CBA Parameters
e	5.6.2.	Global financial value
e	5.6.3.	Economic value
e	5.6.4.	Conclusions
7.	Concl	usions
8.	Biblio	graphy
Lis	t of Tab	oles
Lis	t of Fig	ures 81

Nomenclature

Acronyms

AB	As-built
AHU	Ait Handling Unit
ASHP	Air Source Heat Pump
BE	Belgium
CapEX	Capital Expenditures
CBA	Cost Benefit Analysis
СН	Switzerland
CHF	Swiss Frank (currency)
СОР	Coefficient of Performance
<i>CO</i> ₂	Carbon Dioxide
CZ	Czech Republic
CZK	Czech Crown (currency)
DHW	Domestic Hot Water
EC	European Commission
EER	Energy Efficiency Ratio
ETS	(European) Emission Trading System
EU	European Union
EUR	Euro (currency)
FCU	Fan Coil Unit
FIAC	International Federation of Construction Engineer (from French)
GSHP	Ground Source Heat Pump
GSHX	Ground Source Heat Exchanger
HVAC	Heating, Ventilation and Air Conditioning
IEQ	Indoor Environment Quality
KPI	Key Performance Indicator
MPC	Model Predictive Control
NPV	Net Present Value (value affected by discount rate)
OpEX	Operational Expenditures
ррт	Parts per million
PV	Photovoltaic (panel)
RBC	Rule-based Control
ROI	Return On Investments
SCOP	Seasonal Coefficient of Performance
TABS	Thermally Active Building System
VAT	Value Added Tax

1. CBA Method

1.1. Methodology and assumptions

The calculation of the costs is primarily based on the EC Regulation No. 244/2012 (1). In order to provide consistent report for all the considered buildings, the templates and required data types were discussed among the partners that regularly work with cost estimates (Boydens, Lemon Consult and Energoklastr). First, a common data table was negotiated, and then it was checked against 244/2012 for compliance.

European Commission also issued a Guide to Cost Benefit Analysis of Investment Projects (2), which uses a general schematics for the CBA, and the EC Regulation No. 244/2012 can be used as one part of the wider CBA.

The directive requires the following cost categories to be evaluated:

- Initial investment costs;
- Running costs these include costs for periodic replacement of building elements and might include, if appropriate, the earnings from energy produced;
- Energy costs reflect overall energy cost including energy price, capacity tariffs and grid tariffs;
- Disposal costs if appropriate.
- Cost of greenhouse gas emissions. These reflect the quantified, monetised and discounted operational costs of CO₂ resulting from the greenhouse gas emissions in tonnes of CO₂ equivalent over the calculation period.

In practice, the initial investment costs are usually called CapEx, and the rest of the costs are called OpEx. In our analyses, we will follow this usual division into CapEx and OpEx, with a finer categorisation according to the Directive.

1.2. CBA outline

The grant agreement of the hybridGEOTABS project proposes the following KPIs of the CBA to be evaluated (C indicating Costs and B indicating Benefits):

- i. Energy performance: overall energy use (C), primary energy savings (C), integration of renewables (or residuals) into the building's systems (B);
- ii. IEQ: occupant comfort, health and productivity as a consequence of the thermal, acoustic, lighting and air quality conditions. (all B)
- iii. Cost performance: engineering, investment, design, commissioning and operational costs, electricity sold to/bought from the grid; (all C)
- iv. Environmental/resource intensity performance: GHG emissions and savings, resource use; (all B)
- v. Other factors

To fulfill these requirements, we will organize the cost benefit analysis according to the structure proposed in the Guide to Cost Benefit Analysis of Investment Projects (2), and the methodology described by the EC Regulation (1) will be used for the cost performance.

The structure of the CBA described in (2) is illustrated by the following figure:

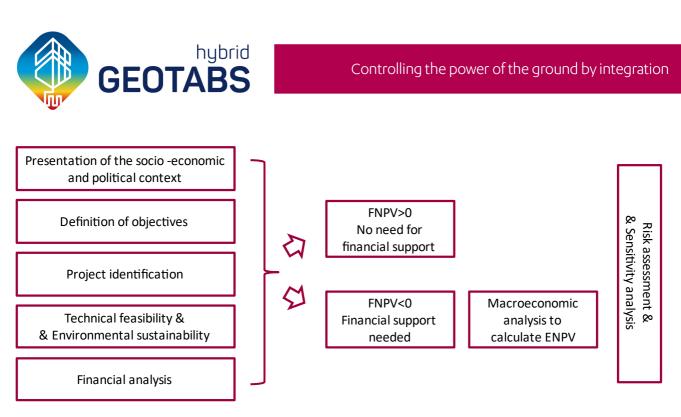


Figure 2: Structure of the CBA according to Sartori et al.

According to this figure, the structure of the CBA will be as follows:

- 1. Project identification
- 2. Presentation of the context social, environmental, economic
- 3. Definition of objectives
- 4. Technical feasibility
- 5. Financial and environmental analysis
- 6. Financial net present value
- 7. Economic value
 - a. Financial value
 - b. Energies and Environmental impact
 - c. Indoor environment quality
- 8. Sensitivity analysis and risk assessment
- 9. Conclusions

1.3. Scope

As already explained, the scenarios proposed in the project aim at comparison of various combinations of TABS, secondary system and MPC. As the other parts of the building (foundations, envelope, but also major part of the project and design) are common, they will not be evaluated. Only the differences between the scenarios will be evaluated.

1.4. Net Present Value concept

When determining the global cost of a variant for the financial calculation, the relevant prices are taken into account which are the prices paid by the customer including all applicable taxes including VAT and charges. No subsidies are included in the calculation.

Global costs for buildings and building elements are calculated by summing the different types of costs and applying to these the discount rate by means of a discount factor so as to express them in terms of value in the starting year, plus the discounted residual value as follows:

$$C_g(\tau) = C_I + \sum_j \left[\sum_{i=1}^{\tau} \left(C_{a,i}(j) \times R_d(i) \right) - V_{f,\tau}(j) \right]$$

where:

τ	means the calculation period [years]
C _g (τ)	means global cost (referred to starting year τ $_{o}$) over the calculation period [EUR, CHF or CZK]
Cı	means initial investment costs for variant j [EUR, CHF or CZK]
C _{a,I} (j)	means annual cost during year i for variant j [EUR, CHF or CZK]
V _{f,τ} (j)	means residual value of variant j at the end of the calculation period

(discounted to the starting year τ_{o}) [EUR, CHF or CZK] R_d (i) means discount factor for year i [-] based on discount rate *r* to be calculated as:

$$R_d(p) = \left(\frac{1}{1+r/100}\right)^p$$

where p means the number of years from the starting period and r means the real discount rate.

1.5. Investment horizon

The directive (1) requires that the investment horizon is at least 20 years for administration buildings and 30 years for residential buildings. We will therefore consider the investment horizon of 30 years for all the case studies, in order to have consistent and comparable results.

Note that the investment horizon is not defined for schools (the case of Líbeznice), as there is no reason to calculate Return of Investment for state funded schools. The long-term cost indicators for the school building is thus academic and will be calculated for comparison purposes only.

1.6. Discount rates

The discount rates have to be defined for Belgium, Czech Republic, Switzerland and EU27. Due to the nature of long-term investments, average values for last couple of years cannot be used, as all considered markets have steadily falling discount rates (e.g., in Belgium, from more than 8% in 1990s to virtual 0% now). Following discount rates have been estimated for the 30 years investment horizon, based on indicative values suggested by the European Central Bank:

Region	Discount Rate		
Belgium	1,5 %		
Switzerland	1,0 %		
Czech Republic	2,5%		
EU27	2,0%		

1.7. Earning from produced energy

In our calculations, we will not consider the earnings from the energy produced within the buildings, as the MPC is tuned in such a way that all the energy produced by local sources is consumed within the building. The reason for this tuning is that we assume the market price for the energy supplied from the grid will always be higher than the buy-out energy price, thus consuming the energy inhouse is economically more viable.

1.8. Disposal costs

Furthermore, we will not consider the disposal costs, as they the differences between the considered scenarios (e.g. benchmark, TABS-RBC, TABS-MPC) will be insignificant. Most of the disposal costs apply to the disposal of structural elements (walls, windows, ...), which is the same for all the scenarios.

1.9. CO₂ emission costs

The CO_2 emission costs are calculated according to the EU Emission Trading System, which will enter into its Phase IV in 2021. The future prices of emissions are very difficult to estimate. The experience from the first three phases tells us that the market price for CO_2 emissions was much lower than expected, i.e. the costs for reducing the CO_2 emissions are in general lower than originally anticipated (which is of course a very good news).

The costs of CO_2 emissions plummeted in 2018, after the presentation of the "Winter package", from around 5 EUR/ton to the current 25 EUR/ton, as the market reflected the much more ambitious goals for the climate change mitigation. However, the publication of the European Green Deal in December 2019 seems to have little to none effect on the CO_2 emission prices. It may well be that the market is already on the level where the costs for the CO_2 reduction are settled.

From the above reasons, we will take the initial price of the CO₂ emissions at 25 EUR/ton, and we will use the EU₂₇ discount rate.

CO2 emission prices (EUR/ton), 2010-2020.

(Update February 2021) There was a significant increase in the CO₂ emission prices in late 2020, reaching estimated 50 EUR/ton in 2021¹. Therefore, all the calculations were rerun with this price, as its impact on the final CBA was significant for some cases (see Sensitivity analysis for the case studies).

1.10. Investment costs

As already mentioned, only investments relevant for the comparison study will be considered. These include:

- Components of the primary production system
- Components of the secondary production system (if installed)
- Primary emission system
- Secondary emission system
- Control system
- Collaterals devices not directly connected to above systems, but necessary for their function

Detailed list of components is provided for each of the case studies.

1.11. Running costs

We consider the life-span of all used structural components to be 30 years, i.e. no substantial component of the structure will need replacement. However, detailed maintenance costs has to be estimated, as maintenance is a significant part of total running costs. Some of the technologies will be replaced as follows:

- Batteries: after 10 and 20 years
- Heat pump, gas boiler or other secondary system, chillers, control system (including MPC): after 15 years
- Photovoltaics: no replacement within 30 years

Here the replacement rates are expert estimated based on the experience of consortium members and their business partners.

1.12. Energy costs

We will use the same structure of energy costs, as in Deliverable 4.9.

¹ <u>https://ec.europa.eu/clima/sites/clima/files/docs/oo94/thomson_reuters_point_carbon_en.pdf</u>

1.13. Main parameters used in the CBA

For the CBA, we will use the following parameters, describing the environmental and financial impact of the building:

Name	Unit	Description
Area	m²	Total floor area of the building
Nominal energy consumption	kW/m²/a	Simulated energy consumption (see Deliverable 4.9 for details)
Construction costs	EUR, CHF, CZK	Only elements not related to the variant are included in the construction cost, which includes walls, windows, roof, doors, water and electricity network, etc.
Control system cost	EUR, CHF, CZK	Costs for the automation and measurement, with or without MPC (based on the variant).
Borefield cost total	EUR, CHF, CZK	Total cost for the borefield and associated engineering (earth registers, pipes, valves,)
Gas boiler cost	EUR, CHF, CZK	Total cost for the gas boiler and associated engineering (gas pipes, chimney,)
Heat pump cost	EUR, CHF, CZK	Heat pump and associated engineering
End energy consumption	kWh	Total energy consumption (gas + electricity)
End energy price	EUR/kWh (CHF, CZK)	Average end energy price
PV cost	EUR, CHF, CZK	Cost for photovoltaic panels and associated engineering (wires, switchboard, inverter,)
Installed kWp	kWp	Installed kWp of photovoltaic panels
Energy produced	kWh	Energy produced by photovoltaic panels
Energy in-house	kWh	Energy from photovoltaic panels used in-house
Energy sold	kWh	Energy sold to grid (assumed o)
Energy income	EUR, CHF, CZK	Energy income (assumed o)
CO2 emissions nominal	ton/m²/a	CO2 emissions, as calculated in Deliverable 4.9
CO ₂ emissions	ton/a	Total yearly emissions of the building
CO2 price EUR, CHF,		Total price of CO ₂ emissions according to the EU ETS
Technology extras	EUR, CHF, CZK	Extra technologies used for the specific variant (TABS, ventilation, chillers, secondary system,)
Design fee	EUR, CHF, CZK	Design fee or the building variant
Maintenance	EUR, CHF, CZK	Yearly maintenance costs estimate

1.14. Sensitivity analysis

The overall result of the cost performance is strongly dependent on various factors, mainly energy prices, discount rates, CO₂ emission prices, etc. Sensitivity analysis enables the identification of the 'critical' variables of the project. Such variables are those whose variations, be they positive or negative, have the largest impact on the project's financial and/or economic performance. The analysis is carried out by varying one variable at a time and determining the effect of that change on the NPV (Net Present Value). As a guiding criterion suggested by (2), the general recommendation is to consider 'critical' those variables for which a variation of ± 1 % of the value adopted in the base case gives rise to a variation of more than 1% in the value of the NPV. The tested variables should be deterministically independent and as disaggregated as possible. Correlated variables would give rise to distortions in the results and double-counting.

Variable	Variation of NPV due to a ±1% variation	Criticality judgement		
Energy tariff	2,6 %	Critical		
Total investment cost	7,0 %	Critical		
Yearly maintenance cost	0,3 %	Not critical		
Discount rate	1,8 %	Critical		

Example of a sensitivity table

1.15. Final cost performance overview

For the final cost performance overview, we will use the structure recommended by the Directive:

ſ			Anuual running cost									
	Variant	Initial investment cost (referred to starting year)	Annual maintenance cost	Operational cost	Energy cost by fuel with the medium energy price scenario	Calculation period	Cost of greenhouse gas emissions	value	Discount rate	Estimated economic lifetime	Disposal cost	Global cost calculated (NPV)
	[-]	EUR	EUR	EUR	EUR	years	EUR/ton	EUR	%	years	EUR	EUR

2. Haus M

2.1. Project identification

Figure 2: Haus M – Pictures (Photography courtesy of Johannes Marburg (left) and Ursula Meisser (right))

Number of spaces Number of occupants (design) Gross floor area Conditioned floor area (area that is heated) Type of ground source Total annual thermal energy use Heating Ventilation Ventilation Ventilation characteristics Net volume Building envelope : floor area ratio 1 kindergarten (ground floor) & 29 apartments (1st-5th floor)
97 (dwellings), 70 (kindergarten)
5,400 m²
6350 m² (5,400 m² above ground, plus 950 m² basement)
Ground source Heat pump (horizontal collectors)
[40-60] kWh/(m²·annum)
Underfloor heating (Supply 30 °C / Return 24 °C)
Mechanical exhaust, heat recovery
Extraction fixed flow rate, decentral
Total 13 800 m³
0.86 (compact building)

2.2. Presentation of the context – social, environmental, economic

The building is situated in Zürich, in an area with strong social and environmental culture. The Swiss regulations are very strict and require high energy standards for residential buildings. Haus M is a 5360 m² residential apartment building. It consists of 29 apartments over five floors centred around a large unconditioned atrium with staircase, a 950 m² day care centre (kindergarten) on the ground floor and a basement. The building is south-oriented and has shading systems that are manually controlled. It is a heavy-weight building and has a high insulation level with U-values lower than 0.15 W/m².a for the opaque elements and under 1.1 W/m².a for the glazing. The building is ventilated with natural supply (via openings above windows) and mechanical exhaust ventilation system. One heat pump recovers the heat from the extract air and uses it to deliver domestic hot water. Additionally, also the solar collectors do provide heat for domestic hot water. The other and bigger heat pump is connected to the GSHX (consisting of horizontal collectors) and delivers heating to the floor heating system (pipe depth 5 cm). The real building is not equipped with a cooling system.

2.3. Definition of objectives

The objective of the CBA is to compare for variants and present their financial value, with sensitivity analysis of important parameters. The IEQ will also be described.

2.4. Technical feasibility

For the analysis, we will compare four variants of the building:

Variant	nonGEOTABS-RBC	hybridGEOTABS-RBC	hybridGEOTABS- MPC	hybridGEOTABS- MPC with PVs				
Weather		Zu	Zurich					
Ventilation		Mechanical extraxion fixe	lechanical extraxion fixed flow rate + CO2 control					
Primary heating	FCU + Gas Boiler	Floor heating + GSHP						
Primary cooling	FCU + Chiller	Floor cooling + GSHP						
Secondary cooling	NO	FCU + Chiller						
Control	R	RBC MPC						
Renwables	NO	GSHP GSHP + PV						

2.5. Financial and environmental analysis

For the four variants of the building, we will use the following numerical values of the parameters specified in part 1.13 Main parameters used in the CBA.

Name	nonGT-RBC	hgt-rbc	hgt-mpc	hgt-mpc + PV	Units
Area	5 357	5 357	5 357	5 357	m2
Nominal energy consuption	74,1	34,3	34,3	34,3	kWh/m2/year
Construction costs	16 071 000	16 071 000	16 071 000	16 071 000	CHF
Control system cost	101 783	101 783	132 318	132 318	CHF
Borefield cost total	-	246 286	246 286	246 286	CHF
Gas boiler cost	61 572	-	-	-	CHF
Heat pump cost	-	307 858	307 858	307 858	CHF
End energy consumption	396 954	183 745	146 996	104 996	kWh/year
End energy price	37 360	17 294	13 835	16 799	CHF/year
PV cost	-	-	-	48 000	CHF
Installed kWp	-	-	-	40	kWp
Energy produced	-	-	-	42 000	kWh/year
Energy in-house	-	-	-	42 000	kWh/year
Energy sold	-	-	-	-	kWh/year
Energy income	-	-	-	-	CHF/year
CO2 emissions nominal	12,48	1,15	1,15	0,82	kg/m2/year
CO2 emissions	66,86	6,16	6,16	4,40	ton/year
CO2 price	3 610	333	333	238	CHF/year
Technology extras	740 948	868 136	868 136	596 028	CHF
Design fee	112 353	170 674	170 674	170 674	CHF
Maintenance	12 000	16 000	16 000	16 000	CHF

The energy values are based on simulations performed on the virtual test bed, Deliverable 4.9. In the CBA, we will also assume the following constants and boundary conditions:

Name	Basic value	Units
Consumption decrease for MPC	0,80	-
Electricity price per kWh	0,16	CHF/kWh
Gas price per kWh	1,80	CHF/kWh
Residual value	0,25	-
Calculation period	30	years
Discount rate	1%	-
PV cost	1 200	CHF/kWp
Overall PV efficiency	1 050	kWh/kWp/year
In-house use ratio	1,00	-
CO2 price	54	CHF/year

Local energy factors for Switzerland were used in the calculations, as described in Deliverable 4.9.

2.6. Financial net present value

When calculating the global net present value according to the above parameters, we get the results as shown in Figure 3 – Haus M, Global NPV. Only cumulative costs of the variant-specific technologies are shown. Figure 3. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

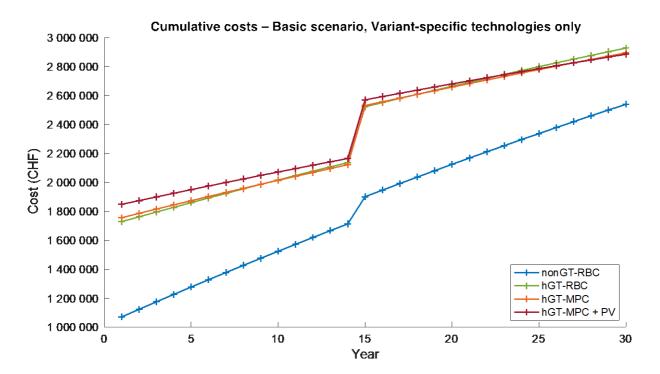


Figure 3 – Haus M, Global NPV. Only cumulative costs of the variant-specific technologies are shown.

It is clear from the figure that the benchmark, i.e. non-GEOTABS, RBC version of the building is the most financially viable. However, this version is the least environmentally friendly and is not of our concern, we only use it as a benchmark. The step in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced. The final cost performance overview in the form required by the EC Regulation No. 244/2012 is shown in Table 1.

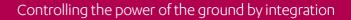
	Variant	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC+PV
	Initial investment cost	16 924 301 CHF	17 109 810 CHF	17 109 810 CHF	17 157 810 CHF
Annual	Maintenance cost	10 426 CHF	13 902 CHF	13 902 CHF	13 902 CHF
running	Operational cost (reinvestments)	10 182 CHF	33 743 CHF	35 647 CHF	37 247 CHF
cost	Energy cost by fuel with the medium energy price scenario	32 461 CHF	15 026 CHF	12 021 CHF	8 586 CHF
	Calculation period	30	30	30	30
Cost of greenhouse gas emissions		94 102 CHF	8671 CHF	8 671 CHF	6 194 CHF
	Residual value	3 010 669 CHF			
	Discount rate	1,00%	1,00%	1,00%	1,00%
	Estimated economic lifetime	30	30	30	30
	Disposal cost	N/A	N/A	N/A	N/A
	Global cost calculated (NPV)	16 453 119 CHF	17 026 747 CHF	16 993 692 CHF	17 032 178 CHF

The baseline scenario has lowest global cost calculated, but it is out of our concern because of its high environmental impact. The other three variants are very similar, the results are within 0.5 % of the global cost and thus within an error of estimation.

Table 2 – Minimum annual income from Haus M needed to achieve positive financial NPV.

	nonGT-RBC	hgt-rbc	hgt-mpc	hGT-MPC + PV
Annual income needed to achieve positive financial NPV	548 437 CHF	567 558 CHF	566 456 CHF	567 739 CHF

Table 2 shows the minimum income that the investor or owner needs to achieve from Haus M, should the building yield positive profit. Note that the residual value is not included in this calculation.


2.7. Economic value

2.7.1. Financial value

Comparing the four variants, the financial value (in the sense of net present value) is shown in Table 3. Without the benchmark variant (non GEOTABS, RBC), the financial value of the other three variants is very similar. The difference between the hybridGEOTABS, MPC and hybridGEOTABS, MPC + PV variant is less than 30 000 CHF, which is less than 0.3 % of the full price. It is therefore clear that other than financial considerations will play role in the decision process.

Table 3 – Financial value of Haus M.

Variant	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC + PV
Global cost (Net Present Value)	16 453 119 CHF	17 026 747 CHF	16 993 692 CHF	17 032 178 CHF
Difference between the variant and baseline (nonGT-RBC)	- CHF	573 628 CHF	540 573 CHF	579 059 CHF
The varinat being more expensive than baseline in %	0,00%	3,37%	3,18%	3,40%

2.7.2. Energies and Environmental impact

As already mentioned, the energy values are based Deliverable 4.9 – Concept and impact validation for the casestudy buildings based on the virtual test bed. Here, in Table 4, we show the summary of the energies and environmental impact of Haus M.

	nonGT-RBC	hGT-RBC	hgt-mpc	hGT-MPC+PV	
Nominal energy requirements	74,1	34,3	34,3	34,3	kWh/m2/year
End energy consumption	396 954	183 745	146 996	104 996	kWh/year
End energy price	37 360	17 294	13 835	9 882	CHF/year
Renewable energy generation & self-consumption	0	0	0	42 000	kWh/year
Total CO2 emissions	66,86	6,16	6,16	4,40	ton/year
Nominal prices, not adjusted for inflation.					

Table 4 – Haus M: Environmental impact and energy requirements.

As the investor has the intention to build Haus M according to sustainability principles, the benchmark variant (nonGEOTABS, RBC) is not recommended because of significantly high CO_2 emissions. As can be seen, the carbon footprint of the other three variants is 10–15 times lower. The best environmental performance is for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building.

2.7.3. Indoor environment quality

The TABS system provides in general a very good comfort associated with radiant heating and cooling. The advantage of the radiant heating and cooling is the better human temperature sensing, and the inhabitants of the building with TABS system may feel comfortable with ambient temperature lower by ca. 1 °C compared to traditional heating and cooling systems, such as radiators or FCUs. This can result of additional energy savings of 5–10 %. In addition, MPC control can slightly improve the indoor environment quality by better maintaining the desired indoor temperatures.

The mechanical ventilation system is controlled by CO₂ levels measured in the households, which provides excellent air quality and is in line with EU and Swiss standards.

In general, the advantages and disadvantages of the TABS system concerning the indoor environment quality are as follows:

- Advantages
 - Better space utilization minimum of heating, cooling or ventilation equipment is present or visible inside the building occupation spaces, which allows the inhabitants to use the space more freely
 - Radiant heating and cooling better perceived by some people
 - Lower ventilation rates in comparison with air-conditioned buildings, which results in less draught and infection spreading
 - High stability indoor air quality is quickly restored e.g. after a window is opened and closed
- Disadvantages
 - Sensitivity to additional installations one has to be careful to not pierce through the pipes
 - Worse acoustics
 - High thermal inertia, inability to change temperature quickly this is partially compensated by the secondary system

2.8. Sensitivity analysis and risk assessment

The sensitivity analysis shows the variation of the global financial value in the sense of NPV due to \pm 1 % variation of the analysed variable and a criticality judgement – if the change of global financial value is more than 1 %, the variable is considered critical.

	nonGT-RBC		hGT-RBC		hGT-MPC		hGT-MPC+PV	
Variable	Variation	Criticality	Variation	Criticality	Variation	Criticality	Variation	Criticality
Discount rate	0.013 %	No	0.01%	No	0.01%	No	0.01%	No
Energy tariff	0.06 %	No	0.03 %	No	0.02 %	No	0.02 %	No
CO₂ price	0.006 %	No	0.0005%	No	0.0005%	No	0.0004 %	No
PV price	-	-	-	-	-	-	0.003 %	No
Heat pump price	-	-	0.03 %	No	0.03%	No	0.03%	No
Borefield price	-	-	0.01%	No	0.01%	No	0.01%	No
MPC savings	-	-	-	-	0.5 %	No	0.5 %	No

We can see that there is no critical variable for Haus M. However, given very small differences in global financial values for the variants, energy tariff and MPC savings ratio can be considered as important parameters. We will also have a more detailed look on the variations of the discount rate. Let us have a look on discount rate first.

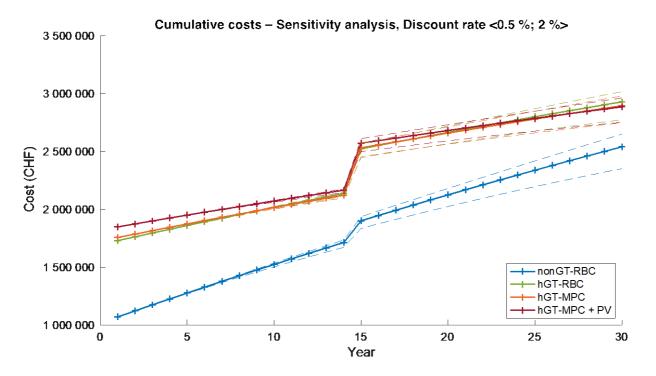


Figure 4 – Haus M: Sensitivity analysis, discount rate.

The global financial value is not very sensitive to variations of the discount rate for Haus M. The nominal value for discount rate is 1 %, we have performed the sensitivity analysis for half and double the value, i.e. for 0.5 % and 2 %. The three hybridGEOTABS solutions are still well separated from the benchmark case and are similarly influenced by the change in the discount rate.

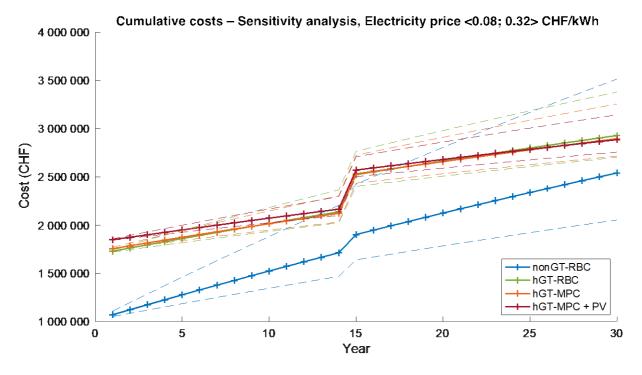


Figure 5 – Haus M: Sensitivity analysis, electricity price.

The electricity price has a more significant effect. Again, we took the half and the double of the nominal value. It can be seen that the benchmark case (nonTABS, RBC) is very sensitive to energy prices and can actually become more expensive than the hybridGEOTABS variants if electricity price increases by the factor of ca. 1.8 and more. The least sensitive variant is the hybridGEOTABS with MPC and photovoltaics.

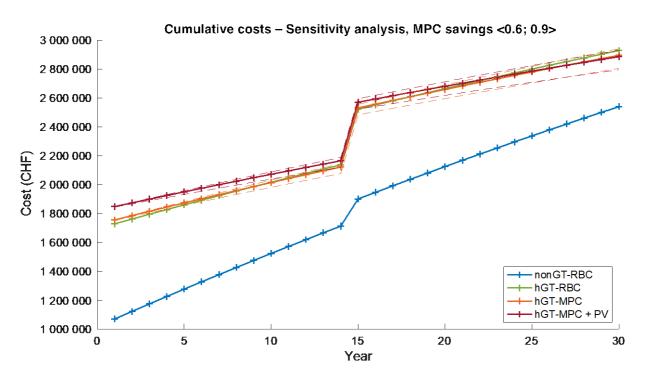


Figure 6 – Haus M: Sensitivity analysis, MPC savings.

The MPC savings have a very small effect on the last two variants, they still lay within the error of estimate.

2.9. Conclusions

For Haus M, the benchmark case is the cheapest one in the sense of global financial value. However, due to its high environmental impact and high environmental demands in the area of Zürich, it is not recommended. The other three variants are very similar, with the hybridGEOTABS variant with MPC and photovoltaics being slightly least expensive, least sensitive to variations of parameters and provides the best environmental performance.

For better decision-making process, Table 5 presents the summary of the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO_2 footprint of the operation of the building. The preferred variant (hybridGEOTABS, MPC and PV) is highlighted. It can be seen that it is about 3.40 % more expensive than the baseline variant, but that is out of our choice because of the environmental impact. It is 0.03 % and 0.23 % cheaper than the hybridGEOTABS + RBC, and hybridGEOTABS + MPC variant, respectively. Its environmental impact is only about 45.0 % of the baseline, and 61.4 % and 68.4 % of the other two variants.

The yearly revenue of the Haus M building, needed to pay-off the initial investment, is around CHF570 000, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant.

Table 5 – Haus M: Summary of the CBA results.

Global financial value (NPV) – comparison							
	nonGT-RBC hGT-RBC hGT-MPC hGT-MPC,PV						
nonGT-RBC	0,00%	-3,49%	-3,29%	-3,52%			
hGT-RBC	3,37%	0,00%	0,19%	-0,03%			
hGT-MPC	3,18%	-0,19%	0,00%	-0,23%			
hGT-MPC,PV	3,40%	0,03%	0,23%	0,00%			

Haus M

CO2 footprint – comparison

	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC,PV
nonGT-RBC	100,0%	136,6%	152,1%	222,3%
hGT-RBC	73,2%	100,0%	111,4%	162,8%
hGT-MPC	65,7%	89,8%	100,0%	146,1%
hGT-MPC,PV	45,0%	61,4%	68,4%	100,0%

3. Líbeznice School

3.1. Project identification

Figure 3: Líbeznice school building

Number of spaces	8 classrooms, canteen and staff room
Number of occupants (design)	240 pupils and staff
Gross floor area	990 m² (690 m² net)
Conditioned floor area	690 m² (area that is heated or cooled)
Type of ground source	Borehole Thermal Energy Storage (BTES)
Total annual thermal energy use	92 MWh heating, 10 MWh cooling
Heating	Heat pump providing heat for both TABS and domestic hot water (DHW)
Ventilation	Decentral
Ventilation characteristics	Mechanical supply, mechanical exhaust, heat recovery
Net volume	2,080 m ³
Building envelope:floor area ratio	2.92 (gross), 4.19 (net)

3.2. Presentation of the context – social, environmental, economic

An elementary school for 240 pupils in 8 classrooms, which also has after-school activities. The building is a single-storey annular shape with an eccentric round atrium, surrounded by a multifunctional foyer, integrating a corridor, children's lockers and a common area. The annular shape is inspired by the solar system. The school's cafeteria layout allows easy rearrangement, creating space for performances, or lectures with film screening. The building is equipped with TABS heating and cooling system (one circuit in the ceiling of the building), independent low-temperature ventilation units for each classroom and hot water circuit. The source of energy is ground coupled heat pump with heating power of 55 kW and cooling power of 65 kW. There are 6 boreholes on the primary side of the heat pump. The heat pump is operated in the three regimes i) heating, ii) passive cooling, iii) active cooling (compressor active). The GEOTABS system is controlled by a predictive controller (MPC) that takes into account weather forecast, model of thermodynamics of the heat pump and TABS. Moreover, spot market electricity prices are included in the MPC problem formulation which results in a higher consumption in situations when the price of electricity is low (surplus of the electricity in the grid) and lower consumption in other moments (demand side management). The algorithms benefit from the huge thermal capacity of the TABS system.

3.3. Definition of objectives

The objective of the CBA is to compare for variants and present their financial value, with sensitivity analysis of important parameters. The IEQ will also be described.

Given the requirements of the investor, the building is intended to have hybridGEOTABS as a mandatory condition. Unlike other case studies in the project, the focus of the CBA of the Líbeznice school building will be different. The four scenarios to be evaluated are:

- hybridGEOTABS, controlled by RBC
- hybridGEOTABS, controlled by MPC
- hybridGEOTABS, controlled by MPC, with PV panels added
- TABS with air source heat pump, controlled by MPC, with PVs and batteries added

The last variant will evaluate the economic possibility of substituting the expensive geothermal part by (also expensive) batteries, and thus to exchange long-term accumulation for highly efficient short-term accumulation.

3.4. Technical feasibility

For the analysis, we will compare four variants of the Líbeznice building:

Variant	hybridGEOTABS-RBC	hybridGEOTABS- MPC	hybridGEOTABS- MPC with PVs	TABS, MPC, PVs and batteries			
Weather		Prague					
Ventilation	Me	Mechanical extraction variable flow rate + CO2 control					
Primary heating	GSHP – TABS (ceiling) + AHU ASHP – TABS (ceilin AHU						
Primary cooling	TABS (ceiling) – ground heat exchanger TABS, AHU TABS (ceiling) – ch AHU						
Secondary cooling	Independent FCUs						
Control	MPC						
Renewables	GSHP		GSHP GSHP + PV				

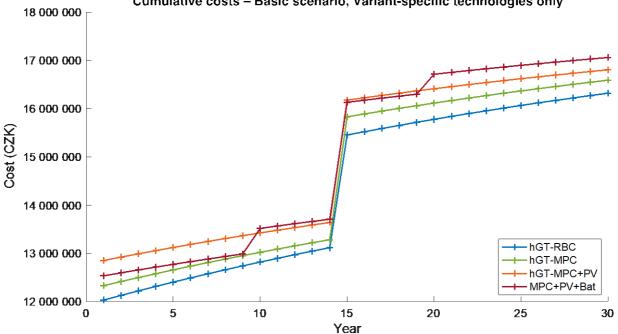
3.5. Financial and environmental analysis

For the four variants of the building, we will use the following numerical values of the parameters specified in part 1.13 Main parameters used in the CBA.

Name	hGT-RBC	hgt-mpc	hgt-mpc,pv	MPC, PV,	Units used
				Bat.	
Агеа	690	690	690	690	m2
Nominal energy consumption	61,0	61,0	61,0	61,0	kWh/m2/year
Construction cost	38 640 000	38 640 000	38 640 000	38 640 000	CZK
Constrol system cost	2 490 000	2 801 000	2 801 000	2 801 000	CZK
Borefield cost total	629 000	629 000	629 000	-	CZK
Heat pumpt cost	712 000	712 000	712 000	560 000	CZK
End energy consumption	50 508	42 090	30 330	22 490	kWh/year
End energy price	62 164	51 803	37 329	27 680	CZK/year
PV cost	-	-	336 000	560 000	CZK
Installed kWp	-	-	12	20	kWp
Battery capacity	-	-	-	23	kWh
Battery cost	-	-	-	598 000	CZK
Energy produced	-	-	11 760	19 600	kWh/year
Energy in-house	-	-	11 760	19 600	kWh/year
CO2 emissions nominal	11,50	9,59	9,59	9,59	kg/m2/year
CO2 emissions	7,94	6,61	4,77	4,90	ton/year
CO2 price	10 714,91	8 929,09	6 434,29	6 621,01	CZK
Technology extras	5 400 000	5 400 000	5 500 000	5 100 000	CZK
Design fee	2 700 000	2 700 000	2 800 000	2 850 000	CZK
Maintenance	26 000	26 000	28 000	29 000	CZK

The energy values are based on simulations performed on the virtual test bed, Deliverable 4.9. In the CBA, we will also assume the following constants and boundary conditions:

Name	Basic value	Units used
Electricity price per kWh	3,20	CZK/kWh
Residual value	0,25	-
Calculation period	30	years
Discount rate	2,50%	-
PV cost	28 000	CZK/kWp
Battery cost	26 000	CZK/kWh
Overall efficiency	980	kWh/kWp/year
In-house use ratio	1,00	-
CO2 price	1 350,00	CZK/ton


Local energy factors for the Czech Republic were used in the calculations, as described in Deliverable 4.9.

3.6. Financial net present value

When calculating the global net present value according to the above parameters, we get the results as shown in Figure 7. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

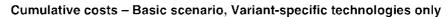


Figure 7 – Líbeznice, Global NPV. Only cumulative costs of the variant-specific technologies are shown.

It is clear from the figure that the benchmark, i.e. hybridGEOTABS, RBC version of the building is the most financially viable. The step in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced. The batteries are replaced after 10 and 20 years. The final cost performance overview in the form required by the EC Regulation No. 244/2012 is shown in Table 6.

Table 6 – Final cost performance overview of Líbeznice.

	Variant	hGT-RBC	hGT-MPC	hgt-mpc,pv	MPC, PV, Bat.
	Initial investment cost	50 571 000 CZK	50 882 000 CZK	51 418 000 CZK	51 109 000 CZK
Annual	Maintenance cost	18 593 CZK	18 593 CZK	20 02 3 CZK	20 7 38 CZK
running	Operational cost (reinvestments)	75 538 CZK	82 875 CZK	82 875 CZK	107 719 CZK
cost	Energy cost by fuel with the medium energy price scenario	44 454 CZK	37 045 CZK	26 695 CZK	19 794 CZK
	Calculation period	30	30	30	30
	Cost of greenhouse gas emissions	229 873 CZK	191 561 CZK	138 038 CZK	142 044 CZK
	Residual value	4 720 468 CZK	4 720 468 CZK	4 7 20 468 CZK	4 7 20 468 CZK
	Discount rate	2,50%	2,50%	2,50%	2,50%
	Estimated economic lifetime	30	30	30	30
	Disposal cost	N/A	N/A	N/A	N/A
	Global cost calculated (NPV)	50 237 972 CZK	50 508 491 CZK	50 7 2 3 360 CZK	50 978 136 CZK

The baseline scenario has lowest global cost calculated, but it is out of our concern because of its high environmental impact. The other three variants are very similar, the results are within 1.2 % of the global cost and thus within an error of estimation.

3.7. Economic value

3.7.1. Financial value

Comparing the four variants, the financial value (in the sense of net present value) is shown in Table 7. The financial value of all variants is very similar. The difference between the hybridGEOTABS, RBC and hybridGEOTABS, MPC + PV variant is 485 338 CZK (approx. €18 000), which about 1.45 % of the full price. It is therefore clear that other than financial considerations will play role in the decision making process.

Table 7 – Financial value of Líbeznice.

Variant	hGT-RBC	hGT-MPC	hGT-MPC,PV	MPC, PV, Bat.
Global cost (Net Present Value)	50 237 972 CZK	50 508 491 CZK	50 723 360 CZK	50 978 136 CZK
Difference between the variant and baseline (hGT-RBC)	- CZK	270 519 CZK	485 388 CZK	740 164 CZK
The variant being more expensive than baseline in %	0,00%	0,54%	0,96%	1,45%

3.7.2. Energies and Environmental impact

As already mentioned, the energy values are based Deliverable 4.9 – Concept and impact validation for the casestudy buildings based on the virtual test bed. Here, in Table 8, we show the summary of the energies and environmental impact of Libeznice.

Table 8 – Líbeznice: Environi	an a safe al isan a safe as a d	an away , wa ay jua na amba
100100 = 100000000 = 000000000000000000	пептаі ітпраст апа	enerav reautrements

	hGT-RBC	hGT-MPC	hgt-mpc,pv	MPC, PV, Bat.	
Nominal energy requirements	61,0	61,0	61,0	61,0	kWh/m2/year
End energy consumption	50 508	42 090	30 330	22 490	kWh/year
End energy price	62 164	51 803	37 329	27 680	CZK/year
Renewable energy generation & self-consumption	0	0	11 760	19 600	kWh/year
Total CO2 emissions	7,94	6,61	4,77	3,53	ton/year
standard a since and adjusted for a data a					

Nominal prices, not adjusted for inflation.

Because of the choice of variants for the Líbeznice school, the environmental impact of all three is very similar. The variants with photovoltaics are slightly better by about factor of two, but the values are very small. The best environmental performance is for the last variant, i.e. TABS with MPC, photovoltaic panels and batteries. The PV variants were calculated such that no spill-over to the main grid happens for the energy produced within the building.

3.7.3. Indoor environment quality

The TABS system provides in general a very good comfort associated with radiant heating and cooling. The advantage of the radiant heating and cooling is the better human temperature sensing, and the inhabitants of the building with TABS system may feel comfortable with ambient temperature lower by ca. 1 °C compared to traditional heating and cooling systems, such as radiators or FCUs. This can result of additional energy savings of 5–10 %. In addition, MPC control can slightly improve the indoor environment quality by better maintaining the desired indoor temperatures.

The mechanical ventilation system is controlled by CO₂ levels measured in the classrooms, which provides excellent air quality and is in line with EU standards.

In general, the advantages and disadvantages of the TABS system concerning the indoor environment quality are as follows:

- Advantages
 - Better space utilization minimum of heating, cooling or ventilation equipment is present or visible inside the building occupation spaces, which allows the inhabitants to use the space more freely
 - Radiant heating and cooling better perceived by some people
 - Lower ventilation rates in comparison with air-conditioned buildings, which results in less draught and infection spreading
 - High stability indoor air quality is quickly restored e.g. after a window is opened and closed
- Disadvantages
 - Sensitivity to additional installations one has to be careful to not pierce through the pipes
 - o Worse acoustics
 - High thermal inertia, inability to change temperature quickly this is partially compensated by the secondary system

3.8. Sensitivity analysis and risk assessment

The sensitivity analysis shows the variation of the global financial value in the sense of NPV due to \pm 1 % variation of the analysed variable and a criticality judgement – if the change of global financial value is more than 1 %, the variable is considered critical.

	hGT-RBC		hGT-MPC ł		hGT-MPC+PV		MPC+PC+Bat.	
Variable	Variation	Criticality	Variation	Criticality	Variation	Criticality	Variation	Criticality
Discount rate	0.028 %	No	0.028 %	No	0.026%	No	0.030 %	No
Energy tariff	0.027%	No	0.022 %	No	0.016 %	No	0.012 %	No
CO₂ price	0.005 %	No	0.004 %	No	0.003 %	No	0.002 %	No
PV price	-	-	-	-	0.007 %	No	0.011 %	No
Heat pump price	0.024 %	No	0.024 %	No	0.024%	No	0.019 %	No
Borefield price	0.013 %	No	0.013 %	No	0.013 %	No	-	-
MPC savings	-	-	0.44 %	No	0.44%	No	0.43%	No

Table 9 – Líbeznice: Sensitivity analysis

We can see that there is no critical variable for Líbeznice. However, given very small differences in global financial values for the variants, energy tariff and MPC savings ratio can be considered as important parameters. We will also have a more detailed look on the variations of the discount rate and the battery price, which can be interesting for the last variant.

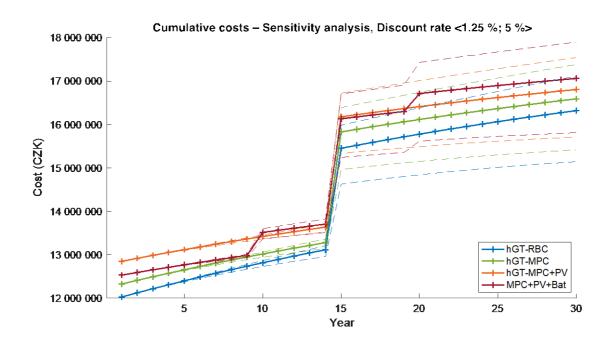


Figure 8 – Líbeznice: Sensitivity analysis, discount rate.

The global financial value is not very sensitive to variations of the discount rate for Líbeznice (Figure 8), but large differences can already have significant effect on the global financial value, as the discount rate for Czech Crown (CZK) is bigger than for Euro. The nominal value for discount rate is 2.5 %, we have performed the sensitivity analysis for half and double the value, i.e. for 1.25 % and 5 %. All variants keep their order with the change of the discount rate, but the variation can be significant. For higher discount rates, the variant with batteries can become competitive.

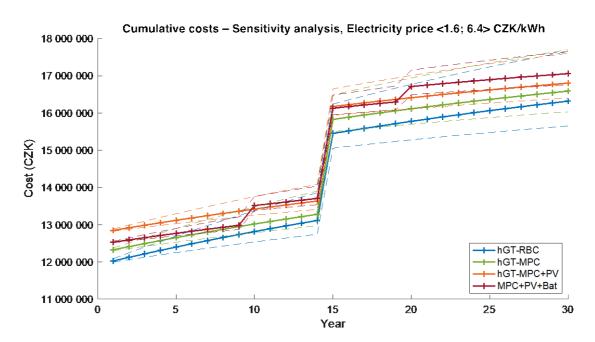


Figure 9 – Líbeznice: Sensitivity analysis, electricity price.

The electricity price has smaller effect (Figure 9). Again, we took the half and the double of the nominal value. For higher electricity prices, all four variants almost level, and the more advanced variants perform better.

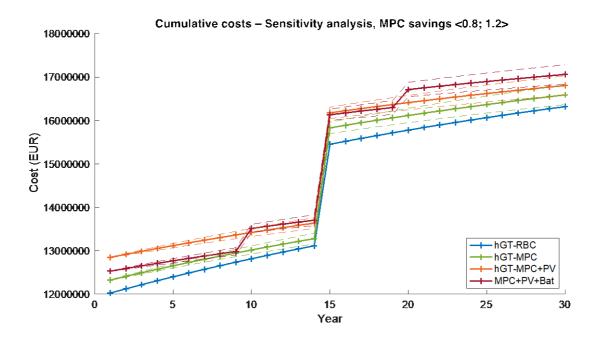


Figure 10 – Líbeznice: Sensitivity analysis, MPC savings.

The MPC savings have some effect on the RBC variant, which becomes more expensive if the MPC efficiency is increased by further 20 % (Figure 10).

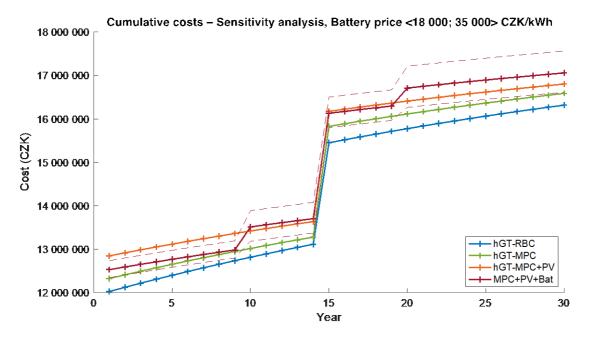


Figure 11 – Líbeznice: Sensitivity analysis, battery price

For the Líbeznice school, we have also performed a sensitivity analysis for the battery price, in the range from 18 000 CZK/kWh (\in 700 per kWh), which may be the target price for batteries, to the unlikely price of 35 000 CZK/kWh (\in 1300 per kWh). With the low battery prices, the battery variant becomes the most economical.

Conclusions 3.9.

For Líbeznice, the RBC case is the cheapest one in the sense of global financial value. However, the other three variants are very similar, with the hybridGEOTABS variant with MPC and photovoltaics being slightly more expensive (less than 1%), and is also not sensitive to the change of parameters.

For better decision-making process, Table 10 presents the summary of the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO₂ footprint of the operation of the building. The preferred variant (hybridGEOTABS, MPC and PV) is highlighted. It can be seen that it is about 0.96 % more expensive than the baseline variant, but that is out of our choice because of the environmental impact. Its environmental impact is about 60.1% of the baseline.

An interesting point is the non-geo variant, with air source heat pump, MPC, photovoltaics and batteries. This variant is 0.5 % more expensive than the hybridGETOABS + MPC + PV variant, but has only 74.0 % of its environmental impact in the sense of CO₂. Of course, the environmental impact of the batteries is questionable. The variant with the batteries is sensitive to the input prices in the sense that if the battery price will decrease, it will become very advantageous. So this variant may be the choice of the investor as well.

The recommendation is the hybridGEOTABS + MPC + PV variant, but the non-geothermal variant with batteries should be considered as well.

Table 10 – Líbeznice: Summary of the CBA results.

Global financial value (NPV) – comparison								
	hGT-RBC	hGT-MPC	hGT-MPC,PV	MPC,PV,Bat.				
hGT-RBC	0,00%	-0,54%	-0,97%	-1,47%				
hGT-MPC	0,54%	0,00%	-0,43%	-0,93%				
hGT-MPC, PV	0,96%	0,42%	0,00%	-0,50%				
MPC, PV, Bat.	1,45%	0,92%	0,50%	0,00%				

Líbeznice

.

CO2 footprint - comparison

	hGT-RBC	hGT-MPC	hGT-MPC,PV	MPC,PV,Bat.
hGT-RBC	100,0%	120,1%	166,5%	224,9%
hGT-MPC	83,2%	100,0%	138,6%	187,3%
hGT-MPC, PV	60,1%	72,2%	100,0%	135,1%
MPC, PV, Bat.	44,5%	53,4%	74,0%	100,0%

4. Infrax/Fluvius

4.1. Project identification

Figure 4: Infrax/Fluvius office building

Number of spaces	21 spaces: offices, kitchen, cafeteria, server cooling rooms & parking
Number of occupants (design)	+/- 90
Net floor area	2,232 m² + parking
Conditioned floor area	2,232 m² (area that is heated and/or cooled)
Type of ground source	Vertical Borehole Thermal Energy Storage (BTES)
Total annual thermal energy use	28.23 (heating) + 36.94 (cooling) = 65.17 kWh/(m²·annum)
Heating	Small electric boiler (domestic hot water) & heat pump (space heating)
Ventilation	Central
Ventilation characteristics	mechanical supply, mechanical exhaust, heat recovery
Net volume	7,520m ³ (without basement)
Building envelope:floor area ratio	1.067 (conditioned), 0.68 (conditioned and non-conditioned)

4.2. Presentation of the context – social, environmental, economic

The Infrax building is a 2232 m² conditioned space four-story office building located in Brussels, Belgium. The building envelope model is composed of 27 zones, of which 21 are conditioned for heating and cooling. The 1st, 2nd and 3rd floors are mainly open offices and separate zones exist for the north and south spaces, the individual meeting rooms and the bathrooms (which are not conditioned). The ground floor includes individual conference rooms and several facilities (first aid room, canteen, storage and server rooms). The U-values for the outer walls and roof are between 0.18-0.25 and 0.14-0.15 W/(m².K) respectively. The air-tightness of the building is measured with a n₅₀ value of 1.3 ACH. The AHU is a centralized double flux mechanical ventilation with heat recovery provided by a thermal wheel which is located after the heating coil in the ventilation system.

4.3. Definition of objectives

The objective of the CBA is to compare for variants and present their financial value, with sensitivity analysis of important parameters. The IEQ will also be described.

4.4. Technical feasibility

For the analysis, we will compare four variants of the building:

Variant	nonGEOTABS-RBC	hybridGEOTABS-RBC	hybridGEOTABS- MPC	hybridGEOTABS- MPC with PVs		
Weather	Brussels					
Ventilation	Me	Mechanical extraction variable flow rate + CO2 control				
Primary heating	AHU, FCU + Gas Boiler	GSHP – TABS (ceiling) + AHU + re-heating coils				
Primary cooling	AHU, FCU + Chiller	TABS (ceil	ing) – ground heat excha	nger TABS		
Secondary cooling	NO		NO			
Control	R	ВС МРС				
Renewables	NO	GS	GSHP GSHP + P'			

4.5. Financial and environmental analysis

For the four variants of the building, we will use the following numerical values of the parameters specified in part 1.13 Main parameters used in the CBA.

Name	nonGT-RBC	hGT-RBC	hgt-mpc	hGT-	Units used
				MPC,PV	
Area	2 232	2 232	2 232	2 232	m2
Nominal energy consumption	41,3	42,4	26,4	26,4	kWh/m2/year
Construction cost	6 026 400	6 026 400	6 026 400	6 026 400	EUR
Constrol system cost	83 850	111 809	142 337	142 337	EUR
Borefield cost total	-	135 061	135 061	135 061	EUR
Gas boiler cost	18 600	-	-	-	EUR
Heat pumpt cost	94 586	122 137	122 137	122 137	EUR
End energy consumption	92 182	94 637	58 925	31 025	kWh/year
End energy price	10 755	11 041	6 875	3 620	EUR/year
PV cost	-	-	-	36 000	EUR
Installed kWp	-	-	-	30	kWp
Energy produced	-	-	-	27 900	kWh/year
Energy in-house	-	-	-	27 900	kWh/year
CO2 emissions nominal	4,42	1,04	0,65	0,65	kg/m2/year
CO2 emissions	9,87	2,32	1,45	0,76	ton/year
CO2 price	493,27	116,06	72,54	38,19	EUR
Technology extras	516 192	592 981	592 981	592 981	EUR
Design fee	53 492	72 149	74 439	74 439	EUR
Maintenance	9 000	7 000	8 000	8 000	EUR

The energy values are based on simulations performed on the virtual test bed, Deliverable 4.9. In the CBA, we will also assume the following constants and boundary conditions:

Name	Basic value	Units used
Consumption_decrease_for_MPC	1,00	-
Electricity price per kWh	0,28	EUR/kWh
Residual value	0,25	-
Calculation period	30	years
Discount rate	1,50%	-
PV cost	1 200	EUR/kWh
Overall efficiency	930	kWh/kWp/year
In-house use ratio	1,00	-
CO2 price	50,00	EUR/ton

Local energy factors for Belgium were used in the calculations, as described in Deliverable 4.9.

4.6. Financial net present value

When calculating the global net present value according to the above parameters, we get the results as shown in Figure 12. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

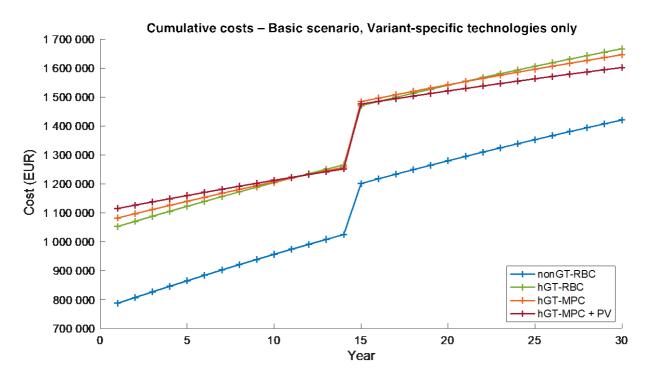


Figure 12 – Infrax/Fluvius, Global NPV. Only cumulative costs of the variant-specific technologies are shown.

It is clear from the figure that the benchmark, i.e. non-GEOTABS, RBC version of the building is the most financially viable. However, this version is the least environmentally friendly and is not of our concern, we only use it as a benchmark. The step in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced. The final cost performance overview in

the form required by the EC Regulation No. 244/2012 is shown in Table 11 – Final cost performance overview of Infrax/Fluvius.

Table 11 – Final cost performance overview of Infrax/Fluvius.

	Variant	nonGT-RBC		hGT-RBC		hGT-MPC		hGT-MPC,PV
	Initial investment cost	€ 6793120	€	7 060 537	€	7 093 355	€	7 129 355
Annual	Maintenance cost	€ 7313	€	5 688	€	6 5 0 0	€	6 500
running	Operational cost (reinvestments)	€ 5332	€	6 331	€	7 1 5 7	€	7 157
cost	Energy cost by fuel with the medium energy price scenario	€ 8738	€	8 971	€	5 586	€	2 941
	Calculation period	30		30		30		30
	Cost of greenhouse gas emissions	€ 12024	€	2 829	€	1 768	€	931
	Residual value	€ 978324	€	978 324	€	978 324	€	978 324
	Discount rate	1,50%		1,50%		1,50%		1,50%
	Estimated economic lifetime	30		30		30		30
	Disposal cost	N/A		N/A		N/A		N/A
	Global cost calculated (NPV)	€ 7 038 005	€	7 379 869	€	7 361 516	€	7 317 334

The baseline scenario has lowest global cost calculated, but it is out of our concern because of its high environmental impact. The other three variants are very similar, the results are within 1 % of the global cost and thus within an error of estimation.

Table 12 – Minimum annual income from Infrax/Fluvius needed to achieve positive financial NPV.

	nonGT-RBC I		hGT-RBC		hGT-MPC		hgt-mpc,pv	
Annual income needed to achieve positive financial NPV	€	234 600	€	245 996	€	245 384	€	243 911

Table 12 shows the minimum income that the investor or owner needs to achieve from Infrax/Fluvius, should the building yield positive profit. Note that the residual value is not included in this calculation.

4.7. Economic value

4.7.1. Financial value

Comparing the four variants, the financial value (in the sense of net present value) is shown in Table 13. Without the benchmark variant (non GEOTABS, RBC), the financial value of the other three variants is very similar. The difference between the hybridGEOTABS, MPC and hybridGEOTABS, MPC + PV variant is ϵ_{44} 181, which about 0.6 % of the full price. It is therefore clear that other than financial considerations will play role in the decision making process.

Table 13 – Financial value of Infrax/Fluvius.

Variant		nonGT-RBC		hGT-RBC		hGT-MPC		hGT-MPC, PV
Global cost (Net Present Value)	€	7 038 005	€	7 379 869	€	7 361 516	€	7 317 334
Difference between the variant and baseline (nonGT-RBC)	€	-	€	341 864	€	323 510	€	279 329
The varinat being more expensive than baseline in %		0,00%		4,63%		4,39%		3,82%

4.7.2. Energies and Environmental impact

As already mentioned, the energy values are based Deliverable 4.9 – Concept and impact validation for the casestudy buildings based on the virtual test bed. Here, in Table 14, we show the summary of the energies and environmental impact of Infrax/Fluvius.

	nonGT-RBC	hgt-RBC	hGT-MPC	hGT-MPC,PV	
Nominal energy requirements	41,3	42,4	26,4	26,4	kWh/m2/year
End energy consumption	92 182	94 637	58 925	31 025	kWh/year
End energy price	10755	11 04 1	6875	3 620	CHF/year
Renewable energy generation & self-consumption	0	0	0	27 900	kWh/year
Total CO2 emissions	9,87	2,32	1,45	0,76	ton/year
Nominal prices, not adjusted for inflation.					

Table 14 – Infrax/Fluvius: Environmental impact and energy requirements.

As the investor has the intention to build Infrax/Fluvius according to sustainability principles, the benchmark variant (nonGEOTABS, RBC) is not recommended because of significantly high CO_2 emissions. As can be seen, the carbon footprint of the other three variants is at least 5 times lower. The best environmental performance is for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building.

4.7.3. Indoor environment quality

The TABS system provides in general a very good comfort associated with radiant heating and cooling. The advantage of the radiant heating and cooling is the better human temperature sensing, and the inhabitants of the building with TABS system may feel comfortable with ambient temperature lower by ca. 1 °C compared to traditional heating and cooling systems, such as radiators or FCUs. This can result of additional energy savings of 5–10 %. In addition, MPC control can slightly improve the indoor environment quality by better maintaining the desired indoor temperatures.

The mechanical ventilation system is controlled by CO₂ levels measured in the rooms, which provides excellent air quality and is in line with EU standards.

In general, the advantages and disadvantages of the TABS system concerning the indoor environment quality are as follows:

- Advantages
 - Better space utilization minimum of heating, cooling or ventilation equipment is present or visible inside the building occupation spaces, which allows the inhabitants to use the space more freely
 - Radiant heating and cooling better perceived by some people
 - Lower ventilation rates in comparison with air-conditioned buildings, which results in less draught and infection spreading
 - High stability indoor air quality is quickly restored e.g. after a window is opened and closed
- Disadvantages
 - Sensitivity to additional installations one has to be careful to not pierce through the pipes
 - Worse acoustics
 - High thermal inertia, inability to change temperature quickly this is partially compensated by the secondary system

4.8. Sensitivity analysis and risk assessment

The sensitivity analysis shows the variation of the global financial value in the sense of NPV due to \pm 1% variation of the analysed variable and a criticality judgement – if the change of global financial value is more than 1%, the variable is considered critical.

	nonGT-RB	C	hGT-RBC		hGT-MPC		hGT-MPC+	PV
Variable	Variation	Criticality	Variation	Criticality	Variation	Criticality	Variation	Criticality
Discount rate	0.018 %	No	0.017 %	No	0.016 %	No	0.014 %	No
Energy tariff	0.037 %	No	0.037 %	No	0.023%	No	0.012 %	No
CO₂ price	0.017 %	No	0.0004 %	No	0.0002 %	No	0.0001%	No
PV price	-	-	-	-	-	-	0.0049%	No
Heat pump price	0.024%	No	0.030 %	No	0.030 %	No	0.030 %	No
Borefield price	-	-	0.018 %	No	0.018 %	No	0.018 %	No
MPC savings	-	-	-	-	0.45 %	No	0.46 %	No

Table 15 – Infrax/Fluvius: Sensitivity analysis

We can see that there is no critical variable for Infrax/Fluvius. However, given very small differences in global financial values for the variants, energy tariff and MPC savings ratio can be considered as important parameters. We will also have a more detailed look on the variations of the discount rate.

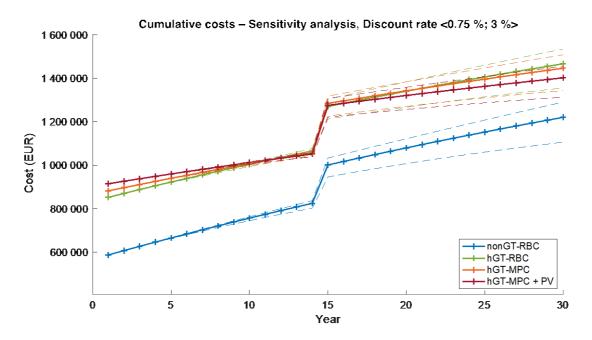


Figure 13 – Infrax/Fluvius: Sensitivity analysis, discount rate.

The global financial value is not very sensitive to variations of the discount rate for Infrax/Fluvius, but it is clear that it may have some effect, especially in the comparison of the three hybridGEOTABS variants. The nominal value for discount rate is 1.5 %, we have performed the sensitivity analysis for half and double the value, i.e. for

0.75 % and 3 %. The three hybridGEOTABS solutions are still well separated from the benchmark case and are similarly influenced by the change in the discount rate.

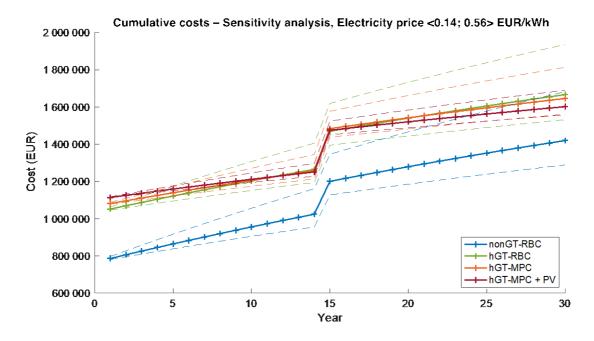


Figure 14 – Infrax/Fluvius: Sensitivity analysis, electricity price.

The electricity price has a more significant effect. Again, we took the half and the double of the nominal value. It can be seen that the benchmark case (nonTABS, RBC) is very sensitive to energy prices and can actually become more expensive than the hybridGEOTABS variants if electricity price increases by the factor of ca. 1.5 and more. The least sensitive variant is the hybridGEOTABS with MPC and photovoltaics, which becomes significantly cheaper for high electricity prices.



Figure 15 – Infrax/Fluvius: Sensitivity analysis, MPC savings.

The MPC savings have a very small effect on the last two variants, but it can be seen that for lower MPC effects, the variant without PV can become more expensive than the RBC variant. The PV variant remains on the safe side.

4.9. Conclusions

For Infrax/Fluvius, the benchmark case is the cheapest one in the sense of global financial value. However, due to the demand of the investor to have a small environmental impact, it is not recommended. The other three variants are very similar, with the hybridGEOTABS variant with MPC and photovoltaics being slightly least expensive. What is also important, the MPC+PV variant is also least sensitive to variations of parameters and provides the best environmental performance.

For better decision-making process, Table 16 presents the summary of the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO_2 footprint of the operation of the building. The preferred variant (hybridGEOTABS, MPC and PV) is highlighted. It can be seen that it is about 3.82 % more expensive than the baseline variant, but that is out of our choice because of the environmental impact. It is o.85 % and o.60 % cheaper than the hybridGEOTABS + RBC, and hybridGEOTABS + MPC variant, respectively. Its environmental impact is only about 7.7 % of the baseline, and 32.9 % and 52.7 % of the other two variants.

The yearly revenue of the Infrax/Fluvius building, needed to pay-off the initial investment, is around €250 000, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant.

Table 16 – Infrax/Fluvius: Summary of the CBA results.

Infrax/Fluvius

Global financial value (NPV) - comparison

	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC,PV
nonGT-RBC	0,00%	-4,86%	-4,60%	-3,97%
hGT-RBC	4,63%	0,00%	0,25%	0,85%
hGT-MPC	4,39%	-0,25%	0,00%	0,60%
hGT-MPC,PV	3,82%	-0,85%	-0,60%	0,00%

CO2 footprint – comparison

	nonGT-RBC	hGT-RBC	Г-RBC hGT-MPC		
nonGT-RBC	100,0%	425,0%	680,0%	1291,5%	
hGT-RBC	23,5%	100,0%	160,0%	303,9%	
hGT-MPC	14,7%	62,5%	100,0%	189,9%	
hGT-MPC,PV	7,7%	32,9%	52,7%	100,0%	

5. Ter Potterie

5.1. Project identification

Figure 5: Ter Potterie building

Number of spaces	121 rooms, 5 shared bathrooms, 1 bathroom ground flr, 1 nursing station per living group, living room/lounge areas and central storage.
Number of occupants (design)	121 residents
Gross floor area	16,103 m²
Conditioned floor area	10,048 m ² (area that is heated and/or cooled)
Type of ground source	BTES (Borehole Thermal Energy Storage)
Total annual thermal energy use	kWh/(m²∙annum) not yet available
Heating	Gas (Condensing) boiler
Ventilation	Central
Ventilation characteristics	mechanical supply, mechanical exhaust, heat recovery
Net volume Building envelope:floor area ratio	41,316 m ³ 2.83

5.2. Presentation of the context – social, environmental, economic

The Ter Potterie building is a 10 048 m² conditioned space (16 103 m² gross floor area) elderly care home building located in Bruges, Belgium. This building mostly contains single bedrooms but also common living rooms, offices, a kitchen, a cafeteria, and some rooms for staff. To reduce the size of the model, rooms of similar type, located at the same level and adjacent to each other, and of identical orientation were lumped together if they are connected to a same air handling unit. The resulting model is composed by 27 conditioned and 13 unconditioned zones.

All conditioned rooms have floor heating and/or TABS, except the kitchen and the polyvalent room. Additionally, all rooms are equipped with radiators sized such that they can cover approximately 30 % of the heat losses at nominal conditions.

5.3. Definition of objectives

The objective of the CBA is to compare four variants and present their financial value, with sensitivity analysis of important parameters. The IEQ will also be described.

5.4. Technical feasibility

For the analysis, we will compare four variants of the building:

Variant	nonGEOTABS-RBC	hybridGEOTABS-RBC	hybridGEOTABS- MPC with PVs			
Weather	Brussels					
Ventilation		Mechanical extrac	tion fixed flow rate			
Primary heating	AHU, FCU + Gas Boiler		– TABS (ceiling) + floor l al Gas Boiler – AHU + Ra			
Primary cooling	AHU, FCU + Chiller	TABS (ceiling) + Floor	cooling + AHU – ground	heat exchanger TABS		
Secondary cooling	NO		NO			
Control	RI	RBC MPC				
Renewables	NO	GSHP GSHP + PV				

5.5. Financial and environmental analysis

For the four variants of the building, we will use the following numerical values of the parameters specified in part 1.13 Main parameters used in the CBA.

Name	nonGT-RBC	hGT-RBC	hGT-MPC	hgt-MPC,PV	Units used
Area	10 048	10 048	10 048	10 048	m2
Nominal energy consumption	80,3	74,8	73,3	73,3	kWh/m2/year
Construction cost	27 129 600	27 129 600	27 129 600	27 129 600	EUR
Constrol system cost	193 955	192 215	242 215	257 722	EUR
Borefield cost total	-	354 434	354 434	354 434	EUR
Gas boiler cost	54 500	37 120	37 120	37 120	EUR
Heat pumpt cost	268 035	283 030	283 030	283 030	EUR
End energy consumption	806 854	751 992	736 619	504 119	kWh/year
End energy price	94 133	87 732	85 939	58 814	EUR/year
PV cost	-	-	-	300 000	EUR
Installed kWp	-	-	-	250	kWp
Energy produced	-	-	-	232 500	kWh/year
Energy in-house	-	-	-	232 500	kWh/year
CO2 emissions nominal	8,14	5,96	5,35	5,35	kg/m2/year
CO2 emissions	81,79	59,89	53,76	36,79	ton/year
CO2 price	4 089,54	2 994,30	2 687,84	1 839,47	EUR
Technology extras	1 815 311	1 837 368	1 837 368	1 837 368	EUR
Design fee	139 908	162 250	170 170	170 170	EUR
Maintenance	21 000	18 000	19 000	19 000	EUR

The energy values are based on simulations performed on the virtual test bed, Deliverable 4.9. In the CBA, we will also assume the following constants and boundary conditions:

Name	Basic value	Units used
Consumption_decrease_for_MPC	1,00	-
Electricity price per kWh	0,28	EUR/kWh
Residual value	0,25	-
Calculation period	30	years
Discount rate	1,50%	-
PV cost	1 200	EUR/kWh
Overall efficiency	930	kWh/kWp/year
In-house use ratio	1,00	-
CO2 price	50,00	EUR/ton

Local energy factors for Belgium were used in the calculations, as described in Deliverable 4.9.

5.6. Financial net present value

When calculating the global net present value according to the above parameters, we get the results as shown in Figure 16 – Ter Potterie, Global NPV. Only cumulative costs of the variant-specific technologies are shown.. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

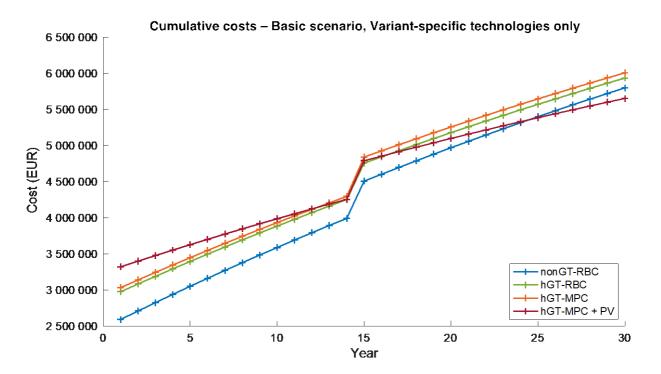


Figure 16 – Ter Potterie, Global NPV. Only cumulative costs of the variant-specific technologies are shown.

Ter Potterie is an elderly home and has therefore high energy demands, regardless on the energy supply system. Its nominal energy consumption (73–81 kWh/m²/year) is fairly high, and thus the savings potential from the use of efficient energy sources is high as well. From the comparison of the cumulative costs for the four variants, we

can see that all four are close to each other, with the hybridGEOTABS MPC + PV variant performing the best. The step in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced. The final cost performance overview in the form required by the EC Regulation No. 244/2012 is shown in Table 17 – Final cost performance overview of Ter Potterie.

Table 17 – Final cost performance overview of Ter Potterie.

	Variant		nonGT-RBC		hGT-RBC		hGT-MPC		hGT-MPC,PV
	Initial investment cost	€	29 601 309	€	29 996 017	€	30 053 937	€	30 369 444
Annual	Maintenance cost	€	17 063	€	14 626	€	15 438	€	15 438
running	Operational cost (reinvestments)	€	13977	€	13 865	€	15 219	€	15638
cost	Energy cost by fuel with the medium energy price scenario	€	76 486	€	71 286	€	69828	€	47 788
	Calculation period		30		30		30		30
	Cost of greenhouse gas emissions	€	99 687	€	72 989	€	65 5 19	€	44 839
	Residual value	€	4 404 212	€	4 404 212	€	4 404 212	€	4 404 212
	Discount rate		1,50%		1,50%		1,50%		1,50%
	Estimated economic lifetime		30		30		30		30
	Disposal cost		N/A		N/A		N/A		N/A
	Global cost calculated (NPV)	€	30 477 806	€	30657718	€	30737336	€	30 383 551

The hybridGETOABS MPC + PV has lowest global cost calculated, outperforming even the baseline scenario. However, the global costs are very close to each other, within 1.2 % difference.

Table 18 – Minimum annual income from Ter Potterie needed to achieve positive financial NPV.

	nonGT-	RBC	hGT-RBC		hGT-MP	C	hGT-MP	C,PV
Annual income needed to achieve positive financial NPV	€	1 015 927	€	1 021 924	€	1 024 578	€	1 012 785

Table 18 shows the minimum income that the investor or owner needs to achieve from Ter Potterie, should the building yield positive profit. Note that the residual value is not included in this calculation.

5.7. Economic value

5.7.1. Financial value

Comparing the four variants, the financial value (in the sense of net present value) is shown in Table 19. Net present financial value of the four variants is very similar – this can be attributed to high energy demand of the building, as discussed earlier. The difference between the hybridGEOTABS, MPC and hybridGEOTABS, MPC + PV variant is €353 785, which about 1.2 % of the full price. It is therefore clear that the baseline variant, without a significant amount of renewables, is not competitive with the more advanced hybridGEOTABS variants.

Table 19 – Financial value of Ter Potterie.

Variant		nonGT-RBC		hGT-RBC		hGT-MPC		hGT-MPC, PV
Global cost (Net Present Value)	€	30 477 806	€	30 657 718	€	30 737 336	€	30 383 551
Difference between the variant and baseline (nonGT-RBC)	€	-	€	179912	€	259 530	-€	94 256
The variant being more expensive than baseline in %		0,00%		0,59%		0,84%		-0,31%

5.7.2. Energies and Environmental impact

As already mentioned, the energy values are based Deliverable 4.9 – Concept and impact validation for the casestudy buildings based on the virtual test bed. Here, in Table 14, we show the summary of the energies and environmental impact of Ter Potterie.

	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC,PV	
Nominal energy requirements	80,3	74,8	73,3	73,3	kWh/m2/year
End energy consumption	806 854	751 992	736 619	504 119	kWh/year
End energy price	94 133	87 732	85 939	58814	EUR/year
Renewable energy generation & self-consumption	0	0	0	232 500	kWh/year
Total CO2 emissions	81,79	59,89	53,76	36,79	ton/year
Nominal prices, not adjusted for inflation.					

Table 20 – Ter Potterie: Environmental impact and energy requirements.

All three variants are quite close to each other also in the sense of environmental impact. The best environmental performance is for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building. Because of the high energy demand of the building, the installation of photovoltaic panels would provide a significant amount of energy, which the building is able to consume, and the environmental footprint is thus low.

5.7.3. Indoor environment quality

The TABS system provides in general a very good comfort associated with radiant heating and cooling. The advantage of the radiant heating and cooling is the better human temperature sensing, and the inhabitants of the building with TABS system may feel comfortable with ambient temperature lower by ca. 1 °C compared to traditional heating and cooling systems, such as radiators or FCUs. This can result of additional energy savings of 5–10 %. In addition, MPC control can slightly improve the indoor environment quality by better maintaining the desired indoor temperatures.

The mechanical ventilation system is controlled by CO_2 levels measured in the rooms, which provides excellent air quality and is in line with EU standards.

In general, the advantages and disadvantages of the TABS system concerning the indoor environment quality are as follows:

- Advantages
 - Better space utilization minimum of heating, cooling or ventilation equipment is present or visible inside the building occupation spaces, which allows the inhabitants to use the space more freely
 - o Radiant heating and cooling better perceived by some people
 - Lower ventilation rates in comparison with air-conditioned buildings, which results in less draught and infection spreading
 - High stability indoor air quality is quickly restored e.g. after a window is opened and closed
- Disadvantages
 - Sensitivity to additional installations one has to be careful to not pierce through the pipes
 - Worse acoustics
 - High thermal inertia, inability to change temperature quickly this is partially compensated by the secondary system

5.8. Sensitivity analysis and risk assessment

The sensitivity analysis shows the variation of the global financial value in the sense of NPV due to \pm 1 % variation of the analysed variable and a criticality judgement – if the change of global financial value is more than 1 %, the variable is considered critical.

	nonGT-RB	nonGT-RBC		hGT-RBC		hGT-MPC		PV
Variable	Variation	Criticality	Variation	Criticality	Variation	Criticality	Variation	Criticality
Discount rate	0.022 %	No	0.020 %	No	0.020 %	No	0.016 %	No
Energy tariff	0.075 %	No	0.070 %	No	0.068 %	No	0.047 %	No
CO₂ price	0.0033 %	No	0.0024 %	No	0.0021 %	No	0.0015 %	No
PV price	-	-	-	-	-	-	0.0099 %	No
Heat pump price	0.016 %	No	0.017 %	No	0.017 %	No	0.017 %	No
Borefield price	-	-	0.012 %	No	0.011 %	No	0.012 %	No
MPC savings	-	-	-	-	1.4%	No	1.4%	No

Table 21 – Ter Potterie: Sensitivity analysis

We can see that the only critical variable for Ter Potterie is the MPC savings assumed ratio. Fiven very small differences in global financial values for the variants, energy tariff and discount rate can be considered as important parameters as well.

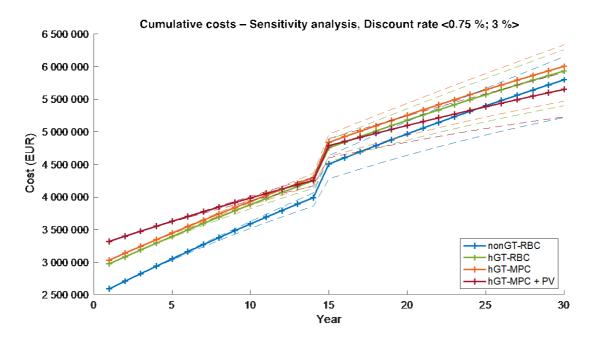


Figure 17 – Ter Potterie: Sensitivity analysis, discount rate.

The global financial value is indeed sensitive to variations of the discount rate for Ter Potterie. The nominal value for discount rate is 1.5 %, we have performed the sensitivity analysis for half and double the value, i.e. for 0.75 % and 3 %. All four variants are close to each other at the global financial value, and the variation of the discount

rate can mix all variants up. The figure also shows that the hybridGEOTABS with MPC and PV is best influenced by high discount rate, while not sensitive to low discount rates.

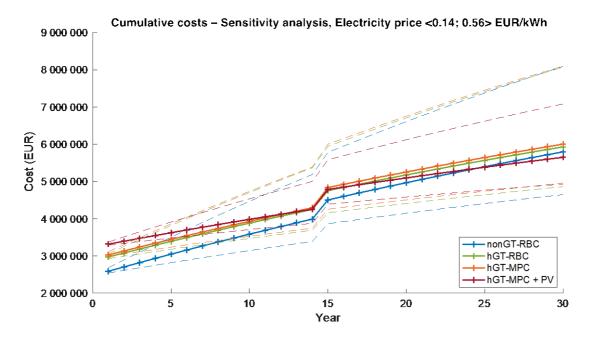


Figure 18 – Ter Potterie: Sensitivity analysis, electricity price.

The electricity price has an even more significant effect. Again, we took the half and the double of the nominal value. It can be seen that the benchmark case (nonTABS, RBC) is very sensitive to energy prices and can actually become more expensive than the hybridGEOTABS variants if electricity price increases by the factor of 2 and more. The least sensitive variant is the hybridGEOTABS with MPC and photovoltaics, which becomes significantly cheaper for high electricity prices.

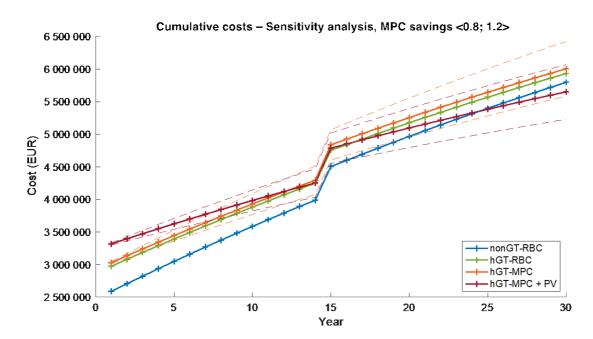


Figure 19 – Ter Potterie: Sensitivity analysis, MPC savings.

The MPC savings ratio is a critical variable, and we can see that it has a big effect on the last two variants, but it can be seen that for lower MPC effects, the variant without PV can become more expensive than the RBC variant. The PV variant remains on the safe side and can become much cheaper for even better MPC savings.

5.9. Conclusions

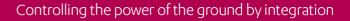
For Ter Potterie, the hybridGEOTABS variant with MPC and photovoltaics is the cheapest one in the sense of global financial value. It is also least sensitive to pessimistic scenarios, and performs significantly better even for small improvements of the MPC efficiency. The other three variants are very similar. The hybridGEOTABS with MPC and PV provides also the best environmental performance.

For better decision-making process, Table 22 presents the summary of the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO_2 footprint of the operation of the building. The preferred variant (hybridGEOTABS, MPC and PV) is highlighted. It can be seen that it is about 0.31 % cheaper than the baseline variant, and 0.90 % and 1.16 % cheaper than the hybridGEOTABS + RBC, and hybridGEOTABS + MPC variant, respectively. Its environmental impact is only about 45.0 % of the baseline, and 61.4 % and 68.4 % of the other two variants.

The yearly revenue of the Ter Potterie building, needed to pay-off the initial investment, is around €1 020 000, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant.

Table 22 – Ter Potterie: Summary of the CBA results.


Ter Potterie

Global financial value (NPV) – comparison

	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC,PV
nonGT-RBC	0,00%	-0,59%	-0,85%	0,31%
hGT-RBC	0,59%	0,00%	-0,26%	0,89%
hGT-MPC	0,84%	0,26%	0,00%	1,15%
hGT-MPC,PV	-0,31%	-0,90%	-1,16%	0,00%

CO2 footprint – comparison

	nonGT-RBC	hGT-RBC	hGT-MPC	hGT-MPC,PV
nonGT-RBC	100,0%	136,6%	152,1%	222,3%
hGT-RBC	73,2%	100,0%	111,4%	162,8%
hGT-MPC	65,7%	89,8%	100,0%	146,1%
hGT-MPC,PV	45,0%	61,4%	68,4%	100,0%

6. Analysis of cases for various climatic zones

6.1. Objectives

In the previous chapters, we have shown a detailed CBA for the four case study buildings used in the hybridGEOTABS project. However, these study buildings are quite different from each other – it was the purpose of the project to show the hybridGEOTABS system on various types of buildings, but it also makes it difficult to draw general conclusions. We have developed a large set of building models in Deliverable 2.2 – A set of parametric geometries for the (sub)typologies studied, which are situated into the following three climatic zones:

- Warsaw / transitional temperate/transitional cold
- (Uccle) Brussels / Maritime temperate warm
- Madrid / continental intermediate subtropical

This set of building comprises various building types (offices, residential buildings, elderly homes), and we have chosen the office type for the comparison study.

As described in Deliverable 2.2, we are considering three types of buildings based upon the envelope properties (Table 23).

	U-Value opaque [W/m². K]	U-Value non- opaque [W/m². K]	Airtightness at n50 value 1/h	G-value glazing
Group(A)	0.15	0.80	o.6	0.40
Group(B)	0.27	1.5	2.0	0.56
Group(C)	0.50	2.5	5	o.6

Table 23 – Building envelope properties for the comparison study used in this chapter.

For a heavy mass building, we assume concrete structure, and timber structure for light mass. We have also two types of occupancies, as shown in Table 24.

Table 24 – Office zones internal heat gains from appliances, occupancy and lighting.

Туре	High density office (1p/10 m²)	Low density office (1p/20 m²)
Occupancy	10.0 W/m²	5.0 W/m²
Lighting	8.0 W/m ²	8.0 W/m²
Appliances	15.0 W/m²	5.5 W/m²
Total	33.0 W/m²	18.5 W/m²

The specific cases were chosen from the database collected within Deliverable 2.2, along with the energy consumption parameters. We have tried to choose the typical examples, with various types of envelope, mass and occupancy, always in the same climatic zone. The groups of chosen examples are shown in Table 25.

Table 25 – Case sets for comparison study

Set 01

PHYS_ID	Climate	Envelope	Mass	Occupancy	Shading	Orientation
P021	Brussels	GroupB	Heavy	Lowdense	YeSH	N
P069	Warsaw	GroupB	Heavy	Lowdense	YeSH	N
P117	Madrid	GroupB	Heavy	Lowdense	YeSH	Ν

Set 02

PHYS_ID	Climate	Envelope	Mass	Occupancy	Shading	Orientation
P003	Brussels	GroupA	Heavy	Highdense	YeSH	W
P053	Warsaw	GroupA	Heavy	Lowdense	YeSH	N
P133	Madrid	GroupC	Heavy	Lowdense	YeSH	Ν

Set o3

PHYS_ID	Climate	Envelope	Mass	Occupancy	Shading	Orientation
P041	Brussels	GroupC	Light	Highdense	YeSH	N
P089	Warsaw	GroupC	Light	Highdense	YeSH	Ν
P137	Madrid	GroupC	Light	Highdense	YeSH	Ν

Set o4

PHYS_ID	Climate	Envelope	Mass	Occupancy	Shading	Orientation
P027	Brussels	GroupB	Light	Highdense	YeSH	W
P080	Warsaw	GroupB	Light	Lowdense	NoSH	W
P141	Madrid	GroupC	Light	Lowdense	YeSH	Ν

6.2. Method

In order to be able to compare the buildings, we have not used national parameters for the CBA, but the EU average for the economic parameters (Table 26).

Tahle 26 – General	narameters for the	comparison study.
	parameters joi the	companson stoay.

Parameter	Value	Source
Primary energy factor – electricity	2.0	Eurostat
Primary energy factor – natural gas	1.1	Eurostat
CO2 emission factor – electricity	0.260 kg/kWh	Eurostat
CO2 emission factor – natural gas	0.220 kg/kWh	Eurostat
Monetary unit	EUR	-
Discount rate	1.5 %	Eurostat
Electricity price	0.21 EUR/kWh	Eurostat
Natural gas price	o.o66 EUR/kWh	Eurostat
CO₂ price (Emission Trading System)	50 EUR/ton	ETS estimate as of 01/2021
Gas boiler price – full installation	130 EUR/kW	ENER ²
Electric chiller – full installation	280 EUR/kW	ENER
Ground source heat pump price – full installation	480 EUR/kW	ENER
PV price	1100 EUR/kWp	Estimate
Borefield cost	6o EUR/m	Estimate
Basic construction cost	2400 EUR/m ²	FIAC
Basic design cost	190 EUR/m ²	Estimate
hybridGEOTABS specific construction cost	45 EUR/m ²	Estimate
hybridGEOTABS specific design cost	19 EUR/m²	Estimate
MPC cost – flat	EUR 30 000	Estimate
PV efficiency	Brussels: 930 kWh/k\ Warsaw: 980 kWh/k\ Madrid: 1580 kWh/k\	Np/year

The estimates were made as follows:

- PV Price, borefield cost our own estimate based on the internal pricings of the consortium members
- Basic design cost, hybridGEOTABS specific costs (construction, design) rounded average of the four case study buildings
- MPC cost based on experience of Energoklastr from similar installations the MPC has roughly the same price for the buildings, regardless on the size of the building

We will not consider maintenance costs for this comparison study.

² <u>https://ec.europa.eu/energy/sites/ener/files/documents/mapping-hc-final_report-wp2.pdf</u>

For the basic construction cost, we assume that for the B class of the EU energy level, which also corresponds to our class B. The difference to A or C will be calculated as 7 % (3).

6.3. Heavy building, medium insulated, low density occupancy

6.3.1.CBA Parameters

For the first set of building examples, we assume the following parameters, as specified in Table 27.

Table 27 – Parameters for the first dataset (Heavy building, medium insulated, low density occupancy).

			- ·	- -							
Name		Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -	Units used
	value	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	
	1										1_
Area	-	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	m2
Energy demand primary system heating	-	-	23,5	23,5	-	22,0	22,0	-	13,3	13,3	kWh/m2/year
Energy demand primary system Cooling	-	-	12,4	12,4	-	11,6	11,6	-	13,3	13,3	kWh/m2/year
Energy demand secondary system heating	-	29,1	6,0	6,0	40,9	19,8	19,8	14,5	1,6		kWh/m2/year
Energy demand secondary system Cooling	-	13,6	1,5	1,5	14,0	3,2	3,2	29,2	16,3	16,3	kWh/m2/year
Heat pump power	-	-	18,3	18,3	-	19,2	19,2	-	17,1	17,1	kW
Gas boiler power	-	89,3	29,4	29,4	106,6	45,8	45,8	77,6	17,6	17,6	kW
Chiller Power	-	83,9	23,9	23,9	14,0	40,6	40,6	94,4	51,6	51,6	kW
Borefield power	-	-	20,4	20,4	-	22,0	22,0	-	17,1	17,1	kw
Borefield lenght	-	-	611,2	611,2	-	660,2	660,2	-	513,9	513,9	m
Gas consumption	-	83 452	14 282	14 282	117 356	47 260	47 260	41 694	3 808	3 808	kWh/year
Electricity consumption heating	-	-	11 242	11 242	-	10 498	10 498	-	6 383	6 383	kWh/year
Electricity consumption cooling	-	11 126	3 522	3 522	11 485	4 463	4 463	23 915	13 765	13 765	kWh/year
Electricity production	-	-	-	7 440	-	-	6 860	-	-	7 900	kWh/year
Electricity total	-	11 126	14 763	7 323	11 485	14 961	8 101	23 915	20 149	12 249	kWh/year
SPF heat pump heating	5,0										-
SPF heat pump cooling	12,0										-
SPF chiller cooling	3,5										-
Electricity Primary	2,0	22 253	29 527	14 647	22 970	29 922	16 202	47 830	40 297	24 497	kWh/year
Gas Primary	1,1	91 797	15 710	15 710	129 092	51 986	51 986	45 863	4 189	4 189	kWh/year
Electricity CO2	0,26	5,79	7,68	3,81	5,97	7,78	4,21	12,44	10,48	6,37	ton/year
Gas CO2	0,22	20,20	3,46	3,46	28,40	11,44	11,44	10,09	0,92	0,92	ton/year
CO2 emissions	-	25,98	11,13	7,26	34,37	19,22	15,65	22,53	11,40	7,29	ton/year
CO2 price	50	1 299	557	363	1 719	961	782	1 1 2 6	570	365	EUR
Gas Price - Total	0,066	5 508	943	943	7 746	3 119	3 119	2 7 5 2	251	251	EUR
Electricity Price - Total	0,210	2 337	3 100	1 538	2 412	3 142	1 701	5 0 2 2	4 2 3 1	2 572	EUR
											-
Energy demand - total	-	51,2	43,4	43,4	65,9	56,5	56,5	52,4	44,5	44,5	kWh/m2/year
Construction_costs	2 590	6 192 690	6 192 690	6 192 690	6 192 690	6 192 690	6 192 690	6 192 690	6 192 690	6 192 690	EUR
MPC_cost	30 000	-	30 000	30 000	-	30 000	30 000	-	30 000	30 000	EUR
Borefield_cost_total	60	-	36 670	36 670	-	39 609	39 609	-	30 832	30 832	EUR
Gas_boiler_cost	130	11 605	3 818	3 818	13 861	5 955	5 955	10 089	2 294	2 294	EUR
Heat_pump_cost	480	-	8 801	8 801	-	9 200	9 200	-	8 2 2 2	8 222	EUR
Chiller Cost	280	23 502	6 698	6 698	3 923	11 365	11 365	26 439	14 460	14 460	EUR
Consumption factor for MPC/RBC	0,80	1,2	1	1	1,2	1	1	1,2	1	1	-
Electricity price per kWh	0,210										EUR/kWh
Gas price per kWh	0,066										EUR/kWh
End energy consumption	-	114 050	45 237	30 357	152 062	81 908	68 188	93 693	44 486	28 686	kWh/year
End energy price	-	7 844	4 043	2 481	10 157	6 261	4 820	7 774	4 483	2 824	EUR/year
Residual value	0,25										-
Calculation period	30										years
Discount rate	1,5%										-
PV cost	1 100	0	0	8800	0	0	7700	0	0	5500	EUR
Overall efficiency	930	930	930	930	980	980	980	1580	1580	1580	kWh/kWp/year
installed kWp	-	0	0	8	0	0	7	0	0	5	kWp
Energy produced	-	0	0	7440	0	0	6860	0	0	7900	kWh/year
Technology extras	45	0	107595	107595	0	107595	107595	0	107595	107595	EUR
Design fee	19	0	45429	45429	0	45429	45429	0	45429	45429	EUR
	-										

6.3.1. Global financial value

When calculating the global financial value according to the above parameters, we get the results as shown in Figure 20. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

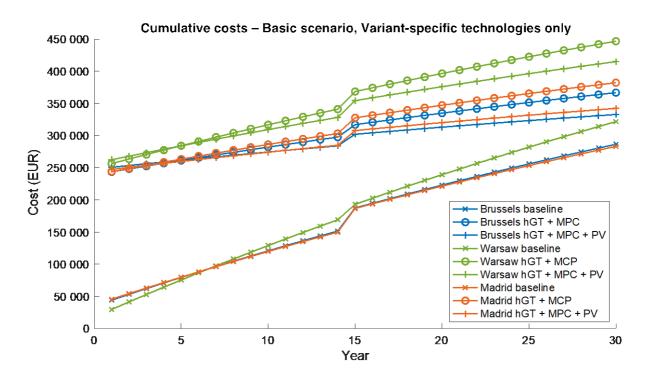


Figure 20 – First data set (heavy building, medium insulated, low density occupancy), Global NPV. Only cumulative costs of the variant-specific technologies are shown.

We can see that the baseline scenario is always the cheapest one, despite its significantly higher energy and CO_2 costs. For all three climatic zones, the use of photovoltaics brings additional value to the hybridGEOTABS building. The step in Figure 20 in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced.

The final cost performance overview in the form required by the EC Regulation No. 244/2012 for all three climatic zones is shown in Table 28. The baseline variant has the lowest global cost calculated, but the hybridGEOTABS variant with MPC and PV is only less than 1% more expensive for all three climatic zones.

Table 28 – First data set (heavy building, medium insulated, low density occupancy) – Final cost performance overview.

	Variant		Brussels - benchmark	Brussels - hGT		Brussels - hGT + PV		ł	Warsaw - benchmark	w	/arsaw - hGT	Wa	arsaw - hGT + PV	benchmark		Madrid - hGT		Ma	drid - hGT + PV
	Initial investment cost	€	6 227 797	€	6 431 701	€	6 440 501	€	6 210 474	€	6441843	€	6 449 543	€	6 229 218	€	6 431 523	€	6 437 023
	Maintenance cost	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-
Annual	Operational cost (reinvestments)	€	950	€	523	€	523	€	481	€	718	€	718	€	989	€	676	€	676
running cost	Energy cost by fuel with the medium energy price scenario	€	6 374	€	3 285	€	2 016	€	8 2 5 3	€	5 087	€	3 917	€	6 3 1 7	€	3 642	€	2 294
	Calculation period		30		30		30		30		30		30		30		30		30
	Cost of greenhouse gas emissions	€	31 666	€	13 569	€	8 854	€	41 893	€	23 421	€	19 073	€	27 454	€	13 893	€	8 886
	Residual value	€	1 005 320	€	1 005 320	€	1 005 320	€	1 005 320	€	1005320	€	1 005 320	€	1 005 320	€	1 005 320	€	1 005 320
	Discount rate		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%
	Estimated economic lifetime		30		30		30		30		30		30		30		30		30
	Disposal cost		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A
	Global cost calculated (NPV)	€	5 473 860	€	5 554 184	€	5 5 20 1 83	€	5 509 084	€	5634091	€	5 602 328	€	5 470 507	€	5 569 640	€	5 529 693

58

Table 29 shows the minimum income that the investor or owner needs to achieve from the building, should the building yield positive profit. Note that the residual value is not included in this calculation.

Table 29 - First data set (heavy building, medium insulated, low density occupancy) - Minimum annual income needed to achieve positive financial NPV.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Annual income needed to	€ 182 462	€ 185 139	€ 184 006	€ 183 636	€ 187 803	€ 186 744	€ 182 350	€ 185655	€ 184 323
achieve positive financial NPV	£ 102 402	£ 165155	£ 104000	183 030	10/003	£ 100744	€ 102,550	£ 185055	£ 104 323

6.3.2. Economic value

Comparing all the variants, the financial value (in the sense of net present value) is shown in Table 30. Net present financial value of all the variants is very similar. The difference between the baseline and hybridGEOTABS with MPC is only about 1.5–1.8 % of the full price. It is therefore clear that the baseline variant, without a significant amount of renewables, is not competitive with the more advanced hybridGEOTABS variants.

Table 30 – First data set (heavy building, medium insulated, low density occupancy) – Financial value.

Variant	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Global cost (Net Present Value)	€ 5473860	€ 5554184	€ 5520183	€ 5509084	€ 5634091	€ 5602328	€ 5470507	€ 5569640	€ 5529693
Difference between the variant and baseline (nonGT-RBC)	€ -	€ 80 324	€ 46 324	€ -	€ 125008	€ 93 244	€ -	€ 99 133	€ 59186
The varinat being more expensive than baseline in %	0.00%	1,45%	0,84%	0,00%	2,22%	1,66%	0,00%	1,78%	1,07%

Table 31 shows the summary of the energies and environmental impact of all the variants. We can see that the total CO₂ emissions are about three times lower for the hybridGEOTABS + MPC + PV variant than for the baseline.

Table 31 – First data set (heavy building, medium insulated, low density occupancy) – Environmental impact and energy requirements.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT+ PV	
Nominal energy requirements	51,2	43,4	43,4	65,9	56,5	56,5	52,4	44,5	44,5	kWh/m2/year
Primary energy consumption	114 050	45 237	30 357	152 062	81 908	68 188	93 693	44 486	28 686	kWh/year
End energy price	7 844	4 0 4 3	2 481	10 157	6 261	4 820	7 774	4 483	2 824	EUR/year
Renewable energy generation & self-consumption	0	0	7440	0	0	6 860	0	0	7 900	kWh/year
Total CO2 emissions	25,98	11,13	7,26	34,37	19,22	15,65	22,53	11,40	7,29	ton/year
Nominal prices, not adjusted for in	flation.									

The best environmental performance is always for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building.

6.3.1.Conclusions

For the first data set (heavy building, medium insulated, low density occupancy), the baseline variant is the cheapest one in the sense of global financial value. However, the other two variants are very similar. The hybridGEOTABS with MPC and PV provides the best environmental performance.

As a summary, Table 32 presents the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO_2 footprint of the operation of the building. It can be seen that the preferred variant, hybridGEOTABS with MPC and PV it is 0.84–1.66 % more expensive than the baseline variant, and 0.57–0.72 % cheaper than the hybridGEOTABS with MPC variant. Its environmental impact is only 28.0–45.5 % of the baseline, and 64.0–81.4 % of the hybridGEOTABS with MPC variant.

The yearly revenue of the building, needed to pay-off the initial investment, stays around €185 000 for all variants, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant.

	Н	leavy build	ing, mediu	ı <mark>m insula</mark> te	d, low den	sity occup	ancy		
			Global finan	cial value (MP	V)–comparis	on			
	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Brussels - benchmark	0,00%	-1,47%	-0,85%	-0,64%	-2,93%	-2,35%	0,06%	-1,75%	-1,02%
Brussels - hGT	1,45%	0,00%	0,61%	0,81%	-1,44%	-0,87%	1,51%	-0,28%	0,44%
Brussels - hGT + PV	0,84%	-0,62%	0,00%	0,20%	-2,06%	-1,49%	0,90%	-0,90%	-0,17%
Warsaw - benchmark	0,64%	-0,82%	-0,20%	0,00%	-2,27%	-1,69%	0,70%	-1,10%	-0,37%
Warsaw - hGT	2,84%	1,42%	2,02%	2,22%	0,00%	0,56%	2,90%	1,14%	1,85%
Warsaw - hGT + PV	2,29%	0,86%	1,47%	1,66%	-0,57%	0,00%	2,35%	0,58%	1,30%
Madrid - benchmark	-0,06%	-1,53%	-0,91%	-0,71%	-2,99%	-2,41%	0,00%	-1,81%	-1,08%
Madrid - hGT	1,72%	0,28%	0,89%	1,09%	-1,16%	-0,59%	1,78%	0,00%	0,72%
Madrid - hGT + PV	1,01%	-0,44%	0,17%	0,37%	-1,89%	-1,31%	1,07%	-0,72%	0,00%

Table 32 – First data set (heavy building, medium insulated, low density occupancy) – CBA Summary

			CO2	footprint – co	mparison				
	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -
	benchmark	hGT	hGT+PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV
Brussels - benchmark	100,0%	233,4%	357,6%	75,6%	135,2%	166,0%	115,3%	227,9%	356,4%
Brussels - hGT	42,9%	100,0%	153,3%	32,4%	57,9%	71,1%	49,4%	97,7%	152,7%
Brussels - hGT + PV	28,0%	65,2%	100,0%	21,1%	37,8%	46,4%	32,2%	63,7%	99,6%
Warsaw - benchmark	132,3%	308,7%	473,2%	100,0%	178,9%	219,6%	152,6%	301,5%	471,4%
Warsaw - hGT	74,0%	172,6%	264,5%	55,9%	100,0%	122,8%	85,3%	168,6%	263,6%
Warsaw - hGT + PV	60,2%	140,6%	215,4%	45,5%	81,4%	100,0%	69,5%	137,3%	214,6%
Madrid - benchmark	86,7%	202,3%	310,1%	65,5%	117,2%	143,9%	100,0%	197,6%	309,0%
Madrid - hGT	43,9%	102,4%	156,9%	33,2%	59,3%	72,8%	50,6%	100,0%	156,3%
Madrid - hGT + PV	28,1%	65,5%	100,4%	21,2%	37,9%	46,6%	32,4%	64,0%	100,0%

6.4. Heavy building, well insulated, low density occupancy

6.4.1.CBA Parameters

For the second set of building examples, we assume the following parameters, as specified in Table 27. The basic construction cost has been increased by 7 %, which corresponds to the increase in one energy level in the energy labelling scheme, as proposed by the research conducted for the energy plus houses in Germany (3).

Table 33 – Parameters for the second dataset (Heavy building, well insulated, low density occupancy).

Name	Nominal	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -	Units used
	value	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	
			_				_	_			
linea	-	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	m2
Energy demand primary system heating	-	-	3,7	3,7	-	14,2	14,2	-	45,9	45,9	kWh/m2/year
Energy demand primary system Cooling	-	-	4,4	4,4	-	10,9	10,9	-	24,3	24,3	kWh/m2/year
Energy demand secondary system heating	-	4,1	1,0	1,0	15,8	2,2	2,2	14,5	4,1	4,1	kWh/m2/year
Energy demand secondary system Cooling	-	28,6	24,9	24,9	12,0	1,6	1,6	29,2	2,5	2,5	kWh/m2/year
Heat pump power	-	-	10,9	10,9	-	14,3	14,3	-	46,2	46,2	kW
Gas boiler power	-	56,5	12,8	12,8	66,1	14,9	14,9	120,8	25,6	25,6	kW
Chiller Power	-	105,7	40,6	40,6	12,0	26,0	26,0	107,0	37,7	37,7	kW
Borefield power	-	-	12,1	12,1	-	18,8	18,8	-	48,3	48,3	kw
Borefield lenght	-	-	363,6	363,6	-	562,8	562,8	-	1 448,6	1 448,6	m
Gas consumption	-	11 675	2 415	2 415	45 345	5 255	5 255	41 687	9 698	9 698	kWh/year
Electricity consumption heating	-	-	1 772	1 772	-	6 780	6 780	-	21 962	21 962	kWh/year
Electricity consumption cooling	-	23 444	17 889	17 889	9 817	3 281	3 281	23 911	6 536	6 536	kWh/year
Electricity production	-	-	-	9 300	-	-	5 880	-	-	14 220	kWh/year
Electricity total	-	23 444	19 661	10 361	9 817	10 061	4 181	23 911	28 498	14 278	kWh/year
SPF heat pump heating	5,0										-
SPF heat pump cooling	12,0										-
SPF chiller cooling	3,5										-
-											
Electricity Primary	2,0	46 888	39 322	20 722	19 634	20 122	8 362	47 822	56 997	28 557	kWh/year
Gas Primary	1,1	12 842	2 656	2 656	49 880	5 780	5 780	45 856	10 668	10 668	kWh/year
•											
Electricity CO2	0,26	12,19	10,22	5,39	5,10	5,23	2,17	12,43	14,82	7,42	ton/year
Gas CO2	0,22	2,83	0,58	0,58	10,97	1,27	1,27	10,09	2,35	2,35	ton/year
CO2 emissions	-	15,02	10,81	5,97	16,08	6,50	3,45	22,52	17,17	9,77	ton/year
CO2 price	50	751	540	299	804	325	172	1 1 2 6	858	489	EUR
•											
Gas Price - Total	0,066	771	159	159	2 993	347	347	2 7 5 1	640	640	EUR
Electricity Price - Total	0,210	4 923	4 129	2 176	2 062	2 113	878	5 0 2 1	5 985	2 998	EUR
•	1 .										
Energy demand - total	-	39,2	34,0	34,0	33,3	28,9	28,9	52,4	76,8	76,8	kWh/m2/year
	1										
Construction_costs	2771	6 625 070	6 625 070	6 625 070	6 625 070	6 625 070	6 625 070	6 625 070	6 625 070	6 625 070	EUR
MPC_cost	30 000	-	30 000	30 000	-	30 000	30 000	-	30 000	30 000	EUR
Borefield_cost_total	60	-	21 817	21 817	-	33 768	33 768	-	86 918	86 918	EUR
Gas_boiler_cost	130	7 351	1 670	1 670	8 588	1 936	1 936	15 700	3 325	3 325	EUR
Heat pump cost	480	-	5 236	5 236	-	6 843	6 843	-	22 193	22 193	EUR
Chiller Cost	280	29 603	11 368	11 368	3 354	7 276	7 276	29 972	10 5 4 3	10 543	EUR
	•				•						
Consumption factor for MPC/RBC	0,80	1,2	1	1	1,2	1	1	1,2	1	1	. –
Electricity price per kWh	0,210										EUR/kWh
Gas price per kWh	0,066										EUR/kWh
End energy consumption	-	59 730	41 978	23 378	69 514	25 902	14 142	93 678	67 664	39 224	kWh/year
End energy price	-	5 694	4 288	2 335	5 054	2 460	1 2 2 5	7 773	6 6 2 5	3 639	EUR/year
Residual value	0,25										-
Calculation period	30										years
Discount rate	1,5%										-
PV cost	1 100	0	0	11000	0	0	6600	C	0	9900	EUR
Overall efficiency	930	930									kWh/kWp/year
	1 20		550			500	500	1500	1300	1000	count and by fear
installed kWp	-	0	0	10	0	0	6	C	0	0	kWp
Energy produced	-	0			0			0			kwp kwh/year
TUPPI I CONTRA		0	0	5300	0	0	3660		1 0	14220	in a subsection of the section of th
	-				-		100000		10000		
Technology extras	45	0	107577	107577	0	107577	107577	0	107577	107577	TELLB

6.4.2. Global financial value

When calculating the global financial value according to the above parameters, we get the results as shown in Figure 21. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

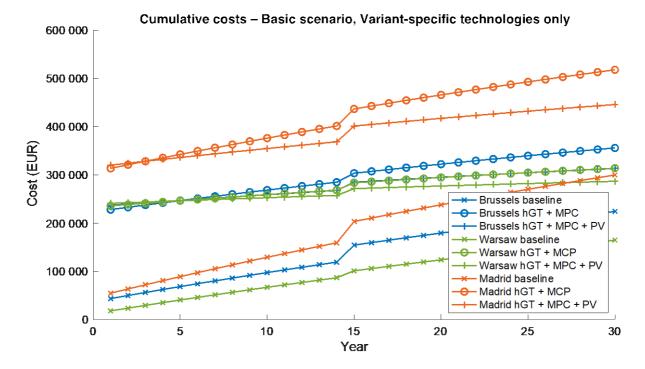


Figure 21 – Second dataset (heavy building, well insulated, low density occupancy), Global NPV. Only cumulative costs of the variant-specific technologies are shown.

We can see that the baseline scenario is always the cheapest one again, despite its significantly higher energy and CO_2 costs. For all three climatic zones, the use of photovoltaics brings additional value to the hybridGEOTABS building, which is most significant for the Madrid building. The step in Figure 21 in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced.

The final cost performance overview in the form required by the EC Regulation No. 244/2012 for all three climatic zones is shown in Table 34. The baseline variant has the lowest global cost calculated, but the hybridGEOTABS variant with MPC and PV is about 1.5–2.5 % more expensive for all three climatic zones.

	Variant		Brussels - enchmark	Br	russels - hGT	Br	ussels - hGT + PV	ł	Warsaw - benchmark	w	/arsaw - hGT	Wa	irsaw - hGT + PV		Madrid - enchmark	м	adrid - hGT	Ma	adrid - hGT + PV
	Initial investment cost	€	6 662 024	€	6 848 160	€	6 859 160	€	6 637 012	€	6857891	€	6 864 491	€	6 670 741	€	6931047	€	6 940 947
	Maintenance cost	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-
Annual running	Operational cost (reinvestments)	€	1 000	€	495	€	495	€	323	€	434	€	434	€	1 2 3 6	€	976	€	976
cost	Energy cost by fuel with the medium energy price scenario	ŧ	4 626	€	3 484	€	1 <mark>8</mark> 97	€	4 107	€	1 998	€	995	€	6 3 1 6	€	5 383	€	2 956
	Calculation period		30		30		30		30		30		30		30		30		30
	Cost of greenhouse gas emissions	€	18 302	€	13 173	€	7 2 7 9	€	19 596	€	7 926	€	4 200	€	27 450	€	20 92 2	€	11 910
	Residual value	€	1 075 512	€	1 075 512	€	1 075 512	€	1075512	€	1075 512	€	1 075 512	€	1 075 512	€	1 075 512	€	1 075 512
	Discount rate		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%
	Estimated economic lifetime		30		30		30		30		30		30		30		30		30
	Disposal cost		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A
	Global cost calculated (NPV)	€	5 773 607	€	5 905 187	€	5 862 687	€	5 713 997	€	5863295	€	5 836 069	€	5 849 224	€	6 067 217	€	5 995 313

Table 34 – Second dataset (heavy building, well insulated, low density occupancy) – Final cost performance overview.

Table 35 shows the minimum income that the investor or owner needs to achieve from the building, should the building yield positive profit. Note that the residual value is not included in this calculation.

Table 35 – Second dataset (heavy building, well insulated, low density occupancy) – Minimum annual income needed to achieve positive financial NPV.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid-hGT+ PV
Annual income needed to	€ 192454	€ 196 840	€ 195 423	€ 190467	€ 195 443	€ 194536	€ 194974	€ 202241	€ 199 844
achieve positive financial NPV	£ 152454	£ 150.640	£ 155425	£ 150407	£ 155 445	£ 154 550	£ 154574	£ 202241	£ 155 644

6.4.3. Economic value

Comparing all the variants, the financial value (in the sense of net present value) is shown in Table 36. Net present financial value of all the variants is similar, but larger than the previous case – this may be caused by higher, but different demands for the better insulation in various climates. The difference between the baseline and hybridGEOTABS with MPC is only about 2.5 % of the full price. It is again clear that the baseline variant, without a significant amount of renewables, is not competitive with the more advanced hybridGEOTABS variants.

Table 36 – Second dataset (heavy building, well insulated, low density occupancy) – Financial value.

Variant	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Global cost (Net Present Value)	€ 5773607	€ 5905187	€ 5862687	€ 5713997	€ 5863295	€ 5836069	€ 5849224	€ 6067217	€ 5995313
Difference between the variant and baseline (nonGT-RBC)	€ -	€ 131 580	€ 89 080	€ -	€ 149298	€ 122 071	€ -	€ 217 994	€ 146 090
The varinat being more expensive than baseline in %	0,00%	2,23%	1,52%	0,00%	2,55%	2,09%	0,00%	3,59%	2,44%

Table 37 shows the summary of the energies and environmental impact of all the variants. We can see that the total CO_2 emissions are about three times lower for the hybridGEOTABS + MPC + PV variant than for the baseline for Brussels, about five times lower for Warsaw, and only about a half for Madrid.

Table 37 – Second dataset (heavy building, well insulated, low density occupancy) – Environmental impact and energy requirements.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV	
Nominal energy requirements	39,2	34,0	34,0	33,3	28,9	28,9	52,4	76,8	76,8	kWh/m2/γear
Primary energy consumption	59 730	41 978	23 378	69 514	25 902	14 142	93 678	67 664	39 22 4	kWh/year
End energy price	5 694	4 288	2 335	5 054	2 460	1 225	7 773	6 62 5	3 63 9	EUR/year
Renewable energy generation & self-consumption	0	0	9300	0	0	5 880	0	0	14220	kWh/year
Total CO2 emissions	15,02	10,81	5,97	16,08	6,50	3,45	22,52	17,17	9,77	ton/year
Nominal prices, not adjusted for in	flation.									

The best environmental performance is always for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building.

6.4.4. Conclusions

For the second data set (heavy building, well insulated, low density occupancy), the baseline variant is the cheapest one in the sense of global financial value. However, the other two variants are very similar, even though not as similar as in the first dataset. The hybridGEOTABS with MPC and PV provides the best environmental performance.

As a summary, Table 38 presents the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO_2 footprint of the operation of the building. It can be seen that the preferred variant, hybridGEOTABS with MPC and PV it is 1.52–2.44 % more expensive than the baseline variant, and 0.47–1.20 % cheaper than the hybridGEOTABS with MPC variant. Its environmental impact is only 21.4–43.4 % of the baseline, and 53.0–56.9 % of the hybridGEOTABS with MPC variant. It is to be noted that for the colder climate (Warsaw) the more environmentally friendly technologies give better global financial costs than for the two other climates.

The yearly revenue of the building, needed to pay-off the initial investment, stays around €190 000 – €200 000 for all variants, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant.

		Heavy bu	ilding, well	insulated,	low densit	y occupar	су		
			Global finan	cial value (MP	V)–comparis	on			
	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Brussels - benchmark	0,00%	-2,28%	-1,54%	1,03%	-1,55%	-1,08%	-1,31%	-5,09%	-3,84%
Brussels - hGT	2,23%	0,00%	0,72%	3,24%	0,71%	1,17%	0,95%	-2,74%	-1,53%
Brussels - hGT + PV	1,52%	-0,72%	0,00%	2,54%	-0,01%	0,45%	0,23%	-3,49%	-2,26%
Warsaw - benchmark	-1,04%	-3,35%	-2,60%	0,00%	-2,61%	-2,14%	-2,37%	-6,18%	-4,92%
Warsaw - hGT	1,53%	-0,71%	0,01%	2,55%	0,00%	0,46%	0,24%	-3,48%	-2,25%
Warsaw - hGT + PV	1,07%	-1,18%	-0,46%	2,09%	-0,47%	0,00%	-0,23%	-3,96%	-2,73%
Madrid - benchmark	1,29%	-0,96%	-0,23%	2,31%	-0,24%	0,22%	0,00%	-3,73%	-2,50%
Madrid - hGT	4,84%	2,67%	3,37%	5,82%	3,36%	3,81%	3,59%	0,00%	1,19%
Madrid - hGT + PV	3,70%	1,50%	2,21%	4,69%	2,20%	2,66%	2,44%	-1,20%	0,00%
			CO2	footprint – co	mparison				
	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -
	benchmark	hGT	hGT+PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV
Brussels - benchmark	100,0%	138,9%	251,4%	93,4%	230,9%	435,8%	66,7%	87,5%	153,7%
Brussels - hGT	72,0%	100,0%	181,0%	67,2%	166,2%	313,7%	48,0%	63,0%	110,6%
Brussels - hGT + PV	39,8%	55,3%	100,0%	37,1%	91,8%	173,3%	26,5%	34,8%	61,1%
Warsaw benchmark	107 194	1/10 004	760 794	100.0%	217 2%	166.6%	71 /194	02 794	164 594

Table 38 – Second dataset (heavy building, well insulated, low density occupancy) – CBA Summary

	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -
	benchmark	hGT	hGT+PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT+PV
Brussels - benchmark	100,0%	138,9%	251,4%	93,4%	230,9%	435,8%	66,7%	87,5%	153,7%
Brussels - hGT	72,0%	100,0%	181,0%	67,2%	166,2%	313,7%	48,0%	63,0%	110,6%
Brussels - hGT + PV	39,8%	55,3%	100,0%	37,1%	91,8%	173,3%	26,5%	34,8%	61,1%
Warsaw - benchmark	107,1%	148,8%	269,2%	100,0%	247,2%	466,6%	71,4%	93,7%	164,5%
Warsaw - hGT	43,3%	60,2%	108,9%	40,4%	100,0%	188,7%	28,9%	37,9%	66,6%
Warsaw - hGT + PV	22,9%	31,9%	57,7%	21,4%	53,0%	100,0%	15,3%	20,1%	35,3%
Madrid - benchmark	150,0%	208,4%	377,1%	140,1%	346,3%	653,6%	100,0%	131,2%	230,5%
Madrid - hGT	114,3%	158,8%	287,4%	106,8%	264,0%	498,2%	76,2%	100,0%	175,7%
Madrid - hGT + PV	65,1%	90,4%	163,6%	60,8%	150,3%	283,6%	43,4%	56,9%	100,0%

6.5. Light building, poorly insulated, high density occupancy

6.5.1.CBA Parameters

For the third set of building examples, we assume the following parameters, as specified in Table 39. The basic construction costs have been lowered by 7 % for the poorly insulated building, which corresponds to the difference in one energy class in the energy label (for explanation, see (3)).

Table 39 – Parameters for the third dataset (Light building, poorly insulated, high density occupancy).

Name	Nominal	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -	Units used
	value	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	
Vea	-	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	m2
nergy demand primary system heating	-	-	21,3	21,3	-	12,0	12,0	-	36,0	36,0	kWh/m2/year
nergy demand primary system Cooling	-	-	11,3	11,3	-	6,0	6,0	-	32,9	32,9	kWh/m2/year
Energy demand secondary system heating	-	68,1	47,5	47,5	94,0	85,0	85,0	14,5	5,2	5,2	kWh/m2/year
Energy demand secondary system Cooling	-	14,0	3,4	3,4	12,0	8,0	8,0	29,2	5,3	5,3	kWh/m2/year
leat pump power	-	-	27,4	27,4	-	22,0	22,0	-	56,1	56,1	kW
Gas boiler power	-	140,7	69,7	69,7	170,0	109,0	109,0	120,8	34,7	34,7	kW
Chiller Power	-	125,7	40,7	40,7	12,0	73,0	73,0	141,7	59,7	59,7	kW
Borefi eld power	-	-	32,5	32,5		25,0	25,0	-	56,6	56,6	kw
Sorefield lenght	-	-	973,9	973,9		744,0	744,0	-	1 697,5	1 697,5	m
											1
Gas consumption	-	195 287	113 459	113 459	269 705	203 235	203 235	41 687	12 375	12 375	kWh/year
lectricity consumption heating	-	-	10 202	10 202	-	5 738	5 738	-	17 215	17 215	kWh/year
lectricity consumption cooling	-	11 481	4 548	4 548	9 837	6 661	6 661	23 911	10 162	10 162	kWh/year
lectricity production		-	-	7 440	-	-	5 880	-	-	14 220	kWh/year
lectricity total	-	11 481	14 750	7 310	9 837	12 399	6 5 1 9	23 911	27 377	13 157	kWh/year
PF heat pump heating	5,0										-
PF heat pump cooling	12,0										-
PF chiller cooling	3,5										-
1	30	22.062	20.400	14 640	10.075	34,700	12,022	47.022	E 4 7 E 4	26.244	Last free
lectricity Primary	2,0	22 962	29 499	14 619	19 675	24 798	13 038	47 822	54 754	26 314	kWh/year
Sas Primary	1,1	214 816	124 804	124 804	296 675	223 559	223 559	45 856	13 612	13 612	kWh/year
1	0.36	F 07	7.67	2.00	5.42	C 45	2.20	12.42	44.24	6.04	
Rectricity CO2	0,26	5,97	7,67	3,80	5,12	6,45	3,39	12,43	14,24	6,84	ton/year
Sas CO2	0,22	47,26	27,46	27,46	65,27	49,18	49,18	10,09	2,99	2,99	ton/year
CO2 emissions	-	53,23	35,13	31,26	70,38	55,63	52,57	22,52	17,23	9,84	ton/year
CO2 price	50	2 661	1 756	1 563	3 519	2 782	2 629	1 1 2 6	862	492	EUR
Sas Price - Total	0,066	12 889	7 488	7 488	17 801	13 414	13 414	2 7 5 1	817	817	EUR
ectricity Price - Total	0,000	2 411	3 097	1 535	2 066	2 604	13414	5 021	5749	-	
Rectricity Price - Local	0,210	2 411	5 097	1 3 3 3	2 000	2 004	1 209	5021	5749	2705	LON
Energy demand - total		98,5	83,4	83,4	127,2	111,0	111,0	52,4	79,4	79,4	kWh/m2/year
		50,5	03,4	03,4	127,2	111,0	111,0	52,4	13,4	15,4	keiny m24 juur
Construction_costs	2 409	5 758 238	5 758 238	5 758 238	5 759 202	5 759 202	5 759 202	5 758 238	5 758 238	5 758 238	EUR
MPC_cost	30 000	-	30 000	30 000		30 000	30 000		30 000	30 000	EUR
Sorefield_cost_total	60	-	58 432	58 432	-	44 640	44 640	-	101 848	101 848	EUR
Gas boiler cost	130	18 289	9 067	9 067	22 100	14 170	14 170	15 700	4 513	4 513	EUR
 1eat_pump_cost	480	-	13 162	13 162	-	10 560	10 560	-	26 934	26 934	EUR
Chiller Cost	280	35 186	11 394	11 394	3 360	20 440	20 440	39 677	16 725	16 725	EUR
		-0 100	11001	11001	0.000	10.10	20.10	33 6.17	10,20	10,20	
Consumption factor for MPC/RBC	0,80	1,2	1	1	1,2	1	. 1	1,2	1	. 1	-
lectricity price per kWh	0,210										EUR/kWh
Gas price per kWh	0,066										EUR/kWh
End energy consumption	-	237 778	154 304	139 424	316 350	248 357	236 597	93 678	68 366	39 926	kWh/year
End energy price	-	15 300	10 586	9 023	19 866	16 017	14 783	7 773	6 566	3 580	EUR/year
Residual value	0,25										-
Calculation period	30										years
Discount rate	1,5%										-
₽V cost	1 100	0	0	8800	0	0	6600	C	0	9900	EUR
Dverall efficiency	930	930									kWh/kWp/yea
	·	·			·				·		
nstalled kWp	-	0	0		0	0		C	0 0		kWp
inergy produced	-	-	-	7 440	-	-	5 880	-	-	14 220	kWh/year
echnology extras	45	0		107 577	-	107 595	107 595	-	107 577	107 577	
	19	0	45 421	45 421		45 429	45 429	-	45 421	45 421	

6.5.2. Global financial value

When calculating the global financial value according to the above parameters, we get the results as shown in Figure 22. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

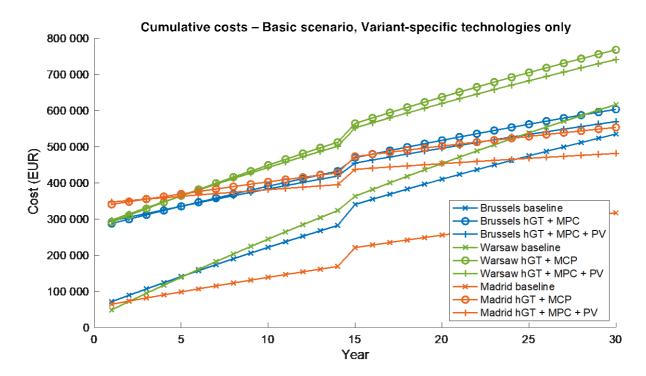


Figure 22 – Third dataset (light building, poorly insulated, high density occupancy), Global NPV. Only cumulative costs of the variant-specific technologies are shown.

Again, we can see that the baseline scenario is always the cheapest one, despite its significantly higher energy and CO₂ costs. For all three climatic zones, the use of photovoltaics brings additional value to the hybridGEOTABS building, even though not significantly for Warsaw. On the other hand, for Brussels, even the baseline is very close to the hybridGEOTABS variants. The step in Figure 22 in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced.

The final cost performance overview in the form required by the EC Regulation No. 244/2012 for all three climatic zones is shown in Table 40. The baseline variant has the lowest global cost calculated, the hybridGEOTABS variant with MPC and PV is 0.6–3.1 % more expensive for all three climatic zones.

	Variant		Brussels - enchmark	Br	russels - hGT	Bi	russels - hGT + PV	ł	Warsaw - benchmark	N	/arsaw - hGT	Wa	arsaw - hGT + PV		Madrid - enchmark	м	adrid - hGT	Ma	drid - hGT + PV
	Initial investment cost	€	5 811 713	€	6 033 292	€	6 042 092	€	5 784 662	€	6032036	€	6 038 636	€	5 813 615	€	6 091 258	€	6 101 158
	Maintenance cost	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-
Annual running	Operational cost (reinvestments)	€	1 447	€	910	€	910	€	689	€	1 222	€	1 222	€	1 499	€	1 304	€	1 304
cost	Energy cost by fuel with the medium energy price scenario	ŧ.	12 432	€	8 601	€	7 332	€	16 142	€	13 015	€	12 011	€	6 3 1 6	€	5 335	€	2 909
	Calculation period		30		30		30		30		30		30		30		30		30
	Cost of greenhouse gas emissions	€	64 876	€	42 813	€	38 097	€	85 784	€	67 803	€	64 076	€	27 450	€	21 001	€	11 988
	Residual value	€	934 791	€	934 791	€	934 791	€	934 947	€	934 947	€	934 947	€	934 791	€	934 791	€	934 791
	Discount rate		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%
	Estimated economic lifetime		30		30		30		30		30		30		30		30		30
	Disposal cost		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A
	Global cost calculated (NPV)	€	5 358 166	€	5 426 649	€	5 392 649	€	5 440 432	€	5 5 9 2 0 0 1	€.	5 564 775	€	5 140 699	€	5 376 627	€	5 304 722

Table 40 – Third dataset (light building, poorly insulated, high density occupancy) – Final cost performance overview.

Table 41 shows the minimum income that the investor or owner needs to achieve from the building, should the building yield positive profit. Note that the residual value is not included in this calculation.

Table 41 – Third dataset (light building, poorly insulated, high density occupancy) – Minimum annual income needed to achieve positive financial NPV.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid-hGT+ PV
Annual income needed to	€ 178 606	€ 180888	€ 179755	€ 181.348	€ 186 400	€ 185 493	€ 171357	€ 179221	€ 176824
achieve positive financial NPV	£ 1/0000	£ 100 000	£ 1/5/33	t 101 340	£ 180 400	£ 105455	£ 1/135/	t 1/9221	£ 1/0 024

6.5.3. Economic value

Comparing all the variants, the financial value (in the sense of net present value) is shown in Table 42. Net present financial value of all the variants is similar, but the difference may be up to 9 % for the third dataset, which is the largest difference in our comparison studies. The difference between the baseline and hybridGEOTABS with MPC is about 0.64–3.09 % of the full price. It is therefore clear that the baseline variant, without a significant amount of renewables, is not competitive with the more advanced hybridGEOTABS variants, maybe with the exception of Warsaw, as we will see in the following text. Even for Madrid, the hybridGEOTABS may be not considerable, as the difference between this variant and the baseline is already fairly high (4.39 %).

Table 42 – Third dataset (light building, poorly insulated, high density occupancy) – Financial value.

Variant	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Global cost (Net Present Value)	€ 5358166	€ 5426649	€ 5392649	€ 5440432	€ 5592001	€ 5564775	€ 5140699	€ 5376627	€ 5304722
Difference between the variant and baseline (nonGT-RBC)	€ -	€ 68 484	€ 34 483	€ -	€ 151570	€ 124343	€ -	€ 235 928	€ 164 024
The varinat being more expensive than baseline in %	0,00%	1,26%	0,64%	0,00%	2,71%	2,23%	0,00%	4,39%	3,09%

Table 43 shows the summary of the energies and environmental impact of all the variants. We can see that the total CO_2 emissions are about one half for the hybridGEOTABS + MPC + PV variant than for the baseline. For the Warsaw variant here, the difference is even smaller, only about 25 %.

Table 43 – Third dataset (light building, poorly insulated, high density occupancy) – Environmental impact and energy requirements.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV	
Nominal energy requirements	98,5	83,4	83,4	127,2	111,0	111,0	52,4	79,4	79,4	kWh/m2/year
Primary energy consumption	237 778	154 304	139 42 4	316 350	248 357	236 597	93 678	68 366	39 92 6	kWh/year
End energy price	15 300	10 586	9 02 3	19 866	16 017	14 783	7 773	6 566	3 580	EUR/year
Renewable energy generation & self-consumption	0	0	7440	0	0	5 880	0	0	14220	kWh/year
Total CO2 emissions	53,23	35,13	31,26	70,38	55,63	52,57	22,52	17,23	9,84	ton/year
Nominal prices, not adjusted for in	flation.									

The best environmental performance is always for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building.

6.5.4. Conclusions

For the third data set (light building, poorly insulated, high density occupancy), the baseline variant is the cheapest one in the sense of global financial value. The other two variants are similar. The hybridGEOTABS with MPC and PV provides the best environmental performance.

As a summary, Table 44 presents the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO_2 footprint of the operation of the building. It can be seen that the preferred variant, hybridGEOTABS with MPC and PV it is 0.64–3.09 % more expensive than the baseline variant, and 0.49–1.36 % cheaper than the hybridGEOTABS with MPC variant. Its environmental impact is 43.7–74.7 % of the baseline, and 57.1–94.5 % of the hybridGEOTABS with MPC variant. As the environmental impact of the baseline variant in Warsaw is not significantly lower than the hybridGEOTABS variant, it is reasonable to aim for the baseline within the parameters given by the third dataset.

The yearly revenue of the building, needed to pay-off the initial investment, stays around $\epsilon_{170000} - \epsilon_{190000}$ for all variants, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant for Brussels and Madrid, and the baseline variant should be considered for Warsaw.

		Light buildi		r insulated, cial value (MP	_		ncy		
	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Brussels - benchmark	0,00%	-1,28%	-0,64%	-1,54%	-4,36%	-3,86%	4,06%	-0,34%	1,00%
Brussels - hGT	1,26%	0,00%	0,63%	-0,25%	-3,05%	-2,55%	5,27%	0,92%	2,25%
Brussels - hGT + PV	0,64%	-0,63%	0,00%	-0,89%	-3,70%	-3,19%	4,67%	0,30%	1,63%
Warsaw - benchmark	1,51%	0,25%	0,88%	0,00%	-2,79%	-2,29%	5,51%	1,17%	2,49%
Warsaw - hGT	4,18%	2,96%	3,56%	2,71%	0,00%	0,49%	8,07%	3,85%	5,14%
Warsaw - hGT + PV	3,71%	2,48%	3,09%	2,23%	-0,49%	0,00%	7,62%	3,38%	4,67%
Madrid - benchmark	-4,23%	-5,56%	-4,90%	-5,83%	-8,78%	-8,25%	0,00%	-4,59%	-3,19%
Madrid - hGT	0,34%	-0,93%	-0,30%	-1,19%	-4,01%	-3,50%	4,39%	0,00%	1,34%
Madrid - hGT + PV	-1,01%	-2,30%	-1,66%	-2,56%	-5,42%	-4,90%	3,09%	-1,36%	0,00%

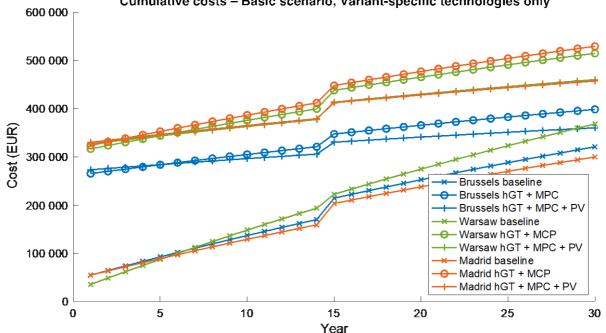
Table 44 – Third dataset (light building, poorly insulated, high density occupancy) – CBA Summary

			CO2	footprint—co	mparison				
	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -
	benchmark	hGT	hGT+PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV
Brussels - benchmark	100,0%	151,5%	170,3%	75,6%	95,7%	101,2%	236,3%	308,9%	541,2%
Brussels - hGT	66,0%	100,0%	112,4%	49,9%	63,1%	66,8%	156,0%	203,9%	357,1%
Brussels - hGT + PV	58,7%	89,0%	100,0%	44,4%	56,2%	59,5%	138,8%	181,4%	317,8%
Warsaw - benchmark	132,2%	200,4%	225,2%	100,0%	126,5%	133,9%	312,5%	408,5%	715,6%
Warsaw - hGT	104,5%	158,4%	178,0%	79,0%	100,0%	105,8%	247,0%	322,9%	565,6%
Warsaw - hGT + PV	98,8%	149,7%	168,2%	74,7%	94,5%	100,0%	233,4%	305,1%	534,5%
Madrid - benchmark	42,3%	64,1%	72,1%	32,0%	40,5%	42,8%	100,0%	130,7%	229,0%
Madrid - hGT	32,4%	49,1%	55,1%	24,5%	31,0%	32,8%	76,5%	100,0%	175,2%
Madrid - hGT + PV	18,5%	28,0%	31,5%	14,0%	17,7%	18,7%	43,7%	57,1%	100,0%

6.6. Light building, moderately insulated, low density occupancy

6.6.1.CBA Parameters

For the fourth set of building examples, we assume the following parameters, as specified in Table 45.


Table 45 – Parameters for the fourth dataset (Light building, medium insulated, low density occupancy).

Name	Nominal	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -	Units used
	value	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV	
											1
Area	- I	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	2 391	m2
Energy demand primary system heating	-		17,1	17,1		2 351	2351	2001	46,1	46,1	kWh/m2/year
Energy demand primary system Cooling		-	20,3	20,3	-	20,5	20,5		24,3		kWh/m2/year
Energy demand secondary system beating	-	20,6	3,8	3,8	35,2	7,8	7,8	14,5	4,1		kWh/m2/year
	-										
Energy demand secondary system Cooling	-	26,9	7,0	7,0	28,9	8,7	8,7	29,2	2,6	2,6	kWh/m2/year
Heat pump power	-	-	24,9	24,9	-	36,7	36,7	-	46,5	46,5	kW
Gas boiler power	-	89,3	21,2	21,2	106,6	29,5	29,5	120,8	25,9	25,9	kW
Chiller Power	-	118,6	46,7	46,7	28,9	66,7	66,7	107,0	39,3	39,3	kW
Borefield power	-	-	27,7	27,7	-	47,9	47,9	-	53,5	53,5	kw
Borefield lenght	-	-	829,8	829,8	-	1 436,7	1 436,7		1 604,8	1 604,8	m
											1
Gas consumption	-	59 121	9 195	9 195	100 909	18 649	18 649	41 687	9 835	9 835	kWh/year
Electricity consumption heating	-	-	8 162	8 162	-	13 641	13 641	-	22 030	22 030	kWh/year
Electricity consumption cooling	-	22 072	8 822	8 822	23 685	10 175	10 175	23 911	6 595	6 595	kWh/year
Electricity production	-	-	-	8 370	-	-	11 760	-	-	14 220	kWh/year
Electricity total	-	22 072	16 984	8 614	23 685	23 816	12 056	23 911	28 625	14 405	kWh/year
SPF heat pump heating	5,0										-
SPF heat pump cooling	12,0										-
SPF chiller cooling	3,5										-
Electricity Primary	2,0	44 144	33 968	17 228	47 369	47 632	24 112	47 822	57 250	28 810	kWh/year
Gas Primary	1,1	65 033	10 115	10 115	110 999	20 514	20 5 14	45 856	10 819	10 819	kWh/year
Electricity CO2	0,26	11,48	8,83	4,48	12,32	12,38	6,27	12,43	14,88	7,49	ton/year
Gas CO2	0,22	14,31	2,23	2,23	24,42	4,51	4,51	10,09	2,38	2,38	ton/year
CO2 emissions	-	25,78	11,06	6,70	36,74	16,90	10,78	22,52	17,27	9,87	ton/year
CO2 price	50	1 289	553	335	1 837	845	539	1 1 2 6	863	494	EUR
F											
Gas Price - Total	0,066	3 902	607	607	6 660	1 2 3 1	1 2 3 1	2 7 5 1	649	649	EUR
Electricity Price - Total	0,210	4 635	3 567	1 809	4 974	5 001	2 532	5 0 2 1	6011		EUR
	0,220		0.007	1005		0.001	2002	0021	0011	0.020	
Energy demand - total	-	57,0	48,2	48,2	76,9	66,4	66,4	52,4	77,0	77.0	kWh/m2/year
			/-		,-	, .		/.	,-	,-	
Construction costs	2 590	6 191 654	6 191 654	6 191 654	6 191 654	6 191 654	6 191 654	6 191 654	6 191 654	6 191 654	EUR
MPC_cost	30 000	-	30 000	30 000		30 000	30 000		30 000	30 000	EUR
Borefield_cost_total	60	-	49 787	49 787	-	86 201	86 201	-	96 286	96 286	EUR
Gas boiler cost	130	11 605	2 754	2 754	13 861	3 832	3 832	15 700	3 367	3 367	EUR
Heat pump cost	480		11 949	11 949	15 001	17 629	17 629	13700	22 305	22 305	EUR
Chiller Cost	280	33 208	13 069	13 069	8 091	17 023	18 677	29 972	11 013	11 013	EUR
	200	55 206	15 009	15 009	0.091	10 0/ /	180//	29972	11015	11 015	EUN
Consumption factor for MPC/RBC	0.90	1,2	1	1	1.0	1	1	10	1	4	
•	0,80	1,2	1	1	1,2	1	1	1,2	1	1	- FLID /law/b
Electricity price per kWh	0,210										EUR/kWh
Gas price per kWh	0,066	100 177	44.000	27.045	450.000	(0.445		00.072	60.062	20.525	EUR/kWh
End energy consumption	-	109 177	44 083	27 343	158 369	68 146	44 626	93 678	68 069	39 629	kWh/year
End energy price	-	8 537	4 174	2 416	11 634	6 232	3 763	7 773	6 660	3 674	EUR/year
Residual value	0,25										-
Calculation period	30										years
Discount rate	1,5%										-
PV cost	1 100	0			0	0		0	0	9900	EUR
Overall efficiency	930	930	930	930	980	980	980	1580	1580	1580	kWh/kWp/year
installed kWp	-	0	0	9	0	0	12	0	0	9	k₩p
Energy produced	-	-	-	8 370	-	-	11760	-	-	14 220	kWh/year
			407 577				100.000		407 577		
Technology extras	45	0	107 577	107 577	-	107 577	107 577	-	107 577	107 577	EUK

6.6.2. Global financial value

When calculating the global financial value according to the above parameters, we get the results as shown in Figure 23. For better clarity, we plot here only the cumulative costs of the variant-specific technologies, i.e. NPV of all costs with the exception of the basic construction costs.

Cumulative costs - Basic scenario, Variant-specific technologies only

Figure 23 – Fourth dataset (light building, medium insulated, low density occupancy), Global NPV. Only cumulative costs of the variant-specific technologies are shown.

We can see that the baseline scenario is always the cheapest one, despite its significantly higher energy and CO₂ costs. For all three climatic zones, the use of photovoltaics brings additional value to the hybridGEOTABS building, the biggest for Madrid. The step in Figure 23 in the cost around year 15 is caused by the refurbishment costs of some of the technologies – heat pump, gas boiler and control system are replaced.

The final cost performance overview in the form required by the EC Regulation No. 244/2012 for all three climatic zones is shown in Table 46. The baseline variant has the lowest global cost calculated, but the hybridGEOTABS variant with MPC and PV is only less than 0.7–2.8 % more expensive for all three climatic zones.

Table 46 – Fourth dataset (liaht building.	medium insulated. low densit	ity occupancy) – Final cost performance overview	1.
			-

	Variant		Brussels - Denchmark	B	russels - hGT	В	russels - hGT + PV	I	Warsaw - benchmark	v	/arsaw - hGT	Wa	arsaw - hGT + PV		Madrid - enchmark	м	adrid - hGT	Ma	drid - hGT + PV
	Initial investment cost		6 236 467	€	6 452 210	€	6 462 110	€	6 213 606	€	6500991	€	<u>6 514 191</u>	€	6 237 325	€	6 507 624	€	6 517 524
	Maintenance cost	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-	€	-
Annual running	Operational cost (reinvestments)	€	1 213	€	752	€	752	€	594	€	1 086	€	1 086	€	1 2 3 6	€	993	€	993
cost	Energy cost by fuel with the medium energy price scenario	ŧ.	6 937	€	3 391	€	1 963	€	9 4 5 3	€	5 064	€	3 05 7	€	6 3 1 6	€	5 412	€	2 985
	Calculation period		30		30		30		30		30		30		30		30		30
	Cost of greenhouse gas emissions	€	31 427	€	13 476	€	8 171	€	44 774	€	20 595	€	13 141	€	27 450	€	21 043	€	12 030
	Residual value	€	1 005 151	€	1 005 151	€	1 005 151	€	1 005 151	€	1005 151	€	1 005 151	€	1 005 151	€	1 005 151	€	1 005 151
	Discount rate		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%		1,50%
	Estimated economic lifetime		30		30		30		30		30		30		30		30		30
	Disposal cost		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A		N/A
	Global cost calculated (NPV)	€	5 507 225	€	5 584 815	€	5 546 564	€.	5 5 5 4 6 3 6	€	5700937	€	5 646 484	€	5 486 168	€	5 715 651	€	5 643 747

Table 47 shows the minimum income that the investor or owner needs to achieve from the building, should the building yield positive profit. Note that the residual value is not included in this calculation.

Table 47 – Fourth dataset (light building, medium insulated, low density occupancy) – Minimum annual income needed to achieve positive financial NPV.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid-hGT+ PV
Annual income needed to	€ 183 574	€ 186 160	€ 184 885	€ 185 155	€ 190 031	€ 188 216	€ 182 872	€ 190522	€ 188 125
achieve positive financial NPV	£ 105 574	£ 180100	£ 104 005	£ 185155	150031	£ 100210	£ 102.072	£ 150522	£ 100125

6.6.3. Economic value

Comparing all the variants, the financial value (in the sense of net present value) is shown in Table 48. Net present financial value of all the variants is very similar. The difference between the baseline and hybridGEOTABS with MPC is only about 0.7-2.8 % of the full price. It is therefore clear that the baseline variant, without a significant amount of renewables, is not competitive with the more advanced hybridGEOTABS variants.

Table 48 – Fourth dataset (light building, medium insulated, low density occupancy) – Financial value.

Variant	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV
Global cost (Net Present Value)	€ 5507225	€ 5584815	€ 5546564	€ 5554636	€ 5700937	€ 5646484	€ 5486168	€ 5715651	€ 5643747
Difference between the variant and baseline (nonGT-RBC)	€ -	€ 77 590	€ 39 339	€ -	€ 146300	€ 91848	€ -	€ 229 483	€ 157579
The varinat being more expensive than baseline in %	0,00%	1,39%	0,71%	0,00%	2,57%	1,63%	0,00%	4,01%	2,79%

Table 49 shows the summary of the energies and environmental impact of all the variants. We can see that the total CO₂ emissions are about three to four times lower for the hybridGEOTABS + MPC + PV variant than for the baseline.

Table 49 – Fourth dataset (light building, medium insulated, low density occupancy) – Environmental impact and energy requirements.

	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT+ PV	
Nominal energy requirements	57,0	48,2	48,2	76,9	66,4	66,4	52,4	77,0	77,0	kWh/m2/year
Primary energy consumption	109 177	44 083	27 343	158 369	68 146	44 62 6	93 678	68 069	39 62 9	kWh/year
End energy price	8 537	4 174	2 416	11 634	6 232	3 763	7 773	6 660	3 674	EUR/year
Renewable energy generation & self-consumption	0	0	8370	0	0	11 760	0	0	14220	kWh/year
Total CO2 emissions	25,78	11,06	6,70	36,74	16,90	10,78	22,52	17,27	9,87	ton/year
Nominal prices, not adjusted for in	flation.									

The best environmental performance is always for the last variant, i.e. hybridGEOTABS with MPC and photovoltaic panels. This variant was calculated such that no spill-over to the main grid happens for the energy produced within the building.

6.6.4. Conclusions

For the fourth data set (light building, medium insulated, low density occupancy), the baseline variant is the cheapest one in the sense of global financial value. However, the other two variants are very similar. The hybridGEOTABS with MPC and PV provides the best environmental performance.

As a summary, Table 50 presents the main outcomes of the CBA, the Global Financial Value (Net Present Value) and CO₂ footprint of the operation of the building. It can be seen that the preferred variant, hybridGEOTABS with MPC and PV it is 0.71–2.79 % more expensive than the baseline variant, and 0.96–1.27 % cheaper than the hybridGEOTABS with MPC variant. Its environmental impact is only 26.0–43.8 % of the baseline, and 57.2–43.8 % of the hybridGEOTABS with MPC variant.

The yearly revenue of the building, needed to pay-off the initial investment, stays around €185 000 for all variants, which corresponds to the ROI of 30 years.

The recommendation is therefore for the hybridGEOTABS + MPC + PV variant.

	Light building, medium insulated, low density occupancy											
Global financial value (MPV)-comparison												
	Brussels - benchmark	Brussels - hGT	Brussels - hGT + PV	Warsaw - benchmark	Warsaw - hGT	Warsaw - hGT + PV	Madrid - benchmark	Madrid - hGT	Madrid - hGT + PV			
Brussels - benchmark	0,00%	-1,41%	-0,71%	-0,86%	-3,52%	-2,53%	0,38%	-3,78%	-2,48%			
Brussels - hGT	1,39%	0,00%	0,68%	0,54%	-2,08%	-1,10%	1,77%	-2,34%	-1,06%			
Brussels - hGT + PV	0,71%	-0,69%	0,00%	-0,15%	-2,78%	-1,80%	1,09%	-3,05%	-1,75%			
Warsaw - benchmark	0,85%	-0,54%	0,15%	0,00%	-2,63%	-1,65%	1,23%	-2,90%	-1,60%			
Warsaw - hGT	3,40%	2,04%	2,71%	2,57%	0,00%	0,96%	3,77%	-0,26%	1,00%			
Warsaw - hGT + PV	2,47%	1,09%	1,77%	1,63%	-0,96%	0,00%	2,84%	-1,22%	0,05%			
Madrid - benchmark	-0,38%	-1,80%	-1,10%	-1,25%	-3,91%	-2,92%	0,00%	-4,18%	-2,87%			
Madrid - hGT	3,65%	2,29%	2,96%	2,82%	0,26%	1,21%	4,01%	0,00%	1,26%			
Madrid - hGT + PV	2,42%	1,04%	1,72%	1,58%	-1,01%	-0,05%	2,79%	-1,27%	0,00%			

Table 50 – Fourth dataset (light building, medium insulated, low density occupancy) – CBA Summary

	CO2 footprint – comparison												
	Brussels -	Brussels -	Brussels -	Warsaw -	Warsaw -	Warsaw -	Madrid -	Madrid -	Madrid -				
	benchmark	hGT	hGT+PV	benchmark	hGT	hGT + PV	benchmark	hGT	hGT + PV				
Brussels - benchmark	100,0%	233,2%	384,6%	70,2%	152,6%	239,1%	114,5%	149,3%	261,2%				
Brussels - hGT	42,9%	100,0%	164,9%	30,1%	65,4%	102,5%	49,1%	64,0%	112,0%				
Brussels - hGT + PV	26,0%	60,6%	100,0%	18,3%	39,7%	62,2%	29,8%	38,8%	67,9%				
Warsaw - benchmark	142,5%	332,2%	547,9%	100,0%	217,4%	340,7%	163,1%	212,8%	372,2%				
Warsaw - hGT	65,5%	152,8%	252,0%	46,0%	100,0%	156,7%	75,0%	97,9%	171,2%				
Warsaw - hGT + PV	41,8%	97,5%	160,8%	29,4%	63,8%	100,0%	47,9%	62,5%	109,2%				
Madrid - benchmark	87,3%	203,7%	335,9%	61,3%	133,3%	208,9%	100,0%	130,4%	228,2%				
Madrid - hGT	67,0%	156,1%	257,5%	47,0%	102,2%	160,1%	76,7%	100,0%	174,9%				
Madrid - hGT + PV	38,3%	89,3%	147,2%	26,9%	58,4%	91,5%	43,8%	57,2%	100,0%				

7. Conclusions

As we have seen the four case studies of the hybridGEOTABS project are quite different from each other. While this was the intention of the choice, to show the suitability of the hybridGEOTABS system for a wide range of buildings, it makes it more difficult to make general conclusions for the whole EU market. The individual conclusions can be found in parts 2–5, which refer to the CBAs of Haus M, Líbeznice, Infrax/Fluvius and Ter Potterie.

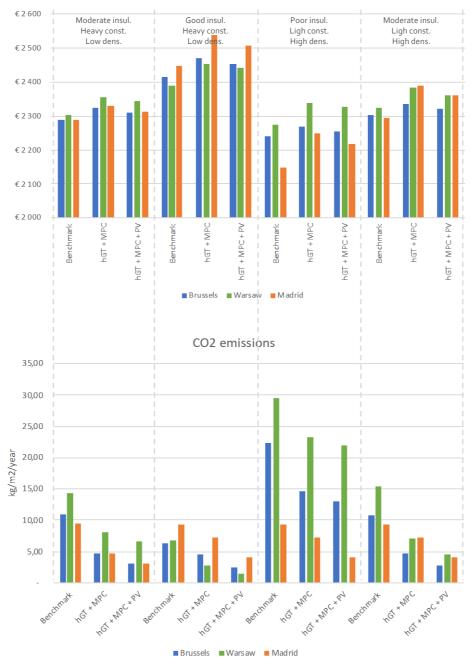
To make general conclusions and to assess the effect of the hybridGEOTABS solution to the EU market, we have decided to use the mathematical models developed in Deliverable 2.2 – A set of parametric geometries for the (sub)typologies studied, to make a comparative analysis. The models cover three main climatic zones in Europe:

- Warsaw / transitional temperate/transitional cold
- (Uccle) Brussels / Maritime temperate warm
- Madrid / continental intermediate subtropical

For the comparison, we made many assumptions and simplifications, as declared in Part 1 and Section 6.2. The most important assumption is the economic one, where we assume that the whole EU can use Euro as a currency with the same discount rate. Furthermore, we used average economical and environmental values from Eurostat and the ENER project. We also used our own assumptions, which are based on cost analyses within this deliverable, D₅.8 (Business model) and Work Package 2 in general (various parameters to allow optimal sizing in multiple deliverables of WP₂).

We can see the most important results – global financial value and CO₂ emissions – are shown in Table 51 and in Figure 24. The results are shown with respect to the climatic zones.

Brussels	Moderate in	sul, Heavy cons	t., Low dens.	Good insu	iL, Heavy const.,	Low dens.	Poor in su	iL, Light const., H	ligh dens.	Moderate i	nsull, Light const	., Low dens.	
DI USSEIS	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	Benchinark	hgt + MPC	hGT+MPC+PV	
Global financial value	€ 5473860	€ 5554184	€ 5 520 183	€ 5773607	€ 5905187	€ 5862687	€ 5358166	€ 5426649	€ 5392649	€ 5 507 225	€ 5584815	€ 5546564	
CO2 Emissions	25,98	11,13	7,26	15,02	10,81	5,97	53,23	35,13	31,26	25,78	11,06	6,70	
Warsaw Moderate insul., He awy const., Low dens.				Good insu	L, Heavy const.,	Low dens.	Poor in su	ıL, Light const., H	ligh dens.	Moderate in sul., Light const., Low dens.			
warsaw	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	
Global financial value	€ 5509084	€ 5634091	€ 5602328	€ 5713997	€ 5863295	€ 5836069	€ 5440432	€ 5592001	€ 5564775	€ 5554636	€ 5700937	€ 5646484	
CO2 Emissions	34,37	19,22	15,65	16,08	6,50	3,45	70,38	55,63	52,57	36,74	16,90	10,78	
			•	-	-								
100 A 114	Moderate in	suL, Heavy cons	t., Low dens.	Good ins.	L, Heavy const.,	Low dens.	Poor insu	ıL, Light const., H	ligh dens.	Moderate i	nsul., Light const	., Low dens.	
Madrid	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	Benchmark	hGT+MPC	hGT+MPC+PV	
Global financial value	€ 5470507	€ 5569640	€ 5529693	€ 5849224	€ 6067217	€ 5995313	€ 5140699	€ 5376627	€ 5304722	€ 5486168	€ 5715651	€ 5643747	
CO2 Emissions	22,53	11,40	7,29	22,52	17,17	9,77	22,52	17,23	9.84	22,52	17,27	9.87	


Table 51 – Results of the comparative CBA study, ordered by climatic zones.

The results are not surprising. It is clear that for better insulated, heavy buildings, the hybridGEOTABS solution is a competitive variant to the baseline variant. Our main findings, with respect to global financial value and total CO₂ emissions of the cases, are as follows:

- It is highly advantageous to use the hybridGEOTABS solution in combination with photovoltaics. In our study, this may decrease the global financial cost of the building by 0.4–1.5 % compared to the hybridGEOTABS solution without photovoltaics.
- For warm climates (Madrid), it can be strongly recommended to combine the hybridGEOTABS building with photovoltaics, as they decrease the final price significantly.
- The baseline variant is always cheaper than the hybridGEOTABS solution, but its environmental impact is higher. It is usually around 2 % cheaper than the hybridGEOTABS with photovoltaics, it tends to be more expensive in warmer climates – this may be caused by bigger cooling demands and thus larger borefield, which is an expensive part of the concept. For poorly insulated buildings in colder climates (Warsaw), the baseline may be a better choice because of small difference in environmental impact.

• Even for the worst case scenarios, the hybridGEOTABS solution is only 3 % more expensive than the baseline, and usually around 1% more expensive, which makes the price difference negligible compared to the environmental impact.

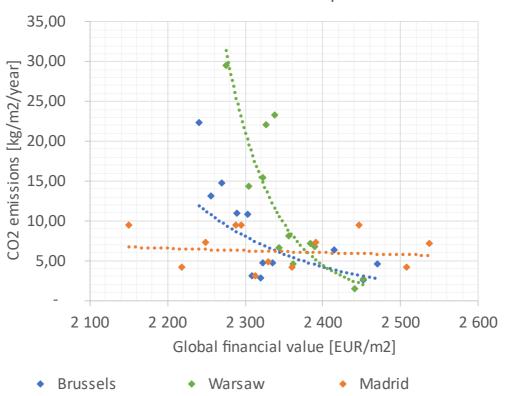

Global financial value (NPV) per m2

Figure 24 – Results of the comparative CBA study.

Finally, Figure 25 shows the plot of the costs (in terms of global financial value, or net present value) versus environmental impact (in terms of CO_2 emissions). Our findings can be summarized into two points.

- 1. The more we invest into the building, the larger the environmental impact is. In terms of numbers, we have found in our study that for the increase in investments of about 7 %, we can decrease the CO₂ emissions from the operation of the building by more than 95 % (Warsaw scenario), 70 % (Brussels scenario) or 20 % (Madrid scenario).
- 2. It appears from our study that hybridGEOTABS buildings have increased effect on the performance of buildings (in terms of the cost X environment dilemma) for harsher climates.

Cost X Environmental impact

Figure 25 – The relationship of cost and environmental impact of the CBA variants.

8. Bibliography

- 1. European Commission. Commission Delegated Regulation (EU) No. 244/2012. 2012.
- 2. Sartori, Davide et al. Guide to Cost-Benefit Analysis of Investment Projects. Brussels : EC, DG Regio, 2015. ISBN 978-92-79-34796-2.
- 3. Bundesministerium des Innern, für Bau und Heimat. Wege zum Effizienzhaus Plus. Bonn/Berlin : Bundesamt für Bauwesen und Raumordnung, 2018.

List of Tables

Table 1 – Final cost performance overview of Haus M	19
Table 2 – Minimum annual income from Haus M needed to achieve positive financial NPV.	19
Table 3 – Financial value of Haus M	
Table 4 – Haus M: Environmental impact and energy requirements	20
Table 5 – Haus M: Summary of the CBA results	23
Table 6 – Final cost performance overview of Líbeznice	28
Table 7 – Financial value of Líbeznice	29
Table 8 – Líbeznice: Environmental impact and energy requirements	29
Table 9 – Líbeznice: Sensitivity analysis	30
Table 10 – Líbeznice: Summary of the CBA results	
Table 11 – Final cost performance overview of Infrax/Fluvius	
Table 12 – Minimum annual income from Infrax/Fluvius needed to achieve positive financial NPV.	37
Table 13 – Financial value of Infrax/Fluvius	
Table 14 – Infrax/Fluvius: Environmental impact and energy requirements	38
Table 15 – Infrax/Fluvius: Sensitivity analysis	
Table 16 – Infrax/Fluvius: Summary of the CBA results	
Table 17 – Final cost performance overview of Ter Potterie	
Table 18 – Minimum annual income from Ter Potterie needed to achieve positive financial NPV.	
Table 19 – Financial value of Ter Potterie	
Table 20 – Ter Potterie: Environmental impact and energy requirements	
Table 21 – Ter Potterie: Sensitivity analysis	49
Table 22 – Ter Potterie: Summary of the CBA results	-
Table 23 – Building envelope properties for the comparison study used in this chapter.	
Table 24 – Office zones internal heat gains from appliances, occupancy and lighting	
Table 25 – Case sets for comparison study	
Table 26 – General parameters for the comparison study	
Table 27 – Parameters for the first dataset (Heavy building, medium insulated, low density occupancy)	
Table 28 – First data set (heavy building, medium insulated, low density occupancy) – Final cost performa	
overview.	-
Table 29 – First data set (heavy building, medium insulated, low density occupancy) – Minimum annual inco	
needed to achieve positive financial NPV	
Table 30 – First data set (heavy building, medium insulated, low density occupancy) – Financial value	
Table 31 – First data set (heavy building, medium insulated, low density occupancy) – Environmental impact	
energy requirements	
Table 32 – First data set (heavy building, medium insulated, low density occupancy) – CBA Summary	
Table 33 – Parameters for the second dataset (Heavy building, well insulated, low density occupancy)	
Table 34 – Second dataset (heavy building, well insulated, low density occupancy) – Final cost performa	
overview.	
Table 35 – Second dataset (heavy building, well insulated, low density occupancy) – Minimum annual inco	
needed to achieve positive financial NPV	-
Table 36 – Second dataset (heavy building, well insulated, low density occupancy) – Financial value.	-
Table 37 – Second dataset (heavy building, well insulated, low density occupancy) – Environmental impact	
energy requirements Table 38 – Second dataset (heavy building, well insulated, low density occupancy) – CBA Summary	
Table 39 – Parameters for the third dataset (Light building, poorly insulated, high density occupancy)	-
Table 40 – Third dataset (light building, poorly insulated, high density occupancy) – Final cost performa	
overview.	
UVELVIEW.	00

List of Figures

Figure 1 – The effect of the global financial cost on the environmental impact of buildings.	3
Figure 2: Structure of the CBA according to Sartori et al.	. 10
Figure 3 – Haus M, Global NPV. Only cumulative costs of the variant-specific technologies are shown	. 18
Figure 4 – Haus M: Sensitivity analysis, discount rate.	. 21
Figure 5 – Haus M: Sensitivity analysis, electricity price	. 22
Figure 6 – Haus M: Sensitivity analysis, MPC savings.	. 22
Figure 7 – Líbeznice, Global NPV. Only cumulative costs of the variant-specific technologies are shown	. 28
Figure 8 – Líbeznice: Sensitivity analysis, discount rate	. 31
Figure 9 – Líbeznice: Sensitivity analysis, electricity price.	. 31
Figure 10 – Líbeznice: Sensitivity analysis, MPC savings	. 32
Figure 11 – Líbeznice: Sensitivity analysis, battery price	. 32
Figure 12 – Infrax/Fluvius, Global NPV. Only cumulative costs of the variant-specific technologies are shown	. 36
Figure 13 – Infrax/Fluvius: Sensitivity analysis, discount rate.	39
Figure 14 – Infrax/Fluvius: Sensitivity analysis, electricity price	
Figure 15 – Infrax/Fluvius: Sensitivity analysis, MPC savings	
Figure 16 – Ter Potterie, Global NPV. Only cumulative costs of the variant-specific technologies are shown	.46
Figure 17 – Ter Potterie: Sensitivity analysis, discount rate.	
Figure 18 – Ter Potterie: Sensitivity analysis, electricity price	50
Figure 19 – Ter Potterie: Sensitivity analysis, MPC savings	
Figure 20 - First data set (heavy building, medium insulated, low density occupancy), Global NPV. Of	
cumulative costs of the variant-specific technologies are shown	
Figure 21 – Second dataset (heavy building, well insulated, low density occupancy), Global NPV. Only cumulat	
costs of the variant-specific technologies are shown	
Figure 22 – Third dataset (light building, poorly insulated, high density occupancy), Global NPV. Only cumulat	
costs of the variant-specific technologies are shown	
Figure 23 – Fourth dataset (light building, medium insulated, low density occupancy), Global NPV. O	
cumulative costs of the variant-specific technologies are shown	
Figure 24 – Results of the comparative CBA study.	
Figure 25 – The relationship of cost and environmental impact of the CBA variants	77