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 Predicting stock price fluctuation during critical events remains a big 

challenge for many researchers because the stock market is extremely 

vulnerable and sensitive during such time. Most existing works rely on 

various numerical data of related factors which can impact the stock price 

direction. However, very few research papers analyzed the effect of 

information appearing in financial news articles. In this paper, a novel 

probabilistic lexicon based stock market prediction (PLSP) algorithm is 

proposed to predict the direction of stock price movement. Our approach 

used the proposed Thai financial probabilistic lexicon (ThaiFinLex) derived 

from Thai financial news and stock market historical prices. The PLSP 

development consists of three steps. Firstly, we constructed ThaiFinLex by 

extracting event terms from news articles and calculating their associated 

probability of increasing/decreasing values of stock prices. Then, event terms 

with bad prediction performance were filtered out. Finally, the stock price 

directions were predicted using the PLSP and the remaining effective event 

terms. Our results indicated that the proposed model can be used for 

predicting stock price movement. The performance is as high as 83.33% 

when PLSP is used to predict stocks from the financial sector. 
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1. INTRODUCTION 

For decades, data mining has been an important tool for investors to predict the stock prices’ value 

and movement. According to the studies, stock prices can be affected by various factors: gold price, foreign 

exchange rate [1], crude oil price [2], other market indices, influential events and news articles that may 

directly or indirectly be related to the stock markets. Whilst most data sources used for predicting the stock 

price trend are quantitative, many research papers have also studied stock market trend prediction by 

analyzing financial news articles in order to improve prediction efficiency. 

In general, the performance of stock price trend forecasting using quantitative data such as historical 

stock prices or stock market indexes is quite accurate [3]-[5]. However, these methods are not flexible 

enough for adapting to price fluctuation caused by critical events. This is because such approach, which relies 

solely on quantitative data, lacks human intuition, business knowledge, and does not take into account 

financial situation of companies on the stock market. To further explore the effect of news on the stock 

market price, several prediction models have factored in historical stock prices and financial news articles in 

https://creativecommons.org/licenses/by-sa/4.0/
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order to improve prediction performance [6], [7]. However, the existing techniques, to the best of our 

knowledge, still cannot achieve high prediction accuracy due to the way financial news articles were 

interpreted in the model. For instance, a prediction method using two major data sources: financial news 

articles and historical stock prices, proposed by Schumaker et al. [6], yielded only 58% accuracy. 

According to our studies, several researchers tried to improve prediction performance by means of 

finding a suitable representation of news articles. For example, bag of words [6], [8], [9], noun phrases [6], [10], 

and named entities [6] were used as features to represent the information of the news articles. However, such 

features vaguely capture the impact of the companies’ situation. Thus, many researchers have focused on 

other representations such as word couple [7], and event features [11]-[14]. The event feature was the latest 

feature representation of the event stated in the news articles. It is a more informative representation 

compared to other feature representations because it consisted of meaningful subject, verb, and object. On the 

other hand, Li et al. [15] proposed another technique, which exploits sentence-level summarization in stock 

price prediction. Nevertheless, the above news representation techniques did not yield satisfied prediction 

results because none of the results achieved higher than 75% accuracy. 

Considering all of the aforementioned research, prediction accuracies obtained from most studies 

were still not at a satisfactory level. In addition, only a few studies focused on using the Lexicon concept. 

Therefore, this paper proposed a new predictive algorithm called probabilistic lexicon based stock market 

prediction (PLSP) along with the Thai financial probabilistic lexicon (ThaiFinLex). The goal of the PLSP is 

to outperform other existing models in predicting the directions of the stock prices. The ThaiFinLex, which 

stored event terms and probabilities of each event term, were derived from historical financial news articles 

learned from a one-year worth of data set. The proposed PLSP algorithm predicts directions of a certain stock 

price movement mentioned in related news articles by calculating the probability values of the relevant event 

terms collected in the ThaiFinLex. The results obtained from the prediction are stock price directions (up or 

down) at the day's end. The contribution of this work is to provide an efficient predictive model aiming to 

improve the accuracy of semantic-based stock price prediction. Moreover, the proposed PLSP algorithm can 

be applied to predicting gold price trends, foreign exchange rate trends, and crude oil price trends. 

The scope of this study focused on two major data sources: the closing prices of the top 100 stocks 

in the stock exchange of Thailand (SET100) and relevant financial news articles. Data sets used in the 

experiment were divided into three groups. Each data set consisted of financial new articles and historical 

closing prices. The first data set consisting of trading information over a period of 1 year from March 2015 to 

February 2016 were used to generate a probabilistic lexicon. The second data set (March 2016 to February 

2017) was used to analyze the efficiency of each event term and evaluate our proposed prediction model. The 

last data set (March 2017 to February 2018) was used for model evaluation. The results show that the 

proposed model has an overall accuracy of 75% and can achieve as high as 83.33% accuracy when predicting 

the stock price movement of companies in financial sector. The rest of this paper is organized as follows: 

Section 2 illustrates the proposed method for stock market price prediction. Section 3 describes the 

experimental results and discussion. Finally, the conclusion is presented in section 4. 

 

 

2. RESEARCH METHOD  

The proposed probabilistic lexicon based stock market prediction (PLSP) consists of four major 

systems that include data preparation system, Thai financial probabilistic lexicon (ThaiFinLex) generation 

system, effective event term analysis system, and model evaluation system, as shown in Figure 1. 

 

2.1.  Data preparation system 

News articles and stock price historical data were collected and prepared before using them in the 

other steps. Data preprocessing system consists of many subsystems as follows: 

 

2.1.1. Text preprocessing 

This subsystem was designed to extract terms or words from selected Thai financial news articles, 

whereas the data were gathered over a period of three years (March 2015 to February 2018) from a targeted 

news website. For this study, we used www.kaohoon.com which is a website reporting news regarding 

companies listed in the stock markets. Because time was very important in our study, we labeled each news 

article with its corresponding actual affected date: date on which the news will affect the stock price. This 

can be done by considering the released time and released day of the news article and time during the 

opening of the stock market. Normally, the stock trading days are Monday to Friday. The trading market 

opens at 10:00 AM and closes at 4:30 PM. The affected dates of news articles, which were released after 4:30 

PM of previous trading date (𝑑– 1) until 4:30 PM of current trading date (𝑑) were marked as being affected 

on date 𝑑. For example, all news articles which were released after 06/01/2016, 4:30 PM to 07/01/2016, 4:30 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Predicting stock price movement using effective thai financial… (Surinthip Sakphoowadon) 

4315 

PM would be marked as being affected on 07/01/2016. However, the affected date of all news articles which 

were released between 08/01/2016, 4:30 PM to 11/01/2016, 4:30 PM were 11/01/2016 because the market 

closed during the weekend (09/01/2016 to 10/01/2016). 

 

 

 
 

Figure 1. Stock market prediction using PLSP model 

 

 

Afterward, terms or words within each article will be extracted using two lexicons for Thai language: 

the LEXiTRON [16] which is a widely used Thai dictionary, and the initial lexicon which was constructed 

manually by stock experts for this study. Each term stored in the initial lexicon is labeled as either “clue” or 

“predicate”. A “clue” refers to a noun that represents the topic of an event mentioned in the articles, for 

instance, “company”, “oil price”, and “production cost”. A “predicate” is a term that expresses more details 

about a clue, including a verb or an adjective such as “increase”, “decrease”, “invest”, and “nice”. In addition 

to classifying terms as clues or predicates, each term will be mapped to its corresponding synonym prior to 

storing in the initial lexicon. Table 1 presents examples of terms stored in the initial set of the lexicon. 

 

 

Table 1. Examples of terms stored in the initial lexicon 
Terms Term Types Synonyms 

ต้นทุน (Cost) Clue ต้นทุน (Cost) 

ต้นทุนการผลติ (Production Costs) Clue ต้นทุน (Cost) 

ก าไร (Profit) Clue ก าไร (Profit) 

ก าไรสุทธิ (Net Profit) Clue ก าไร (Profit) 

เพิ่มข้ึน (Increased) Predicate เพิ่ม (Increased) 

ข้ึน (rose ) Predicate เพิ่ม (Increased) 

แจ่ม (Nice) Predicate ดี (Good) 

ดี (Good) Predicate ดี (Good) 

 

 

Stop word removal is the last step of text preprocessing. The purpose of this process is to gather 

valuable words and eradicate terms that are less meaningful terms for predicting directions of stock price 

movements. Furthermore, Thai conjunction terms (“and”, “or”, “therefore”, and “because”) were included in 

the system because these words were used to detect boundaries in sentences or long compound words.  

Unlike other studies, we also focused on the impact of the information that was embedded within 

each news article on the stock mentioned in the article. One news article can contain information about more 

than one stock whilst the information of one stock can be published in many news articles within one day. 

Hence, each article is also marked with associated stocks which were mentioned in the news. 
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2.1.2. Event term generation 

The idea is similar to many existing works which focused on building a corpus using meaningful 

phrase extraction from document [7], [17]. After performing the stop word removal, the remaining terms 

were coupled to generate new meaningful terms. Each term is composed of a clue and a predicate. For this 

study, we refer to these coupled terms as an “event term”. Note that a clue and its associated predicate may 

not necessarily be next to one another in a sentence. They can either be close to one another in the same 

sentence or be in a different sentence but in the same paragraph. Furthermore, if any event term appeared 

more than once in the same article, the generation function would consider its appearance once. Table 2 

illustrates a few examples of event terms.  

 

 

Table 2. Examples of event terms 
Synonym of clue terms Synonym of predicate terms Event terms 

ราคาน้ ามัน  (Oil prices) ข้ึน (Increased) ราคาน้ ามันข้ึน (Oil prices increased) 

ค่าใช้จ่าย (Expenditure) ข้ึน (Increased) ค่าใช้จ่ายข้ึน (Expenditure Increased) 

ต้นทุน (Cost) พุ่ง (jumped) ต้นทุนพุง่ (Cost jumped) 

 

 

2.1.3. Stock price processing   
Several studies used closing prices for stock market direction prediction [5], [18]-[20]. For this 

study, we used the rate of change (ROC) which was derived from the closing prices of each stock. Thus, the 

ROC of a stock 𝑖 (𝑠𝑖) traded on a date 𝑗 (𝑑𝑗) can be calculated as (1). 

 

𝑅𝑂𝐶𝑠𝑖,𝑑𝑗
=  

𝑃𝑠𝑖,𝑑𝑗
–𝑃𝑠𝑖,𝑑

(𝑗–1)

𝑃𝑠𝑖,𝑑
(𝑗–1)

∗ 100 (1) 

 

Where 𝑃𝑠𝑖,𝑑𝑗
 denotes the closing price of a stock 𝑖 on a trading date 𝑗 and  𝑃𝑠𝑖,𝑑(𝑗−1)

 denotes the closing price 

of a stock 𝑖 on the previous trading day. 

 

2.1.4. News article labeling 

Terms extracted from news articles related to a stock 𝑖 and released on a trading date 𝑗 were labeled 

as “up” or “down” depending on the ROC values. The changing status of the stock is “up” 

when 𝑅𝑂𝐶𝑠𝑖,𝑑𝑗
 is greater than 0. On the other, if 𝑅𝑂𝐶𝑠𝑖,𝑑𝑗

 is less than 0, the stock is labeled as “down”. The 

data sets related to the stock 𝑖 on the trading date 𝑗 will be ignored from the experiments when 𝑅𝑂𝐶𝑠𝑖,𝑑𝑗
 is 

equal to zero. The obtained result from the data pre-processing system is a news corpus. This news corpus 

will be used as input data in the remaining steps. 

 

2.2.  ThaiFinLex generation 

There are three steps to generate ThaiFinLex: calculating the weight of each event term based on 

ROC, finding the total weight, and computing probability associated with each event term. One-year data set 

of Thai financial news articles collected from March 2015 to February 2016 were used for ThaiFinLex 

generation. In this study, we considered both the title and the content of the news articles. 

 

2.2.1. Event term weighing 

Let 𝑑𝑗 be an affected date on which news articles containing a certain event term 𝑘 (𝑡𝑘) are released. 

In this work, an affected date 𝑗 (𝑑𝑗) has to be a trading date. Let 𝑊𝑡𝑘,𝑠𝑖

𝑈  and 𝑊𝑡𝑘,𝑠𝑖
𝐷  be the weights of an event 

term 𝑘 relevant to stock 𝑖 whose weight status are “up” and “down”, respectively. The weight of an event 

term can be computed as (2), (3). 

 

𝑊𝑡𝑘,𝑠𝑖

𝑈 =  ∑ (𝐶𝑡𝑘,𝑠𝑖,𝑑𝑗

𝑈 ∗ |(𝑅𝑂𝐶)𝑠𝑖,𝑑𝑗
|)𝑛

𝑗=1  when (𝑅𝑂𝐶)𝑠𝑖,𝑑𝑗
>0 (2) 

 

𝑊𝑡𝑘,𝑠𝑖
𝐷 =  ∑ (𝐶𝑡𝑘,𝑠𝑖,𝑑𝑗

𝐷 ∗ |(𝑅𝑂𝐶)𝑠𝑖,𝑑𝑗
|)𝑛

𝑗=1   when (𝑅𝑂𝐶)𝑠𝑖,𝑑𝑗
<0 (3) 

 

Where 𝑛 denotes the total number of trading days from the data set. 𝐶𝑡𝑘,𝑠𝑖,𝑑𝑗

𝑈  represents an indicator which 

will be equal to 1 if an event term 𝑘 appears in any news articles related to a stock 𝑖 on an affected date 𝑗 

when the status of the stock 𝑖 on the date 𝑗 is “up”. 𝐶𝑡𝑘,𝑠𝑖,𝑑𝑗

𝐷  denotes a value which will be equal to 1 if event 
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term 𝑘 appears in any news articles related to a stock 𝑖 on an affected date 𝑗 when the status of the stock 𝑖 on the 

date 𝑗 is “down”. Otherwise, 𝐶𝑡𝑘,𝑠𝑖,𝑑𝑗

𝑈  and 𝐶𝑡𝑘,𝑠𝑖,𝑑𝑗

𝐷  will be equal to 0. 

 

2.2.2. The total weight calculation 

The total weight is simply the summation of the weight calculated in the previous step across all 

stocks. Let 𝑇𝑊𝑡𝑘

𝑈 and 𝑇𝑊𝑡𝑘
𝐷  be the total weights of a certain event term 𝑘 relevant to all stocks in SET100 

whose total weight status are “up” and “down”, respectively. The total weight of event term 𝑘 can be 

computed as (4), (5). 

 

𝑇𝑊𝑡𝑘   
𝑈 = ∑ 𝑊𝑡𝑘,𝑠𝑖

𝑈𝑟
𝑖=1  ∗   

𝐶𝑈

𝐶𝑇
 (4) 

 

𝑇𝑊𝑡𝑘   
𝐷 = ∑ 𝑊𝑡𝑘,𝑠𝑖

𝐷𝑟
𝑖=1  ∗   

𝐶𝐷

𝐶𝑇
 (5) 

 

Where 𝑟 denotes the number of all stocks involved in this study. 𝑊𝑡𝑘,𝑠𝑖

𝑈  and 𝑊𝑡𝑘,𝑠𝑖
𝐷  represent the weights 

derived from (2) and (3), respectively. Let 𝐶𝑈𝑠𝑖
be the number of distinctive days that a certain event term 𝑘 

relevant to stock 𝑖 appears in the articles, and the changing status of such stock 𝑖 mentioned in the articles is 

“up”. 𝐶𝑈 in (4) is the sum of  𝐶𝑈𝑠𝑖
 of all stocks. Let 𝐶𝐷𝑠𝑖

 be the number of distinctive days that a certain 

event term 𝑘 relevant to a stock 𝑖 appear in the news articles, and the changing status of a stock 𝑖 mentioned in 

the articles is “down”. 𝐶𝐷 in (5) derived from the summation of  𝐶𝐷𝑠𝑖
 of all stocks. 𝐶𝑇 is equal to 𝐶𝑈 + 𝐶𝐷. 

 

2.2.3. Probability calculation 

The probabilities associated with each event term are calculated and stored into our lexicon. Let 𝑃𝑡𝑘

𝑈  

and 𝑃𝑡𝑘
𝐷  be the directional probabilities of each event term 𝑘 which is relevant to stocks in SET100, when the 

directions are “up” and “down”. The probabilities can be formulated as (6), (7). 

 

𝑃𝑡𝑘

𝑈 =  
𝑇𝑊𝑡𝑘   

𝑈

𝑇𝑊𝑡𝑘   
𝑈 +𝑇𝑊𝑡𝑘   

𝐷  (6) 

 

𝑃𝑡𝑘
𝐷 =  

𝑇𝑊𝑡𝑘   
𝐷

𝑇𝑊𝑡𝑘   
𝑈 +𝑇𝑊𝑡𝑘   

𝐷  (7) 

 

Where 𝑇𝑊𝑡𝑘

𝑈 and 𝑇𝑊𝑡𝑘
𝐷  are the total weights derived from the (4) and (5), respectively. The directional 

probabilities of each event term in (6) and (7) can represent the directional probabilities of a certain event 

term relevant to the whole stock market in this study. The obtained result of the lexicon generation is a 

proposed probabilistic lexicon called ThaiFinLex, as shown in Figure 1. Table 3 shows event terms stored in 

the ThaiFinLex along with their directional probabilities. 

 

 

Table 3. Examples of event terms in the ThaiFinLex 

Event Terms 
Directional probabilities  

 Up  Down 

ก ำไรขึน้  (Profit increased) 0.71 0.29 

ก ำไรลง  (Profit decreased) 0.34 0.66 

ตน้ทนุขึน้ (Cost increased) 0.25 0.75 

คำ่ใชจ้ำ่ยลง (Expenses decreased) 0.84 0.16 

 

 

2.3.  Effective event term analysis 

Similar to the lexicon generation process, we considered both the titles and the contents of news 

articles during the same one-year period to analyze an effective event term. In particular, the data set (March 

2016 to February 2017) consisting of 3091 distinctive news articles and the closing prices of 100 stock 

symbols during the same time period will be used as input data for our PLSP model. To find an effective 

event term, we have to analyze how accurate each event term is in PLSP. 

 

2.3.1. Stock market direction prediction 

In this step, the process focused on the prediction of each news article. The event terms were 

extracted from the related news articles, and then the corresponding event terms and their probability values 

https://dict.longdo.com/search/expenditure
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stored in ThaiFinLex were retrieved for calculation. Let 𝑎𝑣 be a news article used to predict the price trend of 

the stock mentioned in the news. Let 𝑆𝐶𝑎𝑣,𝑠𝑖
𝑈  and 𝑆𝐶𝑎𝑣,𝑠𝑖

𝐷  be the total directional scores that stock 𝑖 will be 

“up” or “down”, given the occurrence of news article 𝑣 (𝑎𝑣) respectively. Then, the directional scores of each 

news article 𝑣 related to a certain stock 𝑖 consisting of 𝑚 event terms can be computed as (8), (9). 

 

𝑆𝐶𝑎𝑣,𝑠𝑖
𝑈 =  ∏ 𝑃𝑡𝑘

𝑈𝑚
𝑘=1  (8) 

 

𝑆𝐶𝑎𝑣,𝑠𝑖
𝐷 =  ∏ 𝑃𝑡𝑘

𝐷𝑚
𝑘=1  (9) 

 

Where 𝑚 denotes the number of event terms that appeared in a news article 𝑣. 𝑃𝑡𝑘

𝑈  and 𝑃𝑡𝑘
𝐷  are the 

probabilities, stored in the ThaiFinLex, that the stock price will be up or down as a result of an event term 𝑘. 

Finally, let 𝑃𝑎𝑣,𝑠𝑖
𝑈  and 𝑃𝑎𝑣,𝑠𝑖

𝐷  be the probabilities that stock 𝑖 will be “up” or “down” when considering the 

impact of all the event terms that appear in the news article 𝑣. By normalizing the directional scores in (8) 

and (9), 𝑃𝑎𝑣,𝑠𝑖
𝑈  and 𝑃𝑎𝑣,𝑠𝑖

𝐷  can be expressed as (10), (11). 

 

𝑃𝑎𝑣,𝑠𝑖
𝑈 =

𝑆𝐶𝑎𝑣,𝑠𝑖
𝑈

𝑆𝐶𝑎𝑣,𝑠𝑖
𝑈 +𝑆𝐶𝑎𝑣,𝑠𝑖

𝐷  (10) 

 

𝑃𝑎𝑣,𝑠𝑖
𝐷 =

𝑆𝐶𝑎𝑣,𝑠𝑖
𝐷

𝑆𝐶𝑎𝑣,𝑠𝑖
𝑈 +𝑆𝐶𝑎𝑣,𝑠𝑖

𝐷  (11) 

 

PLSP predicts that the stock price will be up when 𝑃𝑎𝑣,𝑠𝑖
𝑈  > 𝑃𝑎𝑣,𝑠𝑖

𝐷  and down when 𝑃𝑎𝑣,𝑠𝑖
𝑈  < 𝑃𝑎𝑣,𝑠𝑖

𝐷 . 

 

2.3.2. Accuracy calculation 

To calculate how accurate PLSP is, we simply use the confusion matrix (12). 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (12) 

 

Where 𝑇𝑃, true positive, denotes the number of times PLSP predicted that the stock price movement 

direction would be “up” and the actual direction was “up”. True negative (𝑇𝑁) denotes the number of times 

PLSP predicts that the stock price direction would be “down” and the actual direction was “down”. False 

positive (𝐹𝑃) denotes the number of times PLSP predicted that the movement direction would be “up” but 

the actual direction was “down”. Finally, false negative (𝐹𝑁) denotes the number of times PLSP predicted 

that the stock price movement direction would be “down” but the actual direction was “up”. 

 

2.3.3. Event term efficiency calculation 

A few events mentioned in the articles can significantly cause the stock market fluctuation. 

However, some event has less impact on stock price movements than the others. Therefore, the event terms 

used to predict the directions of stock price movements have different levels of impact on the movements. To 

improve the prediction performance, the efficiency of each event term 𝑘 (𝐸𝐹𝑡𝑘
) will be calculated using (13). 

 

𝐸𝐹𝑡𝑘
=  

𝐶𝑅𝑡𝑘

𝐶𝑅𝑡𝑘
+ 𝑁𝐶𝑅𝑡𝑘

 (13) 

 

Where 𝐶𝑅𝑡𝑘
 is the total number of times that an event term 𝑘 can correctly predict the trend of stock price 

movement when such event term was mentioned in news articles. Similarly, 𝑁𝐶𝑅𝑡𝑘
 is the total number of 

times that an event term 𝑘 incorrectly predicts the stock price trends from input news articles. The prediction 

efficiency (EF) from (13) is a value between 0 and 1. 

 

2.3.4. Event term analysis 

As can be seen in Table 3, each event term k in ThaiFinLex has its associated directional probability 

𝑃𝑡𝑘

𝑈  and 𝑃𝑡𝑘
𝐷  or probabilities that the stock price will be up and down as a result of an event term k. However, 

we noticed that many event terms in ThaiFinLex have less influence on the stock price movement. More 

specifically, their associated directional probabilities are between 0.4-0.6. Therefore, additional steps were 

taken to eliminate such event terms. The event terms with 𝑃𝑡𝑘

𝑈  or  𝑃𝑡𝑘
𝐷  values that are greater than or equal to 

0.6 (>= 0.6) are included in the system. According to these criteria, 913 event terms which appeared in 1871 

news articles were used as the input data set in the analysis. 

https://dict.longdo.com/search/influence
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The procedure for analyzing effective event terms is shown in Figure 2. In this step, EF level will be 

used to iteratively find event terms that yield high prediction accuracy. These effective event terms will be 

included in the PLSP prediction model. Five EF thresholds and six iterations were used in this study. 

 

 

 
 

Figure 2. Five iterations of effective event term analysis 

 

 

a. In the first iteration of the algorithm, the total number of selected event terms, 913 terms, from ThaiFinLex 

were further analyzed to obtain highly efficient event terms. A total of 1871 news articles, which contained 

those 913 terms, were used to predict the stock price direction using (10) and (11). The prediction 

accuracies were then calculated based on (12). The obtained result of this first iteration showed an accuracy 

of 49.17 %. EF values of all the 913 event terms were computed by using (13). After that, the event terms, 

whose EF values are greater than 0.5, will be chosen. As a result, 424 event terms met the criteria. For the next 

step, the chosen 424 event terms were then used as input event terms in the second iteration.  

b. For the second iteration, 424 event terms derived from the first iteration and the 1579 related news 

articles were used as input data set. For the prediction result, the experiment yielded an accuracy of 56.99 

% which was better than the first iteration. Similar to the first iteration, a new EF value of each event term 

was computed. Since the system calculates new EF values in every iteration, the EF values of the same 

event term changed due to the fact that ambiguous articles were excluded in every iteration. In the second 

iteration, the EF threshold used for selecting event terms is increased to 0.6. The total number of event 

terms which satisfied this condition was 282. This new set of the event terms will be used as input data set 

on the third iteration. The same process is repeated on every iteration. The numbers of the effective event terms 

obtained from the 3th, 4th, and 5th iterations were 151, 89, and 68, respectively.     

c. In the last iteration (the 6th iteration), 68 event terms and 119 news articles which were obtained from the 

5th iteration were used as the input data set. When considering this set of event terms, prediction accuracy 

was as high as 96.64 %. After the last iteration, we obtained a collection of the event terms with high 

prediction accuracy. This collection consisted of five data sets with different numbers of event terms, 

consisting of 424, 282, 151, 89, and 68 event terms. These five data sets were further used in the next 

steps.  

Table 4 illustrates the overall results of the six iterations. The obtained results of event term analysis 

using different EF thresholds showed that the higher the threshold, the fewer the number of news articles and 
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the fewer number of event terms. Furthermore, the higher the EF threshold values, the higher the obtained 

accuracy. This is due to the fact that unrelevant event terms were filtered out during the selective process, so 

the remaining event terms used for the higher thresholds are usually ones that have higher impact on the 

stock price trend. Thus, better performance can be achieved when considering only the event terms with high 

efficiency. Table 5 shows examples of the event terms with high efficiency obtained from the final iteration.  
 

 

Table 4. Prediction results of six iterations using the PLSP model 
Iteration EF Threshold The number of news articles The number of event terms Accuracy (%) 

1 - 1871 913 49.17 

2 >=0.5 1579 424 56.99 
3 >=0.6 997 282 63.89 

4 >=0.7 471 151 73.46 

5 >=0.8 207 89 87.92 
6 >=0.9 119 68 96.64 

 

 

Table 5. Examples of event terms with high efficiency 
Event terms Prediction efficiency (EF) 

โครงกำรซือ้หุน้คนื (Share buyback program) 0.9 

ตน้ทนุพุ่ง (Cost increased dramatically) 1.0 

ก ำไรทะลกั (Very high profit) 1.0 

ผลประกอบกำรเตบิโต (Turnover increased) 1.0 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Comparison of the PLSP with the baseline models 

After obtaining the highly efficient event terms as shown in Table 5, we compared the performance of 

PLSP against three different well-known models used for predicting stock prices: SVM [7], [8], [10], J48 [21], 

and BayesNet [22]. For this comparison, the input news articles data set (March 2016 to February 2017) used 

for evaluating the prediction performance was the same data set that was used for extracting the high efficiency 

event terms. Five sets of data with five different values of EF thresholds were then used as input for prediction.  

The results, as shown in Table 6, clearly showed that the proposed PLSP with threshold of more 

than 0.5 performed better than the other three models. It is because the efficiency of the PLSP model depends 

on the efficiency of the event terms while the other three models ignored the use of event terms. Another 

reason is that the higher the EF threshold, the more relevant the event terms are used for prediction. 

 

 

Table 6. Performance comparison of 4 models 
EF Threshold The total number of news 

articles 

The total number of 

event terms 

Accuracy (%) 

BayesNet J48 SVM (Linear kernel) PLSP 

>=0.5 1579 424 51.93 54.84 52.06 56.99 
>=0.6 997 282 51.25 54.86 55.17 63.89 

>=0.7 471 151 50.32 54.99 62.00 73.46 

>=0.8 207 89 53.62 54.11 77.29 87.92 
>=0.9 119 68 58.82 57.14 79.83 96.64 

 

 

3.2.  Model evaluation using an independent data set 

In the previous section, we have evaluated the accuracy of the proposed PLSP model by considering 

event terms appearing in either title or content of the news articles. However, many studies suggested that the 

prediction model did not need to consider all of the contents in the news. In [11], the researchers showed that 

using only article titles for stock market prediction could achieve better results than using news contents. 

Radinsky et al. [23] confirmed that the article title information was useful for event prediction. Thus, many 

research papers predicted the stock markets by using the concise summary information of the news articles 

such as article titles [12], [13] or news-headlines [24]-[26]. To improve the prediction of the PLSP model, we 

further tested PLSP with article titles and first paragraphs of independent data set: 1653 Thai financial news 

articles collected over a period of 1 year (March 2017 to February 2018). Only event terms in the ThaiFinLex 

with high efficiency were used in this step. The proposed model (PLSP) was used as a prediction model and 

the confusion matrix was used to evaluate the performance. The obtained results of five different sets of 

event terms with different EF thresholds are shown in Table 7. 
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Table 7 shows the performance of PLSP using event terms with different efficiency levels. The best 

prediction result is obtained when PLSP is used with 0.7 threshold value. The model evaluation yielded the 

highest accuracy of 75%. This means that the data set with 151 event terms is the best data set for stock 

market prediction. However, the result of using EF threshold at 0.8 and 0.9 data set did not yield high 

accuracy compared with that of using EF threshold at 0.7. This is because the number of event terms with 

such high efficiency levels (EF=0.8, EF=0.9) is small, causing a smaller set of input articles. Hence, one mis-

prediction amounted to a large percentage of inaccurate prediction. Furthermore, there were various 

unpredictable factors that affect the actual directions of the stock market apart from the event information in 

the news articles. 

 

 

Table 7. Prediction performance of independent testing 
EF Threshold The total number of news articles 

related to all considering stocks 

The total number of 

event terms 

Accuracy (%) 

>=0.5 712 424 57.44 

>=0.6 441 282 60.77 

>=0.7 148 151 75.00 
>=0.8 59 89 71.12 

>=0.9 42 68 69.05 

 

 

Li et al. [27] studied stock movement prediction according to firm characteristics: trading volume, 

turnover, price-to-earnings (P/E) ratio, price-to-book (P/B) ratio, risk (β), and industry sector. They showed 

that stocks in some industries were more predictable than others. Hence, we further analyzed the prediction 

performance of PLSP with EF=0.7 (148 articles) when applied to different groups of industries. The stocks in 

this study were further categorized into seven industry groups. The prediction results are shown in Table 8. 

 

 

Table 8. Prediction performance categorized by industries 
Industries The total number of news articles 

related to all considering stocks 

Accuracy (%) 

Agro & Food 9 66.67 
Financials 18 83.33 

Industrials 2 50.00 

Property & Construction 34 73.53 
Resources 32 75.00 

Services 33 78.79 

Technology 20 70.00 

 

 

Table 8 illustrates the performance result using the PLSP with data set categorized by different 

industries. According to the results, the prediction accuracy of the financial industry was the highest among 

the 7 industry groups (83.33%). Interestingly, the prediction performance of the five groups: financials, 

property & construction, resources, services and technology exceeded 70% accuracy. The results show that 

stocks of these industries are highly affected by financial news articles. 

The proposed model (PLSP) with efficient event terms can achieve 83.33% accuracy when 

predicting trends of stocks in the financial sector. We have shown that the efficiency of the PLSP is superior 

when compared with the other approaches [6], [7], [11], [12], [14], [15]. However, the result obtained by 

considering the whole market did not yield high accuracy. This is presumably due to the fact that the news 

article does not have much influence on certain industries. Thus, applying our prediction model to such 

industries can only result in poor performance. 

According to our comprehensive study, predicting stock price direction using information from 

news articles has been shown to be less accurate than using quantitative data from the stock market: Stock 

return, price-earnings ratio (P/E), and trading volume. Likewise, the accuracy of PLSP is confined to a few 

limitations. First and foremost, it is apparent that ThaiFinLex is a static lexicon. More importantly, 

ThaiFinLex is generated from the 1-year worth of dataset (year 2016). Thus, what were used to be considered 

effective event terms may not be as effective in the next few years. On the other hand, there may be new 

terms in the future mentioned in news articles that may affect the direction of the stock price movements, but 

PLSP ignores such terms that do not exist in the ThaiFinLex. For example, blockchain and smart contract 

have just become buzzwords in Thailand in 2017. Therefore, ThaiFinLex does not include such words 

because it was developed based on a dataset in 2016. 

https://dict.longdo.com/search/categorize
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The second limitation is the use of the Thai language in this experiment. Training the machine to 

understand the Thai language is a hard problem by itself. To list a few challenges, there is no space to 

separate each word from one another, therefore efficiency of the work is limited to the algorithm used for 

splitting sentences into word tokens. In addition, news articles often contain catchy or fancy phrases that are 

not typically used in everyday communication. Therefore, it is difficult to extract key relevant words. In this 

paper, we used the LEXiTRON and the initial term Lexicon to extract words and phrases. As a result, 

relevant event terms that were not included in the initial set of our dictionary corpus may be excluded from 

the experiment. 

Another limitation is the reliability of rare event terms which do not appear in news articles that 

often. More specifically, the occurrence frequency of an event term found in the training dataset determines 

its reliability in predicting the stock price movement. Last but not least, it should be pointed out that the stock 

price direction can be affected by many other factors such as gold price, foreign exchange rate, oil price, and 

other social media data [28]-[30] which are not considered in this study. These limitations imply that the 

proposed model can be further improved in many ways, e.g., determining new event terms and updating 

ThaiFinLex with these terms automatically, considering PLSP prediction result as one of the many features 

that can be used to predict the directions of stock prices. 

 

 

4. CONCLUSION 

In this study, we proposed a novel algorithm to predict the directions of a certain stock price 

movement, called PLSP. We constructed the ThaiFinLex developed by using a statistical text mining 

concept. ThaiFinLex is a lexicon containing event terms and their corresponding trend prediction 

probabilities. The ThaiFinLex was developed by using terms appearing in Thai financial news articles and 

the historical stock prices. The proposed model along with the ThaiFinLex aims to improve the semantic-

based stock prediction performance. To improve the prediction acurracy of the proposed model, high quality 

event terms were analyzed. Five prediction efficiency (EF) thresholds were used to analyze the event terms in 

ThaiFinLex to detect the effective event terms to be included in PLSP. By focusing on the data set of the 

event terms with high efficiency, we compared the predictive performance of the proposed PLSP model with 

the other popular models, including SVM, J48, and BayesNet. The obtained results showed that the PLSP 

model with threshold outperforms the other three models. To further evaluate PLSP model, we investigated 

the extracted event terms with high efficiency from the most relevant part of the articles: the title and the first 

paragraph of news articles. By using these event terms on a one-year worth of independent data set, we found 

that the accuracy is at most 75% when EF threshold is 0.7. However, when applying the same model to seven 

groups of industries, the prediction result of three industries: financials, resources, and services industry 

achieved greater than 75% accuracy. This result revealed that the highly efficient event terms in this study are 

suitable for predicting stock price trends of these three industries. In addition, the experimental results 

indicated that the proposed PLSP algorithm yielded a superior performance than the other previous works.  

The PLSP algorithm can be applied to trend predictions of other assets: Gold price, foreign 

exchange rate, crude oil price, etc because these markets can be affected by sentiments in financial news 

articles, Twitter, and other social media data. Nevertheless, the limitation of the proposed PLSP is the use of 

the static lexicon (ThaiFinlex). In the future, we plan to integrate quantitative analysis models which are widely 

used models for stock market prediction, namely moving average convergence divergence (MACD) and relative 

strength index (RSI) in order to improve the prediction performance of PLSP. The size of ThaiFinLex should 

be increased by gathering data from various sources including financial news articles, and social media 

information. Moreover, the lexicon used for prediction should be updated automatically. 
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