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Abstract
Gait disability in people with progressive multiple sclerosis (MS) is difficult to quantify using existing clinical tools. This 
study aims to identify reliable and objective gait-based biomarkers to monitor progressive multiple sclerosis (MS) in clini-
cal settings. During routine clinical visits, 57 people with secondary progressive MS and 24 healthy controls walked for 
6 minutes wearing three inertial motion sensors. Fifteen gait measures were computed from the sensor data and tested for 
between-session reliability, for differences between controls and people with moderate and severe MS disability, and for 
correlation with Expanded Disability Status Scale (EDSS) scores. The majority of gait measures showed good to excellent 
between-session reliability when assessed in a subgroup of 23 healthy controls and 25 people with MS. These measures 
showed that people with MS walked with significantly longer step and stride durations, reduced step and stride regularity, 
and experienced difficulties in controlling and maintaining a stable walk when compared to controls. These abnormalities 
significantly increased in people with a higher level of disability and correlated with their EDSS scores. Reliable and objec-
tive gait-based biomarkers using wearable sensors have been identified. These biomarkers may allow clinicians to quantify 
clinically relevant alterations in gait in people with progressive MS within the context of regular clinical visits.

Keywords  Test-retest reliability · Gait analysis · Balance · Temporal parameters · Regularity · Six-minute walk

Introduction

Multiple sclerosis (MS) is a common immune-mediated 
inflammatory and degenerative disease of the brain and 
spinal cord [1]. The initial clinical course is variable, but 
the majority of patients either present with or transition 
into a progressive course, characterised by the gradual 
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accumulation of disability independent of clinical relapses, 
which usually significantly affect their ability to walk. It is 
estimated that more than 1.3 million people have progressive 
MS worldwide. Currently, few disease-modifying therapies 
are available for this phase of the illness [1, 2].

Walking related disability has a significant impact on the 
quality of life [3] and is rated by people with MS as one of 
their worst symptoms [4]. Despite its importance, it is dif-
ficult to quantify this disability within clinical and research 
settings [5]. Typical assessments include clinical evalua-
tion, rating scales (e.g., Expanded Disability Status Scale 
(EDSS) [6], 12-item MS Walking Scale [7]), and timed or 
distance tests (e.g., Timed 25-foot Walk, 10-m Timed Walk, 
30-m Timed Walk, 100-m Timed Walk, and 2-min or 6-min 
Walk Test [8]). Whilst EDSS and other composite endpoints, 
such as the MS Functional Composite [9], have been used 
in clinical trials in progressive MS, these outcome measures 
are insensitive to the small alterations in walking disability 
that accumulate over the time course of a clinical trial [10]. 
More sensitive measures would enable clinicians to identify 
people with objective evidence of progressive MS more con-
fidently, help with clinical decisions related to prognosis and 
the use of disease-modifying therapies, and could serve as 
biomarkers of disease progression in clinical trials [1, 11].

In recent years there has been increasing interest in body-
worn technology for quantification of disease-related gait 
changes [12–18]. However, their use as part of the clinical 
pathway of people with progressive MS is still very lim-
ited. This is partly due to the fact that previous studies had 
significant heterogeneity, both from the clinical and meth-
odological perspective, and did not have a specific focus on 
progressive MS, which made it unclear which set of gait 
measures might be able to discriminate and predict different 
levels of walking-related disability in these people. Gait is 
a complex sensorimotor activity that involves not only the 
spatial and temporal coordination of the lower limbs but 
also the coordination of the trunk and arms as well as the 
dynamic balance [19]. Although the latter factors are known 
to be affected in people with MS [20], the majority of previ-
ous studies only looked at a limited subset of gait measures 
based on spatio-temporal features (e.g., step or stride length, 
step or stride duration, and gait speed, etc.), which might 
allow capturing only few components of disease-specific gait 
impairments [21]. To broaden the scope of the assessment, 
gait measures like intensity, jerk, regularity, and symmetry 
have been proposed to characterize the overall “quality and 
energetic efficiency” of an individual’s gait [22]. These have 
been successfully applied to both older adults [23], those 
at risk of falling [24] or affected by neurological disorders 
such as Parkinson’s disease, where they have been found 
to add valuable and complementary information to tradi-
tional gait analysis [21]. In MS, the use of this approach 
has been limited to understanding the effects of fatigue [18] 

and gait changes in the real world [25], but the feasibility of 
employing such gait measures as tools for quantifying gait 
abnormalities in people affected by this condition and for 
integrating them into routine clinical assessments is yet to 
be investigated. The present study is, therefore, designed to 
fill in this gap.

This study sought to identify biomarkers that could allow 
reliable and objective characterisation of gait alterations in 
people with progressive MS with different levels of disabil-
ity compared to healthy controls, using sensors worn on the 
shins and lower back whist performing a walking test during 
routine outpatient visits. To this end, we aimed to: (1) assess 
between-session reliability of a comprehensive set of gait 
measures in healthy adults and in people with progressive 
MS and (2) determine which gait measures could discrimi-
nate between people with progressive MS with different 
levels of disability in a clinical setting.

Methods

Participants

Fifty-seven people with secondary progressive MS and 24 
healthy controls took part in this study (Table 1). Partici-
pants were recruited either from the Sheffield MS Clinic at 
the Royal Hallamshire Hospital (Sheffield, United Kingdom) 
when they attended for their routine appointments or from 
the Sheffield Clinical trial Unit where a cohort of people 
with secondary progressive MS taking part in a double-
blinded intervention-based clinical trial [26] attended for 
their baseline assessment. None of the patients had a relapse 
or change of medication in the previous 3 months and none 
was recovering from an infection or an intercurrent illness. 
None of the healthy controls had any other medical or ortho-
paedic condition affecting their walking.

Disability was assessed using the EDSS and people with 
MS were split into two subgroups around the median EDSS 
score. People with EDSS score between 3 and 5 were clas-
sified as being moderately disabled (moderate MS, MSm) 
whereas people with EDSS score higher than 5 were classi-
fied as being severely disabled (severe MS, MSs).

Experimental procedure

Participants were fitted with three tri-axial inertial sensors 
(OPAL, APDM Inc., Portland, OR, USA) using adjustable 
Velcro straps (Fig. 1). Two of these were attached on the 
anterior shin on the right and left with the aim to accurately 
estimate the temporal measures (e.g., step or stride duration) 
[27], and one was placed on the back overlying the fifth 
lumbar vertebra [15] to extract the gait quality measures 
related to poor balance control and altered coordination [20]. 
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Acceleration and angular velocity signals were recorded 
along the anatomical vertical, medio-lateral, and anterior-
posterior axes at a sampling frequency of 128 Hz and the 
accelerometer range was set at ± 6 g.

After being fitted with the sensors, participants were 
asked to walk back and forth in a hospital corridor for 6 
minutes (Fig. 1). Since the test was not meant to quantify 
the submaximal level of functional capacity and since we 
aimed to propose a solution that could be widely adopted in 
standard hospital settings, the length of the path was limited 
to 10 m, with adequate space for turning around at each end. 

Participants were asked to walk at their comfortable speed 
and could rest and/or to use assistive devices if needed. No 
verbal interaction with other people was allowed during 
testing.

In order to assess between-session reliability, 11 people 
with MSm, 14 people with MSs, and 23 healthy controls 
repeated the assessment on a second visit, which was held 
7–14 days after the first one. The sample size calculation was 
based on the previous work by Zou [28] and considered an 
expected ICC value of 0.85 with an acceptable lower limit 
of 0.40, a power of 80%, and a confidence interval of 95%. 

Table 1   Demographic and clinical characteristics of the study participants

Data are represented as mean (standard deviation) if normally distributed or as median (range) if not normally distributed. EDSS Expanded Dis-
ability Status Scale, Ctrl healthy controls
*The 6- and 7-year average age difference between Ctrl and MSm and Ctrl and MSs, respectively, is not expected to affect gait measures within 
this age range [44].

People with MS Healthy 
controls

Statistics

Ctrl vs MSm Ctrl vs MSs MSm vs MSs

N subjects MS: 57
MSm: 25 24
MSs: 32

Age [years] MS: 56.0 (9.3)
MSm: 55.8 (8.2) 49.8 (8.4) t(47) =  − 2.51, p = 0.02* t(54) =  − 2.48, p = 0.02* t(55) =  − 0.16, p = 0.87
MSs: 56.2 (10.2)

Gender [% female] MS: 67.8%
MSm: 65.4% 66.7% χ2(1) = 0.04, p = 0.85 χ2(1) = 0.18, p = 0.68 χ2(1) = 0.40, p = 0.53
MSs: 69.7%

EDSS scores MS: 5.5 (3.0–6.5)
MSm: 4.0 (3.0–5.0) U = 0.00, z = − 6.55, p < 0.001
MSs: 6.0 (5.5–6.5)

Walking assistive 
device [%]

Without: 61%
Unilateral: 25%
Bilateral: 14%

Fig. 1   Gait protocol and positioning of the wearable sensors (WS1–
3). Acceleration and angular velocity signals were recorded during 
the walking test using three wearable sensors placed on the anterior 
shins and on the lower back. Typical raw acceleration and angular 

velocity data recorded over time along anterior-posterior (AP, green 
line), medio-lateral (ML, red line), and vertical (V, blue line) axes are 
shown on the left
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Participants were assessed at the same time of the day, and 
patients had not experienced a relapse, change in medica-
tion, or intercurrent infection between the two assessments.

Sensor data processing

Figure 2 summarizes the main steps involved in the analysis 
of the sensor data (i.e., acceleration and angular velocity 
signals) collected during the walking test.

First, the tri-axial accelerations were reoriented to a hor-
izontal-vertical coordinate system and filtered with a 10 Hz 
cut-off, zero phase, low-pass Butterworth filter [29]. Second, 
accelerations and angular velocities over 6 minutes (Fig. 2a) 
were segmented into walking passes (i.e., straight walking 
lines), with turning and resting times detected from the lum-
bar angular velocities [30] and discarded from subsequent 

analysis (Fig. 2b). Only steady-state walking passes were, 
therefore, processed to compute the gait measures of inter-
est. Finally, initial floor contacts and final floor contacts of 
each foot were identified for each walking pass by searching 
for local maxima in the shin medio-lateral angular velocity 
of both legs (Fig. 2c) [31]. The initial contacts were referred 
to as Heel-Strike (i.e., the moment when the heel strikes the 
floor, HS), while the final contacts were referred to as Toe-
Off (i.e., the moment when the toe leaves the floor, TO).

Gait measures

The sensor data were processed into 15 gait measures, 
grouped into three domains: rhythm, variability, and bal-
ance and coordination [21, 32].

Fig. 2   Sensor data processing. 
a Example of angular veloc-
ity signals recorded using the 
lumbar and shin sensors during 
the walking test. b Zoom in 
on angular velocity signals 
between minute 4 and minute 
5. Identification of the straight 
walking lines and removal of 
the turning times (light orange 
bars) from the signals. c Zoom 
in on one straight walking line. 
Detection of initial contacts 
(heel strike, HS, white circles) 
and final contacts (Toe-Off, TO, 
black circles) of each foot with 
the floor. HS occurs when heel 
comes in contact with the floor, 
while TO when toe is off the 
floor. HS and TO events were 
identified for each walking pass 
by finding peaks in the angular 
velocity of the shin sensors 
along the medio-lateral axis 
(ML, red line)
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Rhythm Stride, step, stance, swing, single support, and 
double support durations were selected to represent the 
rhythm domain (Table 2). These gait measures were com-
puted based on the timing of HS and TO events (see Fig. 2c). 

Variability The variability in stride, step, stance, and 
swing durations were calculated, including at least 50 steps 
as described in Galna et al. [33]. For example, variability 
in stride duration was defined as the combined within-per-
son standard deviation of the left and right stride durations 
(Fig. 3).

Balance and coordination Intensity, jerk, step regularity, 
stride regularity, and symmetry were computed from the 
lumbar acceleration signals for each walking pass with a 
minimum of five consecutive strides.

Table 3 provides a description and a visual representation 
of each gait measure used to characterize the gait of people 
with MS and healthy controls.

Statistical analysis

Participant characteristics were compared using Pearson’s 
Chi-square for gender and independent Mann-Whitney U 
for age and EDSS scores. For each participant, all the gait 
measures were averaged over the walking time.

Between-session reliability was evaluated for partici-
pants who completed two visits. Intraclass Correlation 
Coefficients (ICCs) were calculated using the ICC(2,k) 
model with 95% confidence intervals [40]. Thresholds for 
ICC values were defined as per guidelines from Li et al. 
[40]: 0.75 or higher indicates excellent reliability, 0.6–0.74 
indicates good reliability, 0.4–0.59 indicates fair reliabil-
ity, and ICC lower than 0.39 indicates poor reliability. The 
Bland-Altman analysis was also performed to assess the 
agreement between the sets of gait measures obtained in 
the two visits [41].

Table 2   Rhythm domain measures

Gait measures - Rhythm domain

Stride 
duration

Duration between two 
consecutive HSs of the 
same foot

Step 
duration

Duration between HS 
of one foot and HS of 
the opposite foot

Stance 
duration

Time when the 
reference limb is in 
contact with the floor

Swing 
duration

Time when the 
reference limb is not 
in contact with the 
floor

Single 
support 
duration

Time when only one 
foot is in contact with 
the floor

Double 
support 
duration

Time when both feet 
are in contact with the 
floor

rHS right heel strike, lHS left heel strike, rTO right toe-off
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Correlation between each gait measure and the EDSS 
score was assessed in the MS group using a Spearman’s 
rank correlation coefficient (r).

The non-parametric Kruskal test was performed to com-
pare gait measures from the control, MSs and MSm groups 

since a Shapiro-Wilk test showed that the gait measures were 
not normally distributed. Where a statistically significant dif-
ference was found (p-value < 0.05), an independent post hoc 
test (Mann-Whitney U Test) with Bonferroni correction was 
carried out at a 1% level of significance to accommodate for 

Table 3   Balance and coordination domain measures

Gait measures - Balance and coordination domain

Intensity Intensity was calculated as the root mean square (RMS) of the acceleration modulus (accmod =

) [34-35].2 + 2 + 2

Intensity can be interpreted as a measure of upper-body dynamic balance. Decreasing values 

depict an increased ability for correcting postural control.

Jerk Jerk was computed as the RMS of the jerk [36-37]. Jerk was obtained by differentiating  accmod

with respect to time ( ).= accmod/

Lower values of this measure reflect a higher ability to effectively pre-plan motor strategies, 

resulting in a reduced likelihood to fall.

Step 
regularity 
(Ad1)

Stride 
regularity 
(Ad2)

Ad1 and Ad2 are the first and second peak values respectively in the normalized autocorrelation 

function computed from the acceleration modulus [38]. Ad1 (white circles) quantifies the 

correlation between consecutive steps, while Ad2 (black circles) the correlation between 

consecutive strides. 
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multiple comparisons (i.e., (i) people with MSm vs healthy 
controls, (ii) people with MSs vs healthy controls, (iii) 
people with MSm vs people with MSs). Median, median 

absolute deviation (MAD) and range values were calculated 
across participants for each of the investigated gait measures.

Table 3   (continued)

Ad1 and Ad2 measure the consistency of step-to-step and stride-to-stride pattern. Increasing Ad1 

and Ad2 values, from 0 to 1, indicate higher regularity between steps and strides, with 1 

indicating perfect step and stride regularity.

Symmetry Symmetry is a measure of the correlation between left and right steps (adapted from Kobsar et 

al. [39]) and it is computed as follows:

Symmetry = 1 -
|Ad2 - Ad1|

mean(Ad1,Ad2)

A higher ratio implies a higher symmetry between left and right steps, with a ratio of 1 

representing the perfect symmetry.

Differences in intensity, jerk, step regularity, stride regularity, and symmetry are shown for a representative healthy subject (Ctrl, red line), a rep-
resentative person with moderate MS (MSm, green line), and a representative person with severe MS (MSs, blue lines).
AP anterior-posterior, ML medio-lateral, V vertical

Fig. 3   Variability domain measures. Example of low and high variability (i.e., standard deviation (SD)) in stride duration
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The gait measures for people with MSm and people 
with MSs were normalized with respect to those for 
healthy controls (ctrl) by calculating the robust z-scores 
(zr, [42]) as follows:

where MAD(gait measurectrl) = 1.4826 ×median(|gait

measurectrl(i) −median(gait measurectrl)|).
Radar plot, including the zr -score values, were used 

to give an overview of all the investigated gait measures 
and to highlight the strength of each gait measure in dis-
tinguishing people with MS with different levels of dis-
ability with respect to healthy controls. The central line 
in the radar plot represents healthy controls (zr -score = 0) 
and deviation from zero along the radial axes indicates 
how people with MSm and people with MSs differ from 
controls.

The effect size (d) for non-parametric tests was also 
computed as follows:

where z is the z-score, and N is the number of total 
observations on which z is based. Thresholds of 0.1, 0.3, 
and 0.5 were recommended by Cohen [43] for small, 
medium, and large effect sizes, respectively.

zr =
median(gait measurepeople with MS) −median(gait measurectrl)

MAD(gait measurectrl)
,

d =
z

√
N
,

Results

Participant characteristics

Participant characteristics are summarized in Table 1.

Between‑session reliability

Most of the gait measures demonstrated good to excellent 
between-session reliability (Fig. 4) for healthy controls 
(mean ± standard deviation ICC: 0.88 ± 0.08), people with 
MSm (0.85 ± 0.08), and people with MSs (0.90 ± 0.10). The 
Bland-Altman plots (Supplementary Fig. 1) also showed a 
good agreement between the sets of gait measures obtained 
in the two visits.

For healthy controls, 14 out of 15 gait measures showed 
excellent and only 1 (variability in step duration) good 
between-session reliability. For people with MSm, 11 out 
of 15 measures revealed excellent and the remaining 4 good 
between-session reliability. Finally, for people with MSs, 
14 out of 15 measures exhibited excellent and only 1 (vari-
ability in swing duration) good between-session reliability.

Gait measures

Gait measures highlighted significant alteration in gait 
dynamics both in people with MSm and in people with MSs 
with respect to healthy controls (i.e., MSm vs healthy con-
trols and MSs vs healthy controls), and between people with 
different levels of disability (i.e., MSm vs MSs) (Fig. 5).

Fig. 4   Intraclass correlation 
coefficients (ICCs). ICCs were 
calculated for healthy controls 
(Ctrl, red triangles), people with 
moderate MS (MSm, green 
triangles), and people with 
severe MS (MSs, blue triangles) 
who completed two testing 
visits, 7–14 days apart in order 
to evaluate the between-session 
reliability of each gait measure. 
Excellent between-session reli-
ability is depicted in grey colour
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When compared to healthy controls, gait measures 
showed that both people with MSm and people with MSs 
walked with a less rhythmic gait pattern, consisting of sig-
nificantly longer step, stride, stance, swing, and single and 
double support durations. These measures also showed sig-
nificant disruption in the normally strictly timed dynamics of 
HS and TO events, with increased variability seen in stride, 
step, stance, and swing durations (Fig. 5). Furthermore, the 
gait pattern in people with MSs became much less rhyth-
mic and much more variable with respect to that observed 
in people with MSm (Fig. 5). This was also confirmed by 
the correlation between the gait measures representative of 
rhythm and variability domains and EDSS scores with r val-
ues ranging between 0.48 and 0.61.

When additional data were leveraged from the lumbar 
sensor, to give a broader view of the temporal pattern of gait, 
our results found a reduction in intensity and jerk both in 
people with MSm and MSs with respect to healthy controls, 
indicating a higher ability to stabilize their balance with a 
smoother walking pattern in the presence of an impairment 
of the lower limbs. Our results were also able to show a 
decrease in the normal consistency of gait, as detected in 
lower values for stride regularity, step regularity, and sym-
metry. These differences were more marked in people with 
MSs than in those with MSm (Fig. 5), with values of the gait 
measures being on average three times larger in the former 
group. Weak to moderate associations (r values between 

0.24 and 0.46) were observed between the gait measures 
representative of balance and coordination and EDSS scores.

Discussion

Gait is complex, consisting of periodic highly sequenced and 
conserved movements characterised by rapid contractions 
and relaxations of muscle groups. By paradox, these rapid 
movements must propel the body forward with unvarying 
speed whilst simultaneously being highly energy-efficient 
and stable.

The pathological changes which affect the central nervous 
system in MS interferes with the ability of affected indi-
viduals to generate these complex movements, with eventual 
consequences on their walking and stability leading to falls 
and increasing disability.

The aim of this study was to see if small wearable sen-
sors, integrated into the normal clinical assessment of people 
with MS during their routine outpatient clinic visits, were 
able to characterise alterations in gait that occurred in pro-
gressive MS accurately and reproducibly. Overall, the results 
indicated that people with MS walk at a slower pace and 
with a variable gait pattern of steps and strides, and have 
difficulties in controlling the movements of their trunk, with 
such impairments being more evident in people with higher 
degrees of disability.

Fifteen gait measures were calculated during the instru-
mented walking test. Almost all gait measures showed good 
to excellent reliability (ICC > 0.6) across two separate testing 
days for the three groups (Fig. 4).

This study showed that ICCs in healthy controls were 
slightly lower than those in people with MS. Similar findings 
were also found in other studies [45]. A possible explanation 
is that since walking is not challenging for healthy adults, 
they often walk using a variety of normal walking patterns. 
In people with severe MS, some of the variables showed 
large confidence intervals, indicating that this subset of data 
might not be suitable for assessing responsiveness.

Most of the gait measures assessed in this study differed 
significantly between people with MS and healthy controls 
(Fig. 5). Alteration in the speed of gait was noted in people 
with MS, with longer stride and step durations, stance and 
swing durations and single and double support durations. 
These findings complement the results seen in previous stud-
ies in people with MS with moderate and severe levels of 
disability [14–17, 46].

Alteration in the pattern of gait was also noted, with 
much greater variability, in the temporal measures in peo-
ple with MS (Fig. 5). Socie et al. [47] reported similar 
findings for variability in step duration. We also found 
significantly more gait variability in people with greater 
disability. This is consistent with the positive correlation 

Fig. 5   Gait measures representative of rhythm, variability, and bal-
ance and coordination domains. Gait measures were calculated 
for healthy controls (Ctrl, red markers), people with moderate MS 
(MSm, green markers), and people with severe MS (MSs, blue mark-
ers). Note that increasing zr-score values in this radar plot indicate 
less rhythmic gait pattern (rhythm domain), more variable gait pat-
tern (variability domain) and less difficulties in controlling balance 
and coordination (balance and coordination domain). zr-scores are 
based on median and median of absolute deviations (MAD) of Ctrl. 
Each radial line along the axes represents ± 2MAD. Numerical values 
of median, MAD, and range, together with p-values and associated 
effect sizes, are reported in the supplementary material (Table  1). 
*Indicates significant differences between Ctrl and people with MSm 
and between Ctrl and people with MSs. + Indicates significant differ-
ence between people with MSm and people with MSs
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between gait variability and EDSS scores reported by 
Socie et al. [47]. This higher gait variability could be 
related to fatigue, decreased muscle strength and impaired 
balance [47]. Moreover, gait variability could also be a 
marker of a fear of falling [48].

We also identified alteration in the stability of the upper 
body as shown by the balance and coordination domain 
(Fig. 5). Few studies have previously examined measures 
additionally derived from a sensor on the lumbar spine in 
people with MS [12, 13, 15, 18]. We found gait intensity 
to be significantly lower in people with MS compared to 
controls (Fig. 5). This suggests that people with MS tend to 
minimize upper body movement to achieve higher stability 
when walking with reduced leg strength [49, 50]. Similar 
results are seen in normal ageing [51] and in patients fol-
lowing stroke [52]. In agreement with the findings of studies 
involving other neurological conditions [21, 36], jerk was 
also significantly reduced in people with MS (Fig. 5) as a 
result of compensation strategies to maintain dynamic stabil-
ity under adverse conditions. Stride and step regularity were 
found to be the most sensitive measures to discriminate peo-
ple with MS with different levels of disability from healthy 
controls. People with MSm showed a significant lower step 
and stride regularity when compared with healthy controls, 
and this was increased in people with higher level of disabil-
ity (i.e., people with MSs) (Fig. 5). This suggests that people 
with MS are less able to regulate repeating steps and strides 
during gait and to control the rhythmic displacements of the 
upper body during walking. Similar results were reported by 
others in MS [18] and in Parkinson’s disease [21].

A possible limitation of this study, related to our decision 
to perform the walking test along a 10-m pathway, is the low 
number of strides (i.e., five strides for each straight walking 
pass) included for calculating step regularity, stride regular-
ity, and symmetry. The validity of this choice is, however, 
supported by the existing literature. Tura et al. [53] found 
that the minimum number of strides needed for reliable com-
putation of step regularity, stride regularity, and symmetry 
through autocorrelation sequence is between two and four 
steps recorded at steady-state both in healthy controls and in 
above-knee amputees. Additionally, Moe-Nilssen, Helbostad 
[38] suggested that the number of strides needed for this 
assessment is five in healthy adults. More recently, Angelini 
et al. [30] showed that, in people with MS, the gait meas-
ures we investigated in this manuscript are robust to changes 
in the experimental procedures, including the length of the 
walkway. The proposed gait measures could, therefore, be 
reliably integrated into the assessment performed in any 
clinical facility where 10-m walk measures are being cur-
rently assessed. Additionally, focusing on the data extracted 
from the sensor on the lower back might also facilitate the 
integration of the proposed approach into continuous unsu-
pervised mobility monitoring [25, 46, 54, 55].

Another limitation relates to the results for gait intensity 
and jerk. Gait velocity was not controlled for, and both peo-
ple with MS and healthy controls walked at their own com-
fortable speed. Therefore, our findings for intensity and jerk 
should be interpreted with caution since they could reflect 
preferred gait speed [34] and/or movement amplitude and 
duration [56]. Whilst our protocol was delivered in a clini-
cal environment, it did require six minutes of supervised 
patient walking which may be hard to replicate in an out-
patient clinic setting, and would not be suitable for people 
at significant risk of falls. Further work will assess whether 
shorter walking times are able to provide the same amount of 
reliable information. This might also mitigate any possible 
limitation associated with fatigue, which we did not assess 
in this study.

Finally, in view of the relatively small cohort included 
in this study, we had to group the gait measures into three 
domains established according to the existing literature [21, 
32]. Future studies should include factor analysis to confirm 
the validity of this decision. While this study was cross-sec-
tional, we are currently longitudinally investigating a larger 
cohort (MOBILISE-D, www.mobil​ise-d.eu).

Conclusions

Our study looked at using small inertial sensors to character-
ise gait impairment and compensatory strategies in people 
with progressive MS in their normal clinical setting. This 
study indicates that people with progressive MS walk at a 
slower pace, with a much more variable pattern of steps and 
strides, and experience difficulties in controlling the move-
ments of the trunk and maintaining a stable walk. These 
abnormalities are more prominent in people with MS with 
higher levels of disability. These assessments were reli-
able in test-retest analysis, and suitable for clinical use in 
monitoring patients and in research settings as accurate and 
responsive outcome measures for clinical trials.

Ongoing studies will expand on the cross-sectional data 
presented here and focus on longitudinal observation to 
assess the responsiveness and validate the use of the pro-
posed gait measures as biomarkers of disease progression 
within the time course of clinical trials.
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