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Abstract

This thesis presents parallel algorithms to solve SAT problems in the domain of
product configuration. During an interactive configuration process, a user selects
components step-by-step to find a suitable configuration that fulfills a set of con-
straints. A configuration system can be used to guide the user through the process by
validating the selections and providing feedback. Each validation of a user selection
is formulated as a SAT problem. Furthermore, an optimization problem is identified
to find solutions with the minimum amount of changes compared to the previous con-
figuration. The necessity of reproducible solutions, despite using parallel algorithms,
is considered and concepts to provide deterministic results are presented. Different
parallel algorithms are proposed and compared. Experiments show that reasonable
speedups are achieved by using multiple threads over the sequential counterpart.

Deutsche Zusammenfassung

Diese Arbeit prisentiert verschiedene parallele Algorithmen zur Lésung von SAT
Problemen im Bereich der Produktkonfiguration. Wéhrend des interaktiven Konfigu-
rationsprozesses wahlt ein Nutzer schrittweise die Bestandteile eines Produkts aus, um
eine Konfiguration zu erhalten die sowohl den Kundenwiinschen entspricht als auch
konsistent und produzierbar ist. Ein Produktkonfigurator kann verwendet werden,
um den Nutzer durch den Konfigurationsprozess zu leiten, in dem die Kundenwiinsche
gepriift werden und bei Verletzungen der Beschrinkungen Riickmeldung gegeben
wird. Das Priifen der einzelnen Kundenwiinsche kann als SAT Problem formuliert
werden. Zusétzlich wird ein Optimierungsproblem identifiziert, mit dem Ziel Losun-
gen zu finden, die minimale Anderungen an der vorherigen Konfiguration vornehmen.
Die Anforderung reproduzierbare Konfigurationen unter Verwendung von paralle-
len Algorithmen zu erhalten wird untersucht und Konzepte werden vorgestellt, um
deterministische Losungen zu erhalten. Verschiedene parallele Algorithmen werden
vorgestellt und miteinander verglichen. Erste Experimente zeigen, dass bei Nutzung
von mehreren Rechenkernen, gute Beschleunigungen im Vergleich zum sequenziellen
Algorithmus erreicht werden.
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1. Introduction

1.1 Motivation

In recent years, customers demand for more personalized and customized products increases
in industries that traditionally have used standardized products to reap the benefits of mass
production. Companies try to adapt by offering personalized, configurable goods to meet
the customers’ demand which led to a paradigm called Mass Customization. The paradigm’s
objective is "to deliver products and services that best meet individual customers’ needs
with near mass production efficiency” ([TJM96]). This development leads to increasingly
complex configuration models to describe product variants that are manufacturable and
desirable to be offered to customers. Furthermore, configuration is applicable to various
domains, such as simple product options for clothing or more complex ones like commercial
trucks and airplanes. A key factor to enable this kind of mass customization are so called
configuration systems ([FHBT14]). A configuration system (configurator) supports the
process of configuring products that fulfill the user requirements as well as all constraints
imposed by manufacturing limitations and manufacturer interests. In this work, the focus
is on interactive configuration. Every time a user makes a new choice, the configurator
provides feedback about the validity of the last step and other possible choices. For instance,
choices that are no longer valid due to previous changes are grayed out.

Configuration systems offer great benefits for the sales process and customers, while
technical challenges rise to enable configuration models with increasingly large knowledge
bases. One method to express constraints of a configuration model is to use propositional
logic ([SKKO03]). Every valid configuration has to fulfill a set of propositional formulae. The
configuration system’s task is to find such an assignment for a given set of user requirements.
Janota shows in that this problem can be expressed as a Boolean Satisfiability
Problem (SAT) and consequently be solved by a SAT-solver. Essentially, the configuration
model together with the user requirements are transformed into conjunctive normal form
(CNF). If the CNF is satisfiable, then there exists at least one valid configuration for the
underlying configuration model and the user’s needs. The SAT problem was the first
problem proven to be NP-complete ([Coo71]) which can lead to long calculation times.
This is in stark contrast with the requirements of an interactive configuration system used
in the sales process, in which a quick response time is expected to validate the latest user
requirements against the configuration model. Nevertheless, research in SAT brought a lot
of advances in last decades to improve the commonly used DPLL-algorithm.
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A more recent trend and field of research is to parallelize the tree search performed by
the DPLL algorithm. This development aims to utilize the rapid advances in multi-core
computers and clusters that followed the diminishing returns of per core performance.
Thus, increasing the number of processor cores is more common. Parallel SAT-solvers
have been mainly studied on very hard SAT problems. Configuration systems tend to
have different requirements that exceed the common SAT problem. Generally, the created
problem instances are smaller and less complex, due to the a step-by-step configuration
process. However, new problems are introduced. Firstly, in case that the customer’s
latest selection in the interactive process combined with the current configuration are
unsatisfiable, the configuration system should return an alternative solution that minimizes
the number of changes with regard to the current configuration. This problem can be
modeled as an optimization problem, for example as a Maximum Satisfiability Problem
(MaxSAT) or Minimum-Cost Satisfiability Problem (MinCostSAT). The underlying cost
function evaluates the changes of every assignment compared to the current configuration.
Furthermore, considering an optimization problem, more than one optimal solution can
exist. For example, a user requirement can be fulfilled by several optimal configurations
with an equal amount of changes. In this case, the user should have the choice which
configuration is the subjectively optimal one. That means, it is not sufficient to solely
return the first optimal solution. Instead, all other alternative configurations with minimal
costs are demanded. Lastly, a configuration system requires fully deterministic behavior.
In this context, determinism describes the reproducibility of a configuration given a user
change. Therefore, the entire configuration process is reproducible.

1.2 Goals of this Thesis

In this thesis, the goal is to conceptualize and develop multiple parallel algorithms that
are capable of solving SAT and MinCostSAT instances that are prevalent in product
configuration. The developed algorithms are evaluated using the CAS Configurator Merlin
([CAS20]), which is specialized on solving problems from interactive configuration. Based
on the stated goal, the following concrete objectives have been identified.

1. Scalability: developed algorithms should scale well with increasing numbers of pro-
cessing units. Scaling is measured by the speedup through additional processor cores.
Moreover, the resource consumption is considered to evaluate the applicability for
industry cases. Focus is set on applications running on shared-memory systems.

2. Completeness: computing all optimal configurations that the sequential version
returns, given that multiple optimal solutions exist. The requested maximal number
is typically defined between two to ten alternative solutions.

3. Determinism: achieving reproducible results for the user. That means, during the
interactive configuration process, every repetition of a user change has to result in
the same n assignments. Thus, repeating two equal configuration processes lead to
the same alternative configurations.

1.3 Contributions

The main contribution of this work is the development of parallel algorithms for problem
instances created during interactive configuration processes. These instances are described
by calculating the optimal valid solutions for a given user change, start-configuration, and
Boolean formula. Several parallel algorithms are presented that fulfill the completeness and
optimality criteria for assignments required by configuration systems. Experimental results
show that the presented approaches can achieve significant improvements in response time
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by using multiple processor cores. Furthermore the approaches fulfill the completeness,
optimality, and determinism demand. Especially the latter has not been widely researched
in this domain, because many applications do not rely on reproducible results.

1.4 Related Work

SAT and Product Configuation

The development of the DPLL algorithm in 1962 by M. Davis, H. Putnam, G. Logemann
and D.W. Loveland lays the foundation for most modern SAT solvers ([DLL62]). Due to this
effective method, different domains try to model their problems as SAT to utilize the DPLL
algorithm. Examples are formal verification ([BCRZ99]), planning problems ([EMWO9T]),
and scheduling problems ([GHM™12]). In the following decades, many improvements have
been proposed. Important ones are the development of sophisticated branching heuristics
(for example [LGZT15]), clause learning ([MMZT01], and non-chronological backtracking.
Due to its broad applicability, SAT solving is an active area of academic research and
software development. Furthermore, it is propelled by yearly SAT competitions with
various competition tracks (for instance [BHJ17]).

Nevertheless, modeling SAT problems has clear limitations as well. By expecting "satisfiable
or "unsatisfiable” as a result, SAT is a decision problem that tries to find a valid assignment.
Besides being valid, the assignment does not consider any quantitative evaluation, thus it
cannot be used for optimization problems ([LF04]). As alternatives, the SAT extensions
MaxSAT and MinCostSAT were introduced, with various implementations such as [BF98],
[LMO09], [LT04], and [FMOG].

SAT and the two extensions have been applied to the field of product configuration as well.
The authors of [SKKO01] and [SKKO03] present a method to check the general consistency of a
product data base, by converting it into formulae of propositional logic. Their publications
show the usage of a SAT solver in a real product configuration system for the automotive
industry. A broader discussion of the applicability of SAT solvers for configuration systems
is given in [Jan(8], in which scalability is emphasized as a potential benefit. Early research
on concepts focusing on the configuration process has been presented by Sabin and Weigel
in [SW98]. A good overview of the interactive configuration process, in which a user
specifies his requirements step-by-step with validation and feedback in between, is given
in [JBGMSI10]. Different solving techniques for this process have been proposed. Batory
and Freuder et al. present in and algorithms for a lazy approach. In
this context lazy means that no precompilation is required, because all computations
are performed during the configuration process. Non-lazy approaches mainly use binary-
decision-diagrams (BDD) instead of SAT solvers, examples are [HSJT04] and [AHP10].
Furthermore, Janota discusses many optimization techniques and algorithms to model the
interactive configuration process lazily with the help of SAT ([Janl0]. Additionally, he
elaborates methods to improve the transparency of a configuration system. This is achieved
by providing algorithms to generate comprehensible explanations using resolution trees
and completing partial configurations.

kb

Parallel Search

In SAT, the number of existing parallel solvers has increased significantly in the last years
due to the growing interest in developing algorithms that utilize multi-core architectures.
Currently, most parallel SAT solvers are based on two main approaches: divide-and-conquer
(also called search space splitting) and parallel portfolios.

Early parallel SAT solvers are based on the divide-and-conquer approach. This method
divides the search space into smaller subproblems. One of the first solvers to implement
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this idea is PSATO ([ZBH96]), a solver designed for networks of workstations. It is based
on the sequential solver SATO and divides the search space by using guiding-paths, which
describe a path from the root to a specific node within the search tree. Organization
is managed according to the "master-slave model”, in which the master partitions the
problem and load balances the subproblems to be processed by the workers. In [JLUOQ5],
the PSatz solver (based on Satz) is described which utilizes work-stealing as a dynamic
form of work distribution. In contrast to PSATO and PSatz, the parallel solver PaSAT
presented in introduces a form of clause sharing (called lemma exchange) for
conflict derived clauses. The mentioned solvers run on local networks. GridSAT ([CW03]),
a parallel SAT solver based on the sequential solver zChaff, is designed to be used on
a distributed network. Similar to earlier work, it employs a "master-client” model and
partitions the search space using guiding paths. Additionally, it implements a method
to exchange learned clauses, up to a predefined number of literals, across all clients on
the grid. In contrast to earlier distributed systems, the parallel SAT solver MiraXT is
designed for shared-memory multiprocessor systems ([LSBO7]). In their work, all threads
use a shared-memory clause database and use a locking mechanism to update the clauses.
Furthermore, PaMiraXT uses a master-client model for workstation clusters in which the
clients are MiraXT solvers ([SLB10]).

With the goal of improving the scalability of parallel SAT solvers, the paradigm cube-
and-conquer has been introduced. It is a two-phase approach that partitions the original
problem into many subproblems (cubes) which are subsequently solved in parallel. At
first, the partitioning is performed using lookahead solvers (e.g. [Hv09]) that try to reduce
the complexity of the remaining Boolean formulae. These cubes are solved by a CDCL
solver. Hence, the first phase utilizes global heuristics that are good at reducing the
problem size and the second phase employs local heuristics that are designed to find an
assignment quickly. An early example of a cube-and-conquer SAT solver is [HKWBI11]. A
cube-and-conquer solver designed for grids is presented in .

Parallel portfolios, popularized by Hamadi et al. with the solver ManySAT ([HJS10]),
differ by starting several SAT solvers with different configurations in parallel. The solvers
compete to find a solution to the input problem and terminate as soon as one has been
found. They showed that portfolio-based solvers can perform better on industrial cases
than divide-and-conquer approaches, by reducing the sensitivity to parameter tuning. The
used configuration settings are manually chosen to achieve complementary strategies. An
automated approach for selecting parameters is shown in [XHLB10]. A more recent portfolio
solver is Plingeling ([Biel3]). Many early portfolio solvers run on single multi-processor
computers. The scalability of portfolio-based solvers is analyzed in HordeSat ([BSS15]).
The distributed solver is intended to be used on clusters with thousands of processors, with
the objective to solve very hard SAT instances. Their results show good speedups for up
to 2048 processor cores.

This thesis is focused on the combination of SAT problems and optimization problems.
Hence, some publications about parallel best-first search algorithms are summarized. Con-
sidering parallel best-first algorithms, many have been developed for A* search. Approaches
for parallel A* can be separated into two major categories, depending on the management
of the OPEN list.

The first approach is centralized parallel A*. In [IS86], Irani and Shih introduced a parallel
algorithm that works on a shared central OPEN list. Additionally, they adapted the termi-
nation criteria to ensure optimality while creating little search overhead. A more recent
example is [PLK14]. Their work is concentrated on problems with slow node expansion.
Furthermore, they added a method to avoid re-expanding nodes during parallel A* search.
To remove potential bottlenecks on the shared OPEN list, algorithms that use the so called
decentralized approach have been developed. The algorithm PRA* (Parallel Retracting
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A*) assigns an OPEN list to each processor ([EHMN95]). Every generated node is mapped
to a processor using a hash function. Thus, the load balancing depends on the used hash
function. The passing of nodes to other processors is done by locking the OPEN lists.
Following work mainly concentrated on developing sophisticated hash functions to reduce
sources of overhead, for instance in [KKW11] and [JF16]. Many approaches use domain
specific hashing to exploit the underlying problem structure. For example, designed
a hash function that uses the structure of the problem instance, which are based on different

sized puzzles.

Deterministic Search

Parallel SAT solvers provide a speed-up in many cases and improve the current state-
of-the-art. However, most parallel SAT solvers introduce non-deterministic behavior.
Consequently, they cannot be used in applications that rely on reproducible results. This
problem has been acknowledged by Hamadi et al. in [HJPS11]. They proposed the first
deterministic parallel SAT solver, which is based on the portfolio-based ManySAT solver.
To ensure reproducibility, the solver only exchanges information (e.g. learned clauses) at
specific points. These synchronization points occur after a number of conflicts during the
search in each thread. Moreover, Hamadi et al. implemented static as well as dynamic
strategies to define synchronization points. Their results show that the deterministic solver
can achieve competitive results to its non-deterministic counterpart. In [MML12], the
concept of synchronization points is applied to develop the first deterministic parallel
MaxSAT solver. Similarly to the SAT solver by [HJPS11], they present static and dynamic

synchronization strategies to reduce overhead.

1.5 Outline

In Chapter 2, all necessary definitions and concepts required for this thesis are presented.
These are primarily the introduction into propositional logic and the well-known SAT
problem as well as extensions of it, such as MinCostSAT. Furthermore, different parallel
algorithms for SAT are introduced. Finally, brief descriptions of the domain product
configuration as well as the usage of a configuration system are given. Subsequently, Chapter
presents a detailed problem definition for this thesis, to motivate the usage of parallel
algorithms for the interactive configuration process. Chapter [4| describes the developed
concepts for parallel algorithms to solve problem instances for the defined configuration task.
Different approaches are discussed, compared, and analyzed. Additionally, strategies to
ensure deterministic results for the user are presented, a key requirement for configuration
systems. The different algorithms are evaluated in Chapter |5, using theoretical problems
like Random 3-SAT and real industry cases. The focus is on computation time and memory
efficiency for problems with varying complexity. Finally, Chapter 6] provides a summary of
the presented work as well as an outlook for potential future work.






2. Preliminaries

This chapter describes the necessary theoretical background for this work. Firstly, funda-
mental elements of propositional logic are introduced. Secondly, the satisfiability problem
(SAT) is presented, as well as a common algorithm to solve it, the DPLL algorithm. Thirdly,
the SAT related problems MaxSAT and MinCostSAT are shown. Afterwards, several ap-
proaches of parallel algorithms for SAT-Solvers are presented. Finally, the domain product
configuration and the interactive configuration process are introduced.

2.1 Propositional Logic

The basis of propositional logic was introduced by George Boole in his book “An Investiga-
tion of the Laws of Thought on Which are Founded the Mathematical Theories of Logic
and Probabilities” [Boob4].

This section about propositional logic is primarily based on the second chapter of [BA12].

2.1.1 Syntax and Semantics

In propositional logic, truth values are assigned to statements called atomic propositions.
Therefore they can either be assigned true (t) or false (f). These atomic propositions
(variables) can be used to construct more complex propositional formulae using logical
operators (Boolean operators). The logical operators are the following:

e Conjunction: A

e Disjunction: V

Negation: —

Implication: =

Equivalence: <

Interpretation of a Formula

The truth value of a propositional formula F' can be derived from the truth values of the
atomic propositions that are part of F.

Definition 2.1 (Assignment). Let F' be a propositional formula and VARp be the set of
variables appearing in F. An assignment is a function B : VARp — {t, f} assigning a
truth value to the variables of VARp. The assignment is complete for F' if the function (3
is defined for all variables in VARp. Otherwise it is a partial assignment for F.
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Truth Tables

Truth tables can be used to provide the semantics of a propositional formula by giving a
truth value for every possible assignment. The idea was first shown in [Pos21]. A truth
table with n atomic propositions and one propositional formula consists of n + 1 columns
and 2" rows (each atomic proposition can have the value ¢ or f). Thus, the semantics of
complex formulae using the above mentioned logical operators can be displayed. With p
and ¢ being two atomic propositions, Table shows all possible interpretations of different
formulae.

P d/pAq pVq -p p=q p&q
t ot |t t £t t
t f|f t £ f f
f t|f t t t f
£ off f t t t

Table 2.1: A truth table of different formulae for the five introduced logical operators in
Section The two atomic proposition p and ¢ result in 22 interpretations
(rows).

2.2 The Satisfiability Problem (SAT)

Propositional formulae can be arbitrarily complex by combining atomic propositions using
logical connectives. As such, they can be classified depending on whether it is possible to
find an assignment for which the propositional formula evaluates to true.

Definition 2.2. Let F' be a propositional formula, F is called . ..

e satisfiable if an assignment 5 : VARp — {t, f} exists that lets F' evaluate to true. A
satisfying assignment is called a model for F'.

o unsatisfiable if formula F evaluates to false for all assignments §: VARp — {t, f}.

e walid if every possible assignment § : VARr — {t, f} is a model of F. A valid
propositional formula is called tautology.

e falsifiable if it is not valid. Hence an assignment exists, for which F' evaluates to
false.

The Boolean Satisfiability Problem (SAT) describes the problem that determines the
satisfiability of a propositional formula (Boolean formula). In detail, it assesses whether an
assignment exists that lets the Boolean formula evaluate to true. A concrete SAT problem
is also called SAT instance.

Example 1. A satisfiable SAT instance is given by the propositional formula:

F=({pVgAN(-pVg

F is satisfiable with 8(p) = f and 3(q) = t, leading to the variable assignment B = {-p, ¢}

Example 2. A unsatisfiable SAT instance is given by the propositional formula:

F={(mVvVgaN(pVgAPV-q)A(pV-q)
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All four possible assignments evaluate to false.

Significantly more complex SAT instances are formulated in various domains, for instance
formal verification ([BCRZ99]), planning problems ([EMW97]), scheduling problems but
also within product configuration ([Jan08]). In the following sections, formulation and
solving techniques for SAT problems are elaborated.

2.2.1 Normal Forms

In SAT-problems, Boolean formulae are expressed with literals. A literal is a Boolean
variable (positive literal) or a negation of a Boolean variable (negative literal). A clause is
defined as a disjunction (V) of literals:

c=011Vliy..VI, (2.1)

A positive literal is satisfied if it is assigned with the truth value true, a negative literal if it
is assigned with the truth value false. A positive literal is unsatisfied if it is assigned with
the truth value false, a negative literal if it is assigned with the truth value true. Otherwise,
if a literal has no truth value assigned, it is defined as unassigned.
The Conjunctive Normal Form (CNF) represents a Boolean formula as a conjunction (A)
of clauses:

Fcnf =c1ANca/Acg (2.2)

A clause is satisfied, if at least one of its literals is satisfied. A clause is unsatisfied, if all of
its literals are unsatisfied. Subsequently, the Boolean formula F,; in CNF is satisfied, if
all its clauses are satisfied. In case a clause consists of only one unassigned literal, it is
called a unit clause. Additionally, every formula in propositional logic can be transformed
into CNF ([BA12, p.75]).

In contrast to CNF, the Disjunctive Normal Form (DNF) describes a Boolean formula as a
disjunction of conjunctions of literals (terms):

Fdnf =11 ViaVis (23)

2.2.2 DPLL Algorithm

A naive approach to determine the satisfiability of a Boolean formula F' is to construct a
truth table. Each row represents a possible assignment, thus 2" rows exist with n being the
number of variables in F'. This leads to an exponential number of calculations. Furthermore,
SAT was the first problem proven to be NP-complete [Coo71]. Hence no algorithm exists
that is capable of solving the problem in polynomial time, assuming that P # N P.

Most current state-of-the-art SAT solvers use the DPLL algorithm, introduced by Martin
Davis, Hilary Putnam, George Logemann and Donald Loveland in [DLL62]. The algorithm
is a depth-first search based algorithm with several enhancements. Given a Boolean formula
F,,; in CNF, partial assignments are formed and successively extended by adding literals
during the search. 3 describes the current partial assignment and F, s the remaining set of
clauses. Thus, at the beginning 3 is an empty set and F,, s represents the initial Boolean
formula. At every step of the algorithm, a partial assignment 3 is extended by a literal.
Consequently, F,, s is simplified to a problem that does not contain the literal used for
extension.

A central part of the DPLL algorithm is unit propagation. If Fi,; contains a unit clause
with the literal [, then the unassigned literal [ must be assigned true and is added to
B. Additionally, [ is propagated. Every clause in F,,; containing [ is satisfied and thus
removed from the Boolean formula. Every clause in F,, s that contains =l is simplified by
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removing -l from the clause. This reduction can create new unit clauses with unassigned
literals which are subsequently propagated and added to 8. This cascade stops when no

unit clause is present (cf. [NOTO06]).
Afterwards, one of the following states is reached:

1. The resulting set of clauses in Fg, s is empty (). Therefore, a satisfying assignment (3
has been found. All unassigned propositional variables can be assigned arbitrarily.

2. The resulting set of clauses in Fi,; contains empty clauses (a clause in which all
literals have been falsified). These clauses cannot evaluate to true, thus the entire
Boolean formula cannot be satisfied. The partial assignment leads to a contradiction.

3. To continue, the algorithm requires a new unit clause. This unit clause is formed
by using a decision literal /5. A propositional variable from Fi,; and a respective
truth value is chosen, which is represented by the decision literal ;. Afterwards, two
recursive calls with different parameters are performed. One call uses the parameters
(B, Feng U{la}), the second one (3, Feng U —{lq}). This step can be interpreted as a
branching point within the search tree.

The Pseudocode of the DPLL algorithm is presented in Algorithm [2.1]and Procedure

Algorithm 2.1: DPLL ALGORITHM
Input: partial assignment 3, Boolean Formula F,

if ) € F,,y then
L return UNSAT

else if F,,; = () then
‘ return 3

N =

AW

(911

B, Feng := UNITPROPAGATION(f3, Fipt)
lq := select unassigned variable in Fy, ¢

if DPLL(B, Fonp U {la}) # UNSAT then
| return DPLL(8, Funy U {la})

else if DPLL(B, Fony U {—lq}) # UNSAT then
10 ‘ return DPLL(3, Fo,p U {—lg})

11 else

12 L return UNSAT

(=]

o

©

Procedure 2.2: UnitPropagation

Input: partial assignment 3, Boolean Formula Fi, ¢

1 while unit clause {l} exists in F,,; do
B:=pUl
forall clause ¢ € Fi,,y do

if [ € ¢ then

L remove ¢ from Fi,

ook WN

else if -] € ¢ then
‘ remove 1 from c

N O

8 return 3, F,;

Since the DPLL is essentially a depth-first search of partial assignments, the algorithm
is sound and complete. That means, it always returns the correct answer for all Boolean

10
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formulae. The described enhancements only cause certain paths of the search tree to be
pruned by detecting not satisfying assignments ([NOT06]). The worst-case performance
compared to the naive approach of truth tables remains O(2") with n being the number
of variables, due to exponential growth of nodes in the binary search tree of depth n.
Nevertheless, the average performance is often much better due to techniques such as unit
propagation. Thus, the maximal tree depth is usually smaller than n.

2.2.3 Conflict Driven Clause Learning Solvers

One major improvement of DPLL-based SAT solvers are conflict driven clause learning
(CDCL) solvers. Every time the DPLL algorithm encounters an empty clause, the conflict
is analyzed to derive a clause that can be added to the Boolean formula. The goal is to
learn from a contradiction to avoid repeating it. Hence, the incorporated clauses are called
learned clauses. Additionally, non-chronological backtracking can be used. After a conflict,
an appropriate level to backtrack is derived using the learned clause instead of backtracking
only one level.

The idea of clause learning was first introduced by the GRASP solver in [MSS99]. Subse-
quently, many solvers incorporated the concept and improved it, for instance by the Chaff
solver in [MMZ¥01]. A good description of CDCL solvers is given in [MSLMO09], thus the

following provides only a brief overview of the general concepts.

Due to the recursive nature of the DPLL algorithm, each truth assignment can be associated
with a decision level. Decision level 0 is given by assignments deduced from the input
formula, without selecting a branching variable. Decision level n describes the assignment
implied by the decision in the n-th recursive call of DPLL. Considering a search tree
representation, the n-th decision describes a node on the n-th level. A variable x; is said
to be implied, if it is assigned a truth value by unit propagation after a clause became unit.
This unit clause is called the antecedent of the assignment ([MSLMOQ9]). Thus, decision
and unassigned variables do not have an antecedent.

The relation between assigned variables and their antecedents form a directed acyclic graph
I = (Vi,Er), in referred to as an implication graph. An example is given in the
following.

Example 3. Implication graph with a conflict based on [MSLMO09]. Given is the Boolean
formula with six clauses and eight variables:

me =ciNcaNcg/NegNes A\ceg
= (:Cl Va7V —\xg) A (1’1 V —\xg) A (372 Vx3V a;4) A
(—|CL'4 \ —\a}5) N (1’8 V —xy V _‘1'6) VAN (.%5 V .%‘6) (2.4)

Furthermore, current decision assignments are given with their respective decision level:
xg = f(2), z7 = f(3), and 21 = f(5). These assignments yield a conflict, because clause
(z5 V x6) becomes unsatisfied after unit propagation. The corresponding implication graph
is shown in Figure

The shown implication graph can be used to deduce different learned clauses to prevent
the conflict from appearing again ([MSLMO09]). Considering Example |3/ and Figure
different cuts can be performed, each resulting in a learned clause. For every cut, all
decision variables are on one side of the cut. The goal is to reduce the size of learned
clauses. One concept to find short learned clauses is the usage of Unique Implication Points
(UIPs), shown in [MSS99]. A UIP is a node of the implication graph, such that each path
from the decision variable at the current decision level to the conflict contains that node.
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Figure 2.1: An implication graph based on for Example (3l Numbers in brackets
denote the decision levels. White nodes indicate decision literals. Due to the
decision assignments, the clause (x5 V xg) becomes unsatisfied, resulting in
a conflict. Four different cuts can be performed to deduce different learned
clauses.

One learning strategy is to make the cut at the first UIP. In Figure the first UIP is x4
with the corresponding cut to its right. Therefore, the learned clause (—z4 V xg) can be

derived. This clause is the minimal-length clause that can be deduced from the conflict.
The authors of [ZMMMO01] give in-depth descriptions and algorithms to find UIPs.

2.3 Extensions to SAT: MaxSAT, MinCostSAT

SAT only searches for an assignment that satisfies the Boolean formula. Optimality with
regard to the assignment is not considered. Two approaches that introduce an optimiza-
tion function are the Maximum Satisfiablity Problem (MaxSAT) and the Minimum-Cost
Satisfiability Problem (MinCostSAT). Both problems extend SAT by incorporating a cost
function that evaluates assignments. Thus, they are optimization versions (maximiza-
tion/minimization problem) of SAT.

The better known MaxSAT problem consists in finding an assignment that maximizes the
number of satisfied clauses of a Boolean formula F, s (ILMO09]).Therefore, MaxSAT can be
used for unsatisfiable formulae. Every clause in Fi, s has a weight. A solution is evaluated
by the sum of weights of all satisfied clauses. In pure MaxSAT, all weights are equal. This
is adapted in weighted MaxSAT through the usage of specific weights for individual clauses.

Definition 2.3 (MaxSAT). Let w; ...w, € N> be weights for the clauses c; ...cp. The
evaluation of an assignment for the weighted MaxSAT problem is given by:

(2.5)

Z c is true for assignment — w,,
else —0

CiEFcnf

MinCostSAT on the other hand assigns non-negative costs to each variable to quantify an
assignment. It is formalized in Definition adapted from [L104].

Definition 2.4 (MinCostSAT). A MinCostSAT instance is given by a Boolean formula
Fenp with a set of n variables VARp, each variable xz; € {0,1} having a non-negative cost
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¢; fori € [1,n]. The problem is to find a variable assignment that satisfies F' and minimizes
the costs:

> cimi (2.6)
i=1

Consequently, only variables that are assigned with the value true (x; = 1) increase the
cost of an assignment. The authors of show that the transformation between
MaxSAT and MinCostSAT problems can be performed by adding variables and clauses
to the respective formulae. Since the problems can be transformed, only MinCostSAT is
considered in the following. The focus in this thesis is on instances from the domain of
product configuration which can be best described by using MinCostSAT.

DPLL for MinCostSAT

The introduced DPLL algorithm in Section can be extended to solve the optimization
problem present in MinCostSAT instances. Costs for every variable truth assignment are
accumulated, i.e. during unit propagation. At every branching point a decision variable
is chosen, partial assignments are calculated, and the assignment with the lower costs is
used. The extended DPLL algorithm is shown in Algorithm [2.3|and Procedure It is a
recursive branch-and-bound algorithm, adapted from [FMO06] and [L*04].

Algorithm 2.3: DPLL ALGORITHM FOR MINCOSTSAT

Input: partial assignment 3, Boolean Formula Fi,r, current-costs costs, upper
bound UB

B, Feng, costs :== UNITPROPAGATIONWITHCOSTS(3, Fepg, costs)

if ) € F,,,s | costs > UB then

3 L return

else if F,,y =0 & costs < UB then
UB := costs

6 return 3, costs

[uny

N

o

BN

lq := select unassigned variable in Fy, ¢
B, costsPos := DPLL(S3, Fenp U {14}, UB)
B, costsNeg := DPLL(S, Fepy U {=l4}, UB)

10 if costsPos < costsNeg then
11 L return [, costsPos

© o

12 else
13 L return [, costsNeg

2.4 Parallel SAT-Solvers

The development of parallel SAT algorithms has started in the 1990s (e.g. [ZBH96]). This
section provides an overview of different parallel computing approaches to solve SAT by
utilizing increasingly powerful multi-core computers. Since the improvement of individual
processor core performance has slowed down in recent years, the importance of parallel
algorithms increased ([Wall6]). All presented approaches are based on the DPLL algorithm
discussed in Section 2.2.2. Furthermore, the focus of this work is on multi-core computers
with shared-memory architectures, thus possibilities for computer clusters are not discussed
in detail.
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Procedure 2.4: UnitPropagationWithCosts
Input: partial assignment 3, Boolean Formula Fi, r, current-costs costs

1 while unit clause {l} exists in F,,; do
2 B:=pUl
3 if [ is not negated then
4 L costs += ¢
forall clause ¢ € Fi,,y do
if [ € c then
L remove ¢ from Fp,

else if = [ € ¢ then
‘ remove 1 from ¢

10 return 3, F,, s, costs

Parallel Portfolios

A simple approach to parallelize SAT are parallel portfolios. The general idea is to run a
set of different SAT solvers in parallel on a SAT instance. As soon as one solver finds a
solution, all other solvers are terminated. Thus, for each SAT instance, the best solver of
all available ones is used to find a solution. Roussel describes this simple idea in for
the solver PPfolio, which was used in the 2011 SAT Competition. PPfolio simply combined
the best solvers from the previous SAT competition.

Besides Roussel’s approach, other portfolio compositions are possible. For instance, a
portfolio can be created by using one base SAT solver which is run in parallel using varying
configuration settings. The SAT Solver ManySAT was first to use this portfolio strategy
([HJS10]). In their work, the authors state that the solver exploits the sensitivity of modern
SAT solvers to configuration settings and parameters. This is achieved by running multiple
instances with carefully picked orthogonal settings (cf. [HJS10]). Varied parameters are
used for branching heuristics that select decision variables in the DPLL algorithm, polarity
of decision variables, different restart policies, clause deletion strategies and clause learning
(detailed in [HJS10], [GJLS14], [SKI14]). The goal of this diversification is to perform
well on various SAT instances by minimizing the overlap and thus redundancy of different
solvers in the search space. Many solvers, like ManySAT, use manually crafted sets of
parameters. Additionally, attempts to automate this diversification process have been

studied, for example in [XHLB10].

Due to the success of CDCL solvers, the exchange of learned clauses for parallel portfolio
has been studied as well. The exchange introduces a form of cooperation between the
different solvers, with the objective to further reduce the amount of redundant work. If one
instance learns a clause from a conflict, it is distributed to all other instances to prevent
them from repeating the same conflict. Questions regarding clause sharing for portfolios are:
which clauses should be exchanged, how many of them and at what time. Static strategies
use conditions that clauses have to satisfy to be shared, for instance the number of literals.
The solver ManySAT exchanges clauses with up to 8 literals, derived by experiments with
different lengths. The exchange is performed after every decision, except for learned clauses
of length 1 (unit clauses) which are shared after every restart ([HJS10]). The authors of
state that the size of learned clauses tends to increase during the run, hence
a static policy cannot be optimal. As a solution, they present a dynamic strategy that
adapts the conditions used for learned clauses throughout the search process ([HJPSII]).
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Divide-and-Conquer Approaches

The divide-and-conquer approach splits the search space into several disjunct subproblems.
Within each subproblem, a satisfying assignment is searched which can be performed in
parallel. The main challenge is to find approximately equal sized subproblems to balance
the work among multiple processors. In contrast to the pure portfolio-based approach
which tries to partition the search space implicitly, divide-and-conquer aims to explicitly
split the search space to prevent redundant work.

The process of splitting the search space into subproblems (tasks) is called problem
decomposition (cf. [ZBH96]). Generating subproblems pursues several goals. Firstly,
the processors’ idle times should be minimized. Secondly, the communication overhead
between processors should be low. Thirdly, the search overhead (excess computation)
should be minimized. In many cases, these goals are conflicting and are traded for one
another. The subproblems complexity for DPLL vary strongly and the use of sophisticated
heuristics in modern SAT solvers increases the variance across subproblems. Therefore, a
static way of decomposing the search space (i.e. at the start of the algorithm) is disfavored
against a dynamic decomposition which generates new subproblems during the calculation
for idling processors. The foundation for approaches using dynamic problem decomposition
is shown in the solvers PaSAT ([SBKO01]) as well as GridSAT ([CW03]). Both are based on
the work of [ZBH96], which introduces the idea of guiding paths. A guiding path describes
a path from the root node to the current node (partial assignment). Furthermore, the path
holds information about decision literals and their implication on that path.

Considering the search tree of a DPLL algorithm, subproblems can be described as
branches/guiding paths that are distributed over multiple processors. The granularity of a
subspace can be dynamically adjusted by splitting of a branch as a new task. Each path
can be described by the partial assignment of the current node. To split off a branch, a
decision literal on the path is negated. The frequency as well as the decision level at which
a subproblem is split is used to adjust the amount of work sharing. Shorter guiding paths
correlate to larger portions of the search space ([SLB10]). Thus, at the beginning, only one
task is available, represented by the root node of the search tree. Subsequently, additional
tasks can be split off and assigned to different processors. The parallel computation
finishes, when all tasks have been processed or a solution has been found. This dynamic
problem decomposition can achieve good load balancing, however communication and
search overhead is introduced.

The described dynamic problem decomposition generates many subproblems. These can
be collected in a task pool which can be managed in different ways, mainly centralized or
decentralized.

A centralized task pool, for example used in [CW03] and [SLB10], is a global data structure
(e.g. a queue) holding all subproblems, which can be accessed by all processors. The
data structure can be hold and managed by a master processor, while several worker
processors remove tasks from it when they are idling. Thus, the master processor holds the
responsibility for load balancing, search space splitting and search termination detection
(cf. [CWO03], [SLB10])

In a decentralized model, each processor maintains its own local task pool. A more recent
example is the ySAT solver presented in [FDHO5]. In case a processor’s task pool is empty,
it can request a task from another processor, for instance randomly. Without a master
processor, tasks such as problem decomposition and search termination detection have to
be managed autonomously, which requires special algorithms. A major benefit of the more
complex decentralized model is the scalability with an increasing number of processors,
because no global data structure is used to hold all subproblems. This eliminates a potential
bottleneck.
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Similar to the portfolio-based approach, clause sharing has been studied for divide-and-
conquer strategies. The authors of GridSAT ([CW03]) and PaSAT ([SBKO01]) state that
clause sharing can easily introduce significant communication overhead. Thus, they limit
the exchange to clause lengths of three and ten, respectively. To perform the clause
exchange, different models exist, such as message passing used in GridSAT or a dedicated
clause database used in PaSAT. Since clause learning is not a focus of this work, refer to
for a good overview for clause sharing models.

Cube-and-Conquer Approaches

Cube-and-Conquer is a two-phase approach to solve SAT problems. Firstly, a SAT problem
is partitioned into many subproblems (cubes). Afterwards, the cubes are solved by CDCL
solvers, which can be performed in parallel.

In the first phase, a lookahead solver is used to generate many subformulae from a Boolean
formula. Each subformula represents a node in a search tree which can therefore be seen
as a partial assignment. The use of a lookahead solver has been proposed by Hyvérinen et
al. in [HJN10]. The main point are the lookaheads. Basically, a lookahead uses a variable
which is propagated once for each truth value for a given Boolean formula F,,f. Afterwards,
the difference between the initial formula F,; and the reduced formulae are measured.
The goal is to find a variable that leads to large reduction of the formula F,, . Lookahead
solvers are considered to be good at choosing decision literals at the higher levels in a
search tree, by using more global and expensive heuristics ([HJN10]). The leaf nodes of the
search tree constructed by the lookahead solver can either be conflicts or form cuttoff leafs
that are used in the second phase as cubes for the CDCL solver. Thus, a cube describes a
path from root node to a leaf node. The decision literals on the path can then be used as
unit clauses by the CDCL solver. The decision, whether a node is a cutoff leaf, is performed
by a cutoff heuristic. For instance, methods use a depth parameter D > 0 or a number
of assigned variables at which a branch is cut off and used for phase two ([HKWBI1I]).
However, Heule et al. show that these can be combined as well, for example by using a
product of the two metrics.

In the second phase, all cubes are processed. Each cube is processed by a CDCL solver, by
solving the reduced formula. Therefore, each cube can be seen as a task. All tasks can be
easily computed in parallel, by distributing the cubes over multiple processors. The search
is finished, when one processor found a solution or all cubes have been computed.

Comparison of Parallel SAT Algorithms

Despite the similarities of the three presented strategies, distinction can be drawn when
comparing the search tree. Parallel portfolio, divide-and-conquer, and cube-and-conquer
approaches use different methods to traverse the search tree in parallel. Figure 2.2] visualizes
for every paradigm how two threads process nodes in the search space.

Firstly, the parallel portfolio duplicates the Boolean formula and each solver is limited to
its own search space. Communication between threads is reduced to exchanging learned
clauses. This is visualized in Figure (1) by coloring each node with both colors. This
shows that when the entire search tree needs to be calculated, every solver expands all
nodes. Secondly, divide-and-conquer approaches partition the work space, for instance
by using guiding paths. Thus, portions of the search space are split off and processed by
another core. In Figure (2), the search tree is shared by two threads reflected by the
two node colors. Thirdly, Figure (3) shows the two-phase approach of cube-and-conquer.
The white nodes are expanded in the first phase which performed sequentially using a
lookahead solver. Afterwards, the cubes (leaf nodes of the subtree containing all white
colored nodes) are distributed to the two cores running in parallel. Each core processes its
assigned cube.
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(2) Divide-and-Conquer

(1) Parallel Portfolio (Guiding Path)

(3) Cube-and-Conquer

Figure 2.2: Comparison of complete search trees spanned by different parallel SAT algo-
rithms. The colors gray and cyan indicate different cores run in parallel. White
nodes express states that have been expanded in sequential manner, for instance
in the first phase of the cube-and-conquer paradigm.

Nondeterminism

The introduction of parallel computation can lead to non-deterministic behavior, causing
non-reproducible solutions. Determinism is critical for applications that involve user
interaction, such as the domain of product configuration. In Hamadi et al. identify
clause learning and the learned clauses’ exchange as the main source of non-determinism
for parallel SAT. They designed a fully deterministic parallel portfolio solver, by utilizing
synchronization points at which a processor waits for all other processors to reach the same
point. They use the synchronization points to exchange learned clauses as well as search
determination detection. To reduce the amount of time a processor spends waiting, a
synchronization barrier is not used after every conflict. Static strategies use synchronization
points after a fixed number of conflicts (or other metrics like propagations and decision
literals). A dynamic strategy calculates a processor specific number of conflicts, after which
it has to wait at a barrier. For this calculation, the number of unit propagations performed
by a processor is used as a metric of relative speed. Both methods are described and

evaluated in [HJS11].

2.5 Product Configuration

This Section shows how elements of propositional logic can be applied to the domain of
product configuration. The first Section 2.5.1]introduces the term product configuration and
how product knowledge can be represented. Afterwards, interactive product configuration
from the user’s point of view is described in Section [2.5.2]

2.5.1 Knowledge Representation

Product configurators can be used to customize highly complex and varied products,
which benefit the customer as well as the producer. Major benefits are the reduction of
configuration errors, shortened delivery times for products, increased productivity of sales
personnel and the overall accelerated sales process ([FHBT14]).

Sabin and Weigel define the term configuration process in [SW98]. Accordingly, the
configuration process is a "design activity where the artifact being configured is assembled
from instances of a fixed set of well defined component types which can be composed
conforming to a set of constraints.”. Essentially, a product can be assembled from a
predefined set of component types, given that all constraints are fulfilled. This approach to
product configuration is called knowledge-based, due to the reliance on domain knowledge
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and problem-solving knowledge ([FHBT14]). Various concepts have been proposed to
represent configuration knowledge. An early representation form is called rule-based.
This approach uses a set of IF-THEN expressions (rules) that form the knowledge base
([FW94]). Several downsides of this concept have been pointed out, mainly the problematic
maintenance of such knowledge-bases (e.g. [FW94]). In the following, another approach is
introduced, the constraint-based knowledge representation.

Constraint-Based Knowledge Representation

The general idea of constraint-based models is to define a set of constraints that enclose
all correct solutions. Applied to product configuration, the configuration process solves
a configuration task which can be described as a constraint satisfaction problem. The
objective is to find a configuration that fulfills the artifact’s constraints as well as the
requirements of the user. Therefore, the domain knowledge is defined, in which the object
types (i.e. components and attributes that specify them) and their relations are described.
In [SW9g], different relations are given, such as classification (is-a), aggregation (part-of)
and cardinality constraints. In [FHBT14], component types and constraints are referred to
as the configuration model. According to Felfernig et al., a configuration model is necessary,
because storing all possible configurations would lead to time-consuming searches and
high memory requirements. Finally, the configuration task can be described with the
configuration model and the user requirements which form the input for a configuration
system ([FHBT14]).

A formal definition of a configuration task is shown in Definition adapted from the
work of Falkner, Felfernig and Haag in [FFH11].

Definition 2.5 (Configuration Task). A configuration task is described by the triplet
(V,D,C), where V.= {v1,v2...,v,} is a finite set of domain (feature) variables and
D = {dom(vy),dom(va),...,dom(vy,)} represent the set of corresponding variable domains.
Furthermore, C = PxpUCR represent constraints, with Pxp being the product knowledge
base (configuration model) and Cr a set of user requirements.

The solution to a configuration task is called configuration. Falkner, Felfernig and Haag
define a configuration as an instantiation (assignment) I = {v1 = i1,v3 = i9,...,0p = in},
with each i; being one of the elements of dom(v;). Furthermore, they state the importance
of walid configurations for the user. A configuration is called valid, if it is complete (every
variable is assigned with a value) and consistent with all constraints ([FFH11]). Example
shows a simplified but illustrative configuration task.

Example 4. This configuration task describes a simplified Truck configuration, consisting
of four feature variables (Axles, Transmission, Fuel type, and Color). Furthermore, a
product knowledge base is given that limits the possible combinations of certain attributes.

V = {v; = Azles, ve = Transmission, vs = Fuel type, vy = Color}
D = {dom(Azles) = {2,3,4}
dom(Transmission) = {5-Gear, 6-Gear, 7-Gear},
dom(Fuel type) = {Diesel, Gasoline}
dom(Color) = {Blue, Red, W hite}}
Pxp ={c1: Azles = 2 = Transmission = 5-Gear,
co : Transmission = 7-Gear = Fuel type = Diesel,
cs : Transmission = 5-Gear = Fuel type = Gasoline}

Cr ={cy4: Azxles = 4, c5 : Transmission = 7-Gear, cg : Color : White}
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One possible valid configuration which would be calculated by a configuration system is:

I = {Azles = 4, Transmission = 7-Gear, Fuel type = Diesel, Color = W hite}

To find a solution for a given configuration task, the configuration system can use different
solution search techniques. Janota discusses in [Jan08] whether SAT solvers can be used
effectively in a configuration system (configurator). Janota shows that every configuration
task can be translated into a Boolean formula. Consequently, by solving the Boolean
formula in CNF by using a SAT solver, the initial configuration task is solved as well. Thus,
the usage of SAT solving techniques in Product Configuration is discussed in Section
Regarding the terminology, in this work wvariable and feature are used interchangeably and
describe an atomic characteristic of a product. The term attribute is used for a specification
of a variable. For instance, in Example 4, "Transmission” is a variable with three attributes:
"5-Gear”, 76-Gear”, and "7-Gear”.

2.5.2 Product Configuration from the Users’ View

Establishing a configuration model is central to product configuration. Usually, domain
experts define variables, domains, and constraints that are necessary to model the product
knowledge base. Many configurators support graphical user interfaces to maintain the
configuration model, hence domain experts represent one of the user groups. An example
for graphical modeling in shown in Figure The instance being configured is a simplified
Truck with a set of variables and domains. In this example, the product consists of four
feature variables: Transmission, Axles, Fuel Type, and Color. The respective domains are
shown below the feature variable, for instance the variable Axles has three attributes: 2, 3,
and 4.

W Truck [4]
w (33 Transmissien <Mandatory, Single selection>
L0 53-Gear
L0 B-Gear
L0 T-Gear
w (70 Axles <Mandatory, Single selection>
=2

P 3

w4
w (32 Fuel Type <Mandatory, Single selection=
o Diesel
0 Gaszoline
w (32 Color <Mandatory, Single selection >
. Blue
& Red

0 White

Figure 2.3: Example of modeling feature variable and domains of a simplified Truck us-
ing CAS Configurator Merlin ([CAS20]). The Truck consists of four feature
variables: Transmission, Axles, Fuel Type, and Color. Each variable has a
domain with possible values, called attributes. Additionally, constraints within
a variable can be defined, for instance only one Transmission can (”Single
Selection”) and must ("Mandatory”) be part of a complete configuration.

Generally, attributes cannot be combined arbitrarily. In Figure only one transmission
at a time can be part of a truck and the number of Axles is confined to a specific number.
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This is indicated by the keyword ”Single Selection”. Furthermore, for each variable one
attribute has to be part of the configuration, indicated by the keyword "Mandatory”. The
combination of keywords "Mandatory” and ”Single Selection” result in the cardinality
1..1, exactly one attribute is required. Alternatively, variables can also be ”Optional” and
"Multiple Selection” (0..*). Usually, additional constraints across variables are added as
well. In Example |4, the Transmission ”7-Gear” can only be combined with the Fuel Type
"Diesel”. A graphical representation of such a constraint is shown in Figure Finally, the
modeled configuration model has to be transformed into propositional logic and ultimately
into conjunctive normal form, forming the underlying Boolean formula F,, ;. The formula
contains the set of clauses that must be fulfilled for every configured product variant.

. Transmission - 7-Gear __»\ . Fuel Type - Diesel ‘

Figure 2.4: Example of a graphical constraint between two attributes of different feature

variables using CAS Configurator Merlin ([CAS20]).

The interactive configuration process itself is usually performed on a secondary user-friendly
system targeting sales personnel or end users, forming the second major user group. They
use the configurator to generate a valid configuration that fulfills their requirements and
all constraints of the product knowledge base. During the process, attributes are selected
or deselected step-by-step, meaning that an attribute must or must not be part of the final
configuration. Validity is ensured by the configurator and feedback is returned to the user,
signaling changes and related information. Janota calls this type of feedback ”explanation”
([Jan10]). For instance, he argues that an explanation should be shown when specific
attributes cannot be selected, because prior user choices led to an automatic deselection of
these attributes.

All presented examples used exclusively Boolean variables. However, the configuration
process does not have to be restricted to Boolean variables. Many configurators support
numeric variables, string variables etc. that the user can change. Nonetheless, this thesis is
focused on the configuration of Boolean variables which can be edited by the user.
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The objective of this chapter is to define the problem for which parallel algorithms are
presented in Chapter|4l At first, the interactive configuration process is explained. Secondly,
a custom cost function is introduced to evaluate the quality of assignments generated in the
process. Additionally, several examples are presented to motivate the problem of finding
optimal solutions for configuration steps.

3.1 SAT and Interactive Product Configuration

The introduced term configuration in Section can be interpreted as an assignment
for an underlying Boolean formula F.,y. During the interactive configuration process,
a user selects or deselects attributes step-by-step to add them or remove them from a
configuration. The attributes are translated to corresponding Boolean variables of Fy,,
thus every attribute is also an atomic proposition. A selection expresses that the attribute
must be part of the current configuration. Any selection or deselection can be reverted
throughout the configuration process. Contrary to Falkner, Felfernig and Haag in [FFH11],
a configuration is considered valid if it is consistent with all constraints (C'), but not every
variable (V') needs to be assigned. The user may start with an empty configuration which
is progressing through user selections and deselections until is it complete. With respect to
the underlying Boolean formula, an empty configuration contains every literal as a negative
one. In the following, a user selection or deselection is also called user wish.

During the configuration process, each user wish § causes a configuration step. The step
calculates a new valid configuration (solution) s using an existing assignment /3 (called
start-configuration), by applying the user wish. A start-configuration describes the valid
preexisting assignment for a configuration step. The user wish represents the desired
change that should be applied to the existing configuration. Therefore, a user wish § can
be described as a set of literals. A positive literal | € § shall be added, a negative literal
=l € § shall be removed from the current configuration 5. Accordingly, a configuration
task is defined in the following, adapted from [FFHI1].

Definition 3.1. The interactive configuration task is described by the set:

(Ap, Cp, B,0)

Where A, describes the set of attributes for a product p given its feature variables. The
set of constraints for a specific product is given by C,. The dynamic components are the
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start-configuration 8 and the user wish 0. A solution s is valid if all constraints Cp are
fulfilled and § is part of the solution (6 C s). A walid solution (assignment) s is called
configuration.

Evaluating Assignments: Cost Function

For every configuration step, the configurator ensures validity of the resulting configuration
to prevent invalid user selections. Depending on the constraints, certain user wishes violate
the configuration model which are resolved by the configurator through automatically
selecting or deselecting attributes. To quantify the result of a configuration step, a cost
function is introduced. The costs of the changes resulting from the user wish are calculated
by analyzing the difference between start-configuration 8 and the resulting configuration s,
shown in Equation

_ leB—0
deltaCost(B,s) = % {l ¢ B c(l) € Nao (3.1)

The cost function ¢(l) must be non-negative but can be domain specific. For instance literal
changes from positive to negative can be more expensive to prefer keeping literals that the
user already selected in the configuration process. A change from a positive literal to a
negative one expresses a deselection of an attribute for the user.

Configuration Step: From SAT to MinCostSAT

Each configuration step has two concrete requirements to fulfill.

1. Every configuration step has to apply the user wish d to the start-configuration g3,
expressed as § C s.

2. The resulting configuration s has to be optimal. Hence, there is no other solution s’
that results in lower costs (by applying the function deltaCosts(8,s’)) and introduces
the user wish J to the start-configuration 5.

The second requirement extends the SAT problem by incorporating an optimization problem
of finding the minimal-cost configuration for each step.

To ensure that a user wish ¢ is applied, it is added as a unit clause to the Boolean formula
F,,r. This enforces that an assignment resulting from a configuration step can only be
valid if it contains the requested user wish. This relates to the model in [Jan0§], in which
Janota extends F,,; with user changes to Fc/nf =FAJ.

The problem of calculating a configuration step is comparable to the MinCostSAT (2.4)
problem. The main difference is that positive variables do not inherently increase the
costs. Costs are only accumulated by changes to the start-configuration, independent of
the variable’s truth value. The problem definition can be extended by incorporating the
cost function as follows:

Definition 3.2. The minimal-cost interactive configuration task is described by the set:

(Ap, Cp, B,9,c(l))

Where A, describes the set of attributes for a product p given its feature variables. The
set of constraints for a specific product is given by C,. The dynamic components are the
start-configuration  and the user wish 6. Furthermore, a non-negative cost function c(l)
defines the cost for literal | € A, when attribute | changes with respect to (3.

A solution s is valid if all constraints Cy, are fulfilled and § is part of the solution (§ C s).
An optimal solution s is the minimal-cost assignment with respect to f (> e, c(l), VI & ).
A walid optimal solution s of this task is called configuration.
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3.1. SAT and Interactive Product Configuration

Two cost functions are applied in the following examples, which use the function deltaCost(/3, s)
from Equation

L. caipf(l) =1

2. Ckeep(l) =1 and Ckeep(ﬁl) =10

Example 5. Given are a start-configuration § and a user wish §. Goal of a configuration
step is to find all optimal configurations, quantified by the cost function ¢(1).

Attributes Ap:
{a,b,c,d, e}

Constraints Cp:
(a&b) — ¢
c—d
d—e

In CNF:
Feng=(maV-bVe)A(meVd)A(—dVe)

Cost function:
c(l) = caigs(l)

Start-configuration:
B = {CL, _‘bv ¢, _‘dﬂ _|6}

User wish:
5 = {b}

Valid configurations:
s1 ={a,b,c,d, e}

s9 = {—a, b, ~c, ~d, —e}

Costs of valid configurations:
deltaCosts(B,s1) =4
deltaCosts(f, s2) = 2

Therefore, the configuration s is the optimal solution using the cost function cg;yy.

In Example |5, the simple cost function cg; s is used that evaluates every change to the
start-configuration with the cost of 1. This cost function is simplified to explain the general
idea.

In practical applications the cost functions can be more complex and domain dependent. For
example considering a configuration process, it can be beneficial to deploy a more complex
cost function that weighs changes from positive to negative literals higher. Example [6]
adapts the earlier scenario by using a different cost function (cjeep) that penalized changes
from positive to negative literals by a factor of 10. Thus, attributes set through previous
configuration steps are more valuable to keep than changing negative literals to positive
ones (from the user’s perspective: adding additional attributes to the current assignment).
This illustration shows that the cost function has a strong impact on the resulting solutions
for a configuration step.
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3. Problem definition

Example 6. Given the scenario from Example 5| the cost function has been changed.

c(l) = Creep(l)
/8 - {0/, _‘b7 —C, _‘dv _|€}
6 = {b}
Valid configurations:
s1 ={a,b,c,d, e}
sg = {—a,b, ~c,d, —e}
Costs of valid configurations:

deltaCosts(f,s1) = 4
deltaCosts(B, s2) = 11

Owing to the changed cost function cgeep(l), the configuration s; is the optimal and thus
favorable solution.

Preserving User Selections: Pinned Attributes

Example @ penalizes literal changes from positive to negative by a factor of 10 (cpeep)-
However, the factor is not only applied to user selections, but also to literals that have
been assigned true as a consequence of that selection. For the user, these literals may not
reflect equally important attributes. To further differentiate prior user wishes and other
positive literals, two concepts are discussed in the following.

On the one hand, the cost function can be adapted to reflect the importance of user
selections. For instance, each change of a literal that had been assigned by a user wish,
introduces costs of 20. Therefore, user selection are only reverted (by changing the respec-
tive literal’s polarity) if otherwise many changes would be required. Advantage of this
approach is that a conflict between an earlier user wish and the current user selection can
be resolved by reverting the earlier user selection. Major disadvantage is the complexity
for the user to understand why an earlier change has been reverted. The user may not
know whether a conflict exists or the number of required changes would lead to higher costs.

On the other hand, the concept of pinned attributes can be introduced. Every user selection
0 is pinned (alternatively, the user could select whether it should be pinned or not) which
enforces that the literals added remain in the configuration during subsequent configuration
steps. To remember all pinned selections, the set P is maintained, containing all user wishes
as a set of literals. For any subsequent configuration step, all literals of P are added as
unit clauses, comparable to the user wish itself. In case the next user wish conflicts with a
pinned attribute, an explanation can be shown to the user. Alternatively, the configuration
step can be repeated without the conflicting pinned attribute in P, followed by signaling a
required change in the pinned attributes.

Compared to the first approach, the transparency for the user is increased, because
user selections are not changed unless it is necessary. Disadvantage is that enforcing
pinned attributes can lead to costly configuration steps, due to more changes to the
start-configuration §. Example |7| shows the impact of pinned attributes on the earlier
configuration scenario.
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3.1. SAT and Interactive Product Configuration

Example 7. Given the scenario from Example |5 the cost function has been changed.
Furthermore, the set P contains all literals that reflect previous user selections. Pinned
attributes must be part of the solution, unless a conflict between user wish and literals of
P exist.

C(l) = Ckeep(l)
B8 ={a,—b,—c,—d, —e}
P ={a}
6 ={b}

Valid configurations:
s1 ={a,b,c,d, e}

Costs of the valid configurations:
deltaCosts(f,s1) = 4

The addition of P invalidates the second configuration sy = {—a, b, =¢, =d, —e} in Example
6, due to the negation of a. The only remaining valid solution is s;.

MinCostConf

All previous concepts combined describe the underlying problem for this thesis, called
MinCostConf. Being specialized on the interactive configuration process, an additional
requirement is added. The user can define a limit » on how many solutions should be
returned at the most, given that multiple optimal valid configurations exist. All found
solutions are represented by the set S. Furthermore, this set of solution must be the same
for repetitive configuration steps. Hence, deterministic behavior is required.

A formal definition for MinCostConf is given in Definition [3.3] Essentially, the task is to
find up to r minimal-cost configurations for a configuration step that is triggered by a user
wish. Optimality is quantified by using a cost function that evaluates the changes made to
the current assignment (/) by solution s.

Definition 3.3 (MinCostConf). The minimal-cost interactive configuration task (Min-
CostConf) is described by the set:

(Ap7 Cp7 /67 P7 57 C(l)7 ’I”)

Where A, describes the set of attributes for a product p given its feature variables. The
set of constraints for a specific product is given by C,. The dynamic components are the
start-configuration B, the user wish ¢, and pinned attributes P C A,. Furthermore, a
non-negative cost function c(l) defines the cost for attribute | € Ay, when | changes with
respect to 8. The mazimum amount of returned solutions is limited to r.

A solution s is valid if all constraints Cp are fulfilled and 6 and P are part of the solution
(0 UP C s). An optimal solution s is a minimal-cost assignment with respect to [
(>iesc(l), Y1 ¢ B). A valid optimal solution s of this problem is called configuration, the
set of found solutions is given by S.

The task is to find all configurations. In case more than r configurations exist, the cardinality
of S is limited to r. Repeatedly solving the same task must return the equivalent set S.

Regarding the complexity, MinCostSAT belongs to the class of NP-hard problems (e.g.
L704]). Interpreting MinCostConf as a decision problem, SAT can be reduced to Min-
CostConf. Considering the following CNF:

(aVbVe)A(dVe)
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3. Problem definition

Modeling constraints such that the following CNF results:
(-pVaVbVe)A(-pVdVe)

Starting a configuration process with a start-configuration of {—p, —a, =b, ¢, =d, —e} and
user wish {p}, the SAT problem is solved. Thus, MinCostConf is also NP-hard.
Assuming P # NP, there are no algorithms to solve the problem in polynomial time. In
the next chapter, concepts for algorithms are presented that parallelize the search for this
task using SAT and MinCostSAT techniques.
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4. Concept: Parallel Algorithms for
Product Configuration

This chapter describes the developed concept of a parallel SAT-solver that can be used
effectively in a configurator. This work focuses on processing configuration steps (term
introduced in that a user requests during the configuration process.

This chapter is structured as follows. At first, in Section an overview is given about
the baseline sequential algorithm, A* Search, and how it is applied to DPLL. Secondly,
three different parallel solver approaches are presented. The first strategy is a parallel
version of the introduced A* search, shown in Section 4.2, Afterwards, a Cube-and-Conquer
algorithm is discussed (Section as well as parallel portfolios (Section . Finally,
concepts to ensure reproducibility of the interactive configuration process for the parallel
algorithms are displayed in Section An overview of the presented algorithms is also
given in Figure

Sequential Algorithms Problem Type Parallel Algorithms
DPLL » SAT (2.2)
A* DPLL (4.1) sy *  MinCostSAT (2.3) . r— Paralle] A* DPLL (4.2)
Determinstic Parallel Cube-and-Conquer (4.3)
{A Pinned Attributes
v Start-Configuration ==~ Parallel Portfolio (4.4)
™ MinCostConf (3.1) e Deterministic Extension (4.5)

Figure 4.1: Overview of algorithms for different problem types. The lower half shows
algorithms presented in this chapter.

4.1 Baseline: Sequential A* Search for MinCostConf

Most state-of-the-art SAT-solvers are based on the DPLL algorithm (see Section [2.2.2).
The DPLL algorithm terminates as soon as a valid assignment is found or unsatisfiability
is proven. In product configuration, a MinCostSAT problem can be identified to ensure
that the optimal assignment is returned for every configuration step. The optimality

of an assignment is measured by a cost function. This problem has been extended to
MinCostConf in Chapter
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4. Concept: Parallel Algorithms for Product Configuration

Various tree-search strategies and algorithms can be used to guarantee that the optimal
assignment is found. One tree traversal strategy is called best-first search (BFS). At every
decision point, the node with the best heuristic evaluation is explored first. A* search fulfills
the optimality criteria and is used in many applications, predominantly in travel-routing
systems. The algorithm has been published by Hart, Nilsson and Raphael in [HNR68], as
an extension of Dijkstra’s algorithm ([Dij59]).

The A* algorithm formulates its problem as a weighted directed graph and aims at finding
the minimal cost path from a source node to a goal node. In this process, the algorithm
constructs a search tree and always expands the most promising node. Furthermore, the
A* algorithm holds an OPEN list of nodes that have not been expanded yet. The list is
ordered by the costs accumulated from the root node to the current node and an heuristic
estimation of the cost to reach a goal node. In MinCostConf, the path costs are given
by the costs introduced through propagated literals. A second list, called CLOSED list
contains all nodes that have been expanded. To decide which path to expand, Equation
is minimized over all nodes, where g(n) is the path’s cost from the source node to n,
which is the next node on the path. Additionally, h(n) estimates the cost of extending the
path from node n to the goal node.

f(n) = g(n) + h(n) (4.1)

The heuristic function h(n) differentiates the A* algorithm from Dijkstra’s algorithm.
Often, the heuristic function is admissible, as such it does not overestimate the costs
from node n to the goal node. In case h is an admissible function, then the A* search
using this function is optimal ([HNRG68]). Consequently, utilizing this property allows to
terminate the search as soon as a solution has been found, because the estimated costs of
all other nodes are larger than the actual cost of the found solution. Consequently, the
algorithm belongs to the best-first search algorithms, because it always extends the most
promising path. Additionally, A* is regarded as an efficient algorithm in terms of number
of expanded nodes, for example compared to depth-first search strategies (cf. p.67]
for comparisons on MinCostSAT instances).

A* Search in the DPLL Algorithm

The A* algorithm can be applied to the MinCostConf problem, which is an optimization
problem. The DPLL algorithm constructs a search tree which can be interpreted as a
weighted directed graph, starting from a source node. Every node in the graph represents an
assignment (partial or complete), also called "state”. Every edge serves as a unit propagation
of a decision literal. The edges’ weights are given by the costs of the propagated literals,
thus the weights are non-negative. This leads to a search tree in which the costs can
only increase or remain unchanged with increasing tree depth. Finally, the goal node is
the lowest cost valid assignment. In the domain of product configuration, multiple valid
optimal solutions may exist, that represent potential alternatives for the user to choose
from. Thus, several goal nodes may exist that have to be reached.

To decide which node to expand, every node in the tree is evaluated by the function
f(n) = g(n) + h(n), equivalent to the A* search algorithm. The function g(n) shown in
Equation sums the costs of already assigned literals. The set L,, describes the literals
that are assigned on the path from source node n; to node n;.

As a lower bound for the costs from n to the goal node, the heuristic function h(n) (shown
in Equation is used. It accumulates the costs of all remaining unit clauses in F', that
will result from the chosen literal, because their truth value is already defined but they
have not been propagated yet. Uy, is the set of unit clauses remaining in the node n;.

g(n;) = costs(Ly,) (4.2)
h(n;) = costs(Up,) (4.3)
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4.2. Parallel Divide-and-Conquer

Cost function for Product Configuration

During the A* search, node evaluations are mainly based on the costs of propagated
literals. The general concept of quantifying costs for a configuration change is expressed in
Equation [3.1]in Section[2.5] Essentially, every change with regards to the start-configuration
introduces costs. The start-configuration always describes the configuration prior to the
current user wish. Having selected an attribute, the user wants as few changes to the prior
configuration as possible, thus a cost function is utilized. To prioritize user selections as
well as keeping the cost function comprehensible, the schema shown in Procedure is
used. Hence, a literal change that reflects a removal of a literal (build-out) is ten times
more expensive than an additional literal (build-in). Exceptions are so called ”costless”
variables which do not invoke any additional costs. These are domain-specific, for instance
helper variables to enable specific feature variables to be editable on the user interface. For
every node in the search tree, the costs g(n) can be derived by evaluating all propagated
literals on the path from the source node to the respective node.

Procedure 4.1: literalCost
Input: literal [, start-configuration

BUILD OUT COSTS =10

[uny

2 costs 1= 0

3 if 1 ¢ 8 & 1is not costless then

4 if [ is negated then

5 | | costs:= BUILD_OUT_COSTS
6 else

7 L costs :=1

8 return costs

An example of the A* algorithm search tree is given in Figure The problem is displayed
as a weighted directed graph, in which the weights are derived from the cost function
shown in Procedure The example shows the entire search tree, the A* search algorithm
would not expand all nodes, for instance node ng would not be further expanded to reach
nodes ng and ny, since node no and all subsequent nodes are cheaper and lead to a valid
assignment (ng4).

In subsequent sections, two general approaches are compared. The first class of algorithms
use the space-splitting approach, also known as divide-and-conquer which is presented in
Section and Secondly, an approach based on a parallel portfolio is used, described
in Section

4.2 Parallel Divide-and-Conquer

One popular approach for parallel search is to use the divide-and-conquer paradigm.
During the search, the problem is recursively broken down into subproblems. These
simplified problems can be distributed to different processing units to ensure that no search
space overlapping between cores occur. By finding the solutions for the subproblems, the
overarching problem is solved. Two versions of divide-and-conquer are presented, the first
one is based on a centralized task pool and the second approach decentralizes this task
pool.

4.2.1 Centralized Parallel A* Search

An intuitive solution is to extend the sequential A* algorithm to perform it in a mul-
tithreaded environment. In parallel versions of the centralized A* approach, the single
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w3, =0 wiz =10
AY Y/,

Wy =1 Wo5 =0 Wi =1

Figure 4.2: A* search tree of the DPLL algorithm for the formula
F = (=l V—la Vis) A (I V —ls), start-configuration 8 = {ly, —lo, —l3} and user
wish 6 = {la}. Nodes colored in white display expanded nodes, red nodes
indicate conflicts. The optimal valid assignment is node ng with ¢4 = 1. Costs
are determined by adding all weights along the path from root node ny to ng.

OPEN list is kept (e.g. in [IS86] and [PLK14]). Therefore, k threads work concurrently on
a shared OPEN list. Each thread retrieves nodes from that data structure in order of their
f-values, expands them, and inserts successors of explored nodes (states) into the OPEN
list.

The authors of state that re-expansions of nodes (contrary to the sequential algo-
rithm) are possible, because a state may not have the optimal g-value when taken from
the list and being expanded. For instance, a node that was taken second may have been
updated in the sequential algorithm by processing the first node. This issue of re-expansions
is not applicable to the DPLL algorithm, since nodes in the search tree are only reached
by one specific path. This property leads to two improvements. Firstly the g-value of a
node cannot be updated by processing another node first. Secondly, duplicate detection of
states is not required, because only one path leads to every state, thus two threads cannot
arrive at the same state. Therefore, when using parallel A* search for the DPLL algorithm,
the CLOSED list is not required.

Nevertheless, the concurrent work can lead to search overhead by expanding suboptimal
nodes that would not have been expanded by a sequential version of A*. Besides search
overhead, expanding nodes in parallel easily leads to nondeterministic behavior. This
critical problem as well as solutions are discussed thoroughly in Section

In a multithreaded environment, a coordination mechanism for all threads is required. An
overview of the used thread management is shown in Figure It follows the Master-
Worker paradigm, with a single master thread and a set of worker threads. The latter
can scale from 1 to k threads. The master maintains a overview of the procedure, while
the workers process tasks in parallel. The master initializes the MinCostConf instance
resulting in the root node and dispatches the k threads to start processing. Subsequently
the workers remove nodes from the OPEN list, which is implemented as a priority queue.
The highest priority is given to the node having the lowest cost estimation (f-value). Each
task consists of the unit propagation of a decision literal (except for the root node) and
resulting unit clauses. Communication between threads is performed by using shared data,
e.g. for thread state information and all currently known optimal solutions. Access to the
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lhput | T/ |

Worker Thread 1

dispatches & checks Worker Thread 2

Worker Thread 3

<—processj

initializes & checks

|

OPEN list

Figure 4.3: An explanatory thread overview of the centralized parallel A* approach using
a single master thread and three worker threads (Master-Worker paradigm).
All threads are accessing one central OPEN list, using a shared-memory archi-
tecture.

shared data is required for workers as well as for the master. Workers need to know the
current optimal solutions to decide whether their task (node) needs to be processed or can
be skipped.

While all workers are processing nodes, the master checks whether the OPEN list is empty,
because an empty list indicates that the search is finished. Additionally, the master checks
the state of all worker threads by accessing shared data, to decide whether the search can
be terminated or not, for instance in case the optimal solution has been found already. A
detailed description of the responsibilities is given in the following.

Master Thread

The master thread’s responsibility is to prepare all required data for the DPLL algorithm,
to initialize all worker threads, and to continuously check the search termination criteria to
minimize the computation time. Finally the master thread returns all found optimal valid
configurations.

In Algorithm 4.2 the logic is presented. Initially, the shared variables searchFinished
and minCost are initialized. The variable minCost defines the minimum cost of currently
known solutions (upper bound). Furthermore, all literals of the user wish § are added
as unit clauses to the Boolean formula F. To manage the OPEN list used in A* search,
a priority queue @ is initialized and the root node is inserted with the f-value (cost
estimation) of 0.

Secondly, all k& worker threads are initialized and started to process the nodes on @ (line
6-8). At first, each thread-waiting-sate is set to false. Array TW S holds information of the
waiting states of all worker threads, whether a thread is currently processing a node or
awaiting a task. This information is shared with the master thread and is continuously
updated by each worker thread to signal its internal state. Moreover, the shared array
running-thread-costs RT'C holds information about the cost of the node that each worker
thread is currently processing. The costs of a node consists of the cost of current literal
changes with respect to the start-configuration (g-value) as well as the estimation of the
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Algorithm 4.2: PARALLEL CENTRALIZED A* - MASTER THREAD
Input: Start-configuration 3, user wish 9§, thread count k, requested solutions 7,
source node n
Data: Clauses F, Priority queue Q, array of thread waiting states TWS, array of
costs for each thread RTC, integer minCost, Boolean searchFinished
Output: Set of configurations S

searchFinished := false
minCost := oo
forall literal € § do
L add literal as unit clause to F

Q.INSERT(n, 0)

for ¢ := 0; i < k; i++ do
t;.PROCESS(F', 3, Q, TWS, RTC, S, minCost, searchFinished, 7)
TWSJi] := false

AR W N =

®w I o«

9 while searchFinished = false do
10 Lock TWS
11 for ¢ := 0; i < k; i++ do

12 if TWS[i] = false then
13 L break
14 allThreadsWaiting := true

15 Unlock TWS

16 Lock Q, RTC
17 if Q is empty & allThreads Waiting = true then

18 L searchFinished:= true

19 else

20 headHigherCosts := Q.PEEK().cOSTS() > minCost

21 headEqualCosts := Q.PEEK().COSTS() > minCost

22 threadsHigherCosts := min value in RTC > minCost

23 threadsEqualCosts := min value in RTC > minCost

24 if |S| >=1r & headEqualCosts = true & threadsEqualCosts = true then
25 L searchFinished:= true

26 else if headHigherCosts = true & threadsHigherCosts = true then

27 ‘ searchFinished:= true

28 | Unlock Q, RTC

29 return S

admissible heuristic function h.

Finally, the master thread’s main responsibility is to periodically test all termination
criteria, to abort the search as early as possible with the goal of reducing computation time.
Two distinct termination conditions are used. On the one hand, the search can be stopped
in case all nodes are processed. Thus, the priority queue Q) is empty and all k£ threads are
waiting for new nodes to expand which is reflected by all waiting states being set to true
in the array TW.S. On the other hand, the search can be aborted, if all nodes that have
not been explored yet are more expensive, i.e. their f-value is higher than the cost of the
known optimal solutions. Additionally, in case the requested amount of optimal solutions
(r) has been found, the configurations can be returned early given that all other nodes are
of equal or greater cost. Both cost criteria are tested by analyzing the head of the priority
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queue @ and checking the running-thread-costs via the array RT'C' (line 20-27). Both, the
master thread and worker threads utilize locking mechanism to access shared variables,
such as the priority queue Q, TW S etc. Strategies concerning the locking behavior are
discussed in detail in a following paragraph.

Worker Thread

A worker thread is responsible for processing nodes within the search tree span by the
DPLL algorithm. Pseudocode in Algorithm shows the processing logic of nodes for
a worker thread. All k worker threads are initialized by the master thread with access
to shared variables and is assigned an unique thread identifier t. The shared variable
encompass all clauses F', the start-configuration 3, priority queue () with all nodes, data
structures for the termination criteria TW.S and RT'C, the result set of all configuration S
and the currently known minimum cost value of all solutions minCost.

Being initialized, each thread starts to expand nodes in parallel until the search is finished,
reflected by the Boolean variable searchFinished. In the course of that, a worker thread
removes the minimum cost node of the priority queue Q). If Q) is empty, the worker thread
changes its waiting state to true (line 6) and skips the current iteration of the loop (line 8).
Otherwise, the thread registers the node’s current costs (f-value) in the array RT'C and
updates its waiting state to false (line 10-12). In this phase, only one thread at a time has
access to the priority queue ), which is ensured by locking mechanisms.

After successfully obtaining a node, the procedure GetSuccessors is executed which
performs unit propagation to generate up to two child nodes. All successors of N are
analyzed in line 14 to 26. In case a node represents a valid configuration that is at most as
expensive as a currently known solution, it is added to the set of shared configurations
(solutions) S. Furthermore, if the node’s costs are lower than all present solutions, already
found ones are removed before inserting the current node and the shared variable minCost
is updated to reflect the new optimum. Thus, S always contains the solutions with currently
known lowest cost. Alternatively, a node n’ can represent a conflict which is analyzed, for
instance to derive a learned clause. Otherwise, two nodes are created by adding a decision
literal which represents a branching point in the search tree. The two nodes are inserted
into @ with their current f-value as their priority. Afterwards, the worker thread t resets
its running-thread-costs in the shared array RT'C to signal that the loop has been finished.

The generation of successor nodes is detailed in Procedure and During processing,
unit propagation of the decision literal (unless it is the root node, because it does not have
a decision literal) as well as all literals of resulting unit clauses are performed. During the
propagation, three different results can be reached:

1. F contains an empty clause, the node represents a contradiction and can be used to
analyze the conflict.

2. The set of clauses F' is empty, a valid configuration has been found. The set of
changed literals with regards to the start-configuration describe the delta and can be
used to derive a new configuration/solution.

3. All unit clauses have been processed but the node does not represent a valid con-
figuration. A new decision literal has to be chosen by using a branching heuristic.
Afterwards, two new nodes are created, one with the positive and one with the
negative decision literal.

During each unit propagation, the costs of the propagated literal are added to the variable
costs, by analyzing the start-configuration to determine whether the literal has changed
its truth value with respect to it. Additionally, propagated literals are kept in the set
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Algorithm 4.3: PARALLEL CENTRALIZED A* - THREAD PROCESS
Input: Clauses F', start-configuration 8, Priority queue Q, array of thread
waiting states TWS, array of costs for each thread RTC, set of optimal
valid configurations S, integer minCost, Boolean searchFinished, thread
identifier t

1 while searchFinished = false do
2 Lock Q, TWS, RTC

3 n := Q.POLL()

4 Unlock Q

5 if n = null then

6 TWSJt] := true

7 Unlock TWS, RTC

8 Continue

9 else

10 TWS[t] := false

11 RTC[¢] := n.cosTs()
12 Unlock TWS, RTC

13 N := n.GETSUCESSORS(F’, f3)
14 forall n” € N do

15 nodeCost := n’.cosTs()

16 if n’ is valid configuration & nodeCost < minCost then
17 Lock S

18 if nodeCost < minCost then
19 minCost:= nodeCost

20 L S:=10

21 S.INSERT(n’)

22 Unlock S

23 else if n’ is a contradiction then
24 | n’ANALYZECONFLICT()

25 else if nodeCost < minCost then
26 Lock Q

27 Q.INSERT(n’, nodeCost)

28 Unlock Q

29 | RTC[t] =0

propagatedLiterals to derive the resulting solutions, by comparing them to the start-
configuration. The cost function for a literal (line 5) is shown in Procedure

Synchronization Mechanisms and Data Structures

In parallel search with multiple threads, data has to be shared across processing units.
Accessing and operating on shared variables can easily lead to consistency errors and
interference problems.

Memory consistency errors occur whenever two or more threads do not share a common
view of a resource. In case one thread updates a variable and this update is not propagated
to all other threads, the view on that data becomes inconsistent. Consequently, if a thread
reads the non-updated data, a memory consistency error arises. Therefore, each thread
has to ensure that accessed data is up-to-date, for example by reading from main memory
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Procedure 4.4: GetSuccessors
Input: Clauses F', start-configuration g
Data: decision literal lgecision, Set of propagated literals propagatedLiterals,
aggregated costs of node costs
Output: list of successors N
1 N:=90
2 F':=FU {ldecision}

3 F, propagatedLiterals, costs:= UNITPROPAGATION(F, propagatedLiterals, costs)

4 if ) € F then
L return contradiction

6 else if I' = () then
‘ return configuration with propagatedLiterals

8 lgecision := choose unassigned literal [ in F
9 n1 := new state with lgecision, PropagatedLiterals, costs
10 ng := new state with —lgeeision, PropagatedLiterals, costs

11 N.ADD(n1, ng)
12 return N

Procedure 4.5: UnitPropagation

Input: Boolean Formula F', propagatedLiterals, costs

1 while F' contains unit clause {l}} do
propagatedLiterals.INSERT (1)
costs + = LITERALCOST(/, S)
forall clause ¢ € F do
if [ € c then
L remove ¢ from F

o Gk~ W N

else if - [ € ¢ then
‘ remove 1 from c

®

9 return F', propagatedLiterals, costs

instead of temporary caches.

Interference problems can be, for example, described by race conditions between two
threads. They occur if threads simultaneously try to read and write a shared variable.
In most programming languages, operations like ”increment” are not atomic. An atomic
operation performs a task without the possibility of interference from other operations. One
strategy to perform atomic operation is called compare-and-swap (CAS). This operation
compares the current value with an expected value and only updates the current value
if it matches the expected value. This is a form of optimistic locking. Thus, in case two
threads try to update a value simultaneously, only one will succeed. The failing thread has
to handle the scenario and decide whether to try again or continue its work.

An alternative to optimistic locking in form of atomic operations is pessimistic locking. It is
performed by using synchronization mechanisms which ensure that only one thread enters
a critical code section or accesses a resource at a time ([Jon07]). Locks are one mechanism
which enforce mutual exclusion to prevent race conditions. Utilizing this mechanism, a
thread that tries to access specific data has to first acquire a lock. After a thread has
finished its operation, the lock is released to let another thread acquire it. In case a thread
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is not allowed to acquire the lock, different waiting techniques can be applied. A thread
can be blocked, using a so called spinlock, until the lock is released. Alternatively it can
be re-scheduled by the operating system. The former is efficient whenever threads are
only blocked for short periods of time. Using locks introduces a source of overhead, due to
memory allocation, time that threads spent waiting, acquiring locks, and releasing locks.
Regarding this synchronization overhead, it is important to consider the granularity of a
lock. The granularity describes the amount of data covered by the lock ([GLP75]).

Coarse-grained locking uses relatively few locks (in an extreme case only one lock to protect
all shared data). This leads to higher lock contention (threads waiting to access the data)
but less lock overhead (fewer acquire and release operations). With increasing thread
count, lock contention becomes more severe. Fine-grained locking utilizes multiple locks, in
which each lock protects a smaller section of data. This increases the lock overhead but
decreases lock contention. Consequently, the granularity has to be balanced to limit the

overall added overhead ([GLPT75]).

The centralized parallel A* approach, displayed in Algorithm and uses two shared
primitive variables, the Boolean searchFinished and the integer minCost. Especially
the latter is updated several times during a configuration step, because many suboptimal
solutions may be found during the parallel search process. Thus, multiple threads try to
retrieve and update the value of this variable simultaneously. To avoid memory inconsistency,
all updates to these variables use optimistic locking in form of atomic CAS instructions.
Moreover, several complex data structures are utilized. The most central data structure
is the priority queue @, representing the OPEN list by maintaining all nodes that may
be expanded during the tree search. It is based on a binary heap and uses locks as a
synchronization mechanism to allow parallel work of k£ threads on a single queue. An
increasing number of threads (k) can result in high lock contention on ). However, the
assumption is that the number of operations on @ is relatively low in the domain of product
configuration, due to solving smaller problem instances. Moreover, the node expansion
is expensive, because it involves performing compute-intensive unit propagation which
further limits the lock contention. For performing search termination detection, the two
arrays thread-waiting states (TWS) and running-thread-costs (RT'C) are used. Both
enforce locking mechanisms to restrict concurrent thread access, for instance of the master
thread and worker threads. While a worker thread retrieves a node from @, the master
thread has to wait until the worker thread has updated its waiting state as well as running
costs (Algorithm line 2-12). Otherwise the queue might be empty by removing the
last node and the thread waiting state may still be set to true, due to a preceding failed
removal attempt (Algorithm line 6-8). This leads to the master thread terminating the
search early (Algorithm line 17-18). All mentioned locking mechanism are fine-grained,
because each lock protects a small section of data, in particular single data structures like
Q, TWS, and RTC.

Lastly, the set S holds all found valid optimal configurations. The number of requested
and found solutions is usually rather small (< 10). Accordingly, the load for that data
structure is low which allows for synchronized write mutation operations without causing
a bottleneck. Reading operations are performed without synchronization, hence multiple
threads can read S concurrently. The described locking techniques are also applied in all
other approaches discussed in the following sections.

4.2.2 Decentralized Parallel A* Search

The centralized parallel A* search uses a single OPEN list for all & threads. Concurrent
access to this list can become a bottleneck, especially for larger thread pools. For problem
domains that generate and process many nodes, a centralized parallel A* search algorithm
can perform worse than its sequential version [BLRZI10]. To assess and evaluate the
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centralized approach in the domain of product configuration, a second algorithm based
on a decentralized parallel A* search is presented. The objective is to addresses the main
bottleneck, by reducing the lock contention on the OPEN list which is the most central
data structure.

In a decentralized parallel A* search, each thread maintains its own local OPEN list
to perform the search. Initially, the root node is assembled and processed by a thread.
Subsequently generated nodes are distributed among all threads to achieve good load-
balancing with low idle time. Especially the load balancing strategy is a deciding factor for
computation time, thus many different ideas have been developed.

Kumar, Ramesh, and, Rao were among the first to utilize a ”distributed strategy” in
[KRR8§|. Their approach generates an initial amount of nodes and distributes them to all
OPEN lists. The different threads expand the nodes in parallel. To avoid threads working
on suboptimal parts of the search tree, since the thread is limited to its own OPEN list,
they introduced a communication strategy to share nodes. The goal is to have all threads
working on promising sections of the search space. The communication to distribute newly
spawned nodes is performed by choosing another thread randomly and inserting the node
to the target’s local OPEN list.

Another frequently used strategy is called hash-based work distribution. This technique
uses a hash function to determine the thread which has to process a new node. The
objective is to achieve efficient load-balancing and duplicate detection, because each node
is assigned to exactly one thread. The idea was introduced by Evett et al. in [EHMN95].
Further work on efficient hash functions, which are predominantly domain specific, led to
the ”Abstract Zobrist hash function” presented in [JF16]. For each node, representing a
state in the search space, an abstract hash is calculated by ignoring some features. Using
an abstract hash function, a search space is split up into partitions which can be assigned
to unique threads. This strategy is particularly useful in distributed memory architectures
that introduce high communication overhead.

To apply the decentralized parallel A* search to DPLL, each of the k threads maintains
a local priority queue as an OPEN list. Moreover, a distribution strategy is required to
attain good load balancing. Besides additional priority queues, the overall coordination
mechanism is similar to the presented centralized parallel A* search. Therefore, a master
thread and k worker threads are used. In the following, the responsibilities of the different
threads are explained. Being a variation of parallel A* search, only key differences to the
centralized approach are elaborated.

Master Thread

The master thread’s function is the search initialization and termination detection. Being
an extension of the centralized A* search algorithm, only a few changes have been made
for the master thread’s logic, shown in Algorithm (4.6 Due to the distributed strategy
using £ OPEN lists, () represents an array of priority queues, one for each thread. For
initialization, the root node is inserted into the queue of the first thread (line 5). Successive
nodes are distributed by the worker threads.

Having multiple OPEN lists changes the search termination detection. First criteria tests
whether all queues in ) are empty and all threads are on a waiting state (line 17). Second
criteria tests whether all remaining nodes in all OPEN lists of () and RT'C' are more
expensive or at least equal-cost and 7 solutions have been found (line 20-27). Thus, the
search termination detection is more complex, to accommodate the increased number of
priority queues.
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Algorithm 4.6: PARALLEL DECENTRALIZED A* - MASTER THREAD

AR W N =

®w I &«

9
10
11
12
13

14

15

16
17
18

19
20
21
22
23

24
25

26
27

28

Input: Start-configuration 3, user wish 9§, thread count k, requested solutions 7,
source node n

Data: Clauses F', array of Priority queues Q, array of thread waiting states TWS,
array of costs for each thread RTC, integer minCost

Output: Set of optimal valid configurations S

searchFinished := false

minCost := 00

forall literal € § do

L add literal as unit clause to F

Q[0].INSERT(n, 0)

for ¢ := 0; i < k; i++ do
t;.PROCESS(F, 8, Q, TWS, RTC, S, minCost, )
TWSJi] := false

while searchFinished = false do
Lock TWS
for ¢ := 0; i < k; i++ do

if TWS[i] = false then
L break
allThreadsWaiting := true
Unlock TWS
Lock Q, RTC

if all queues in Q are empty & allThreads Waiting = true then
L searchFinished:= true

else

headHigherCosts := Q[¢].PEEK().cOSTS() > minCost Vi ...k
headEqualCosts := Q[i].PEEK().cOsTS() > minCost Vi ...k
threadsHigherCosts := min value in RTC > minCost
threadsEqualCosts := min value in RTC > minCost

if |S| >=1r & headEqualCosts = true & threadsEqualCosts = true then
L searchFinished:= true

else if headHigherCosts = true & threadsHigherCosts = true then
‘ searchFinished:= true

B Unlock Q, RTC

29 return S

Worker Thread

In a decentralized approach, displayed in the worker thread only processes nodes from
its local task pool to reduce lock contention (line 3). Processing a node and in particular the
function GetSuccessors follows the same logic as shown in Algorithm and Procedure

4.4l

One major difference between the centralized and decentralized strategy is the handling of
successor nodes. Centralized parallel A* search inserts all successor node into a shared
OPEN list. During the decentralized search, every successor node is assigned to one
specific thread, determined by the function DetermineT hreadT oShare (line 24). Different
distribution techniques are viable, such as random, round-robin, and hash-based task
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Figure 4.4: Search tree span by using parallel A* search. The colors gray and cyan indicate
different threads run in parallel.

sharing. In round-robin distribution, each thread uses a specific order to share tasks, for
instance by repeatedly iterating the list of threads from top to bottom. Random and
round-robin distribution are very simple mechanisms to achieve efficient load-balancing
by distributing tasks uniformly among all threads. Hash-based distribution has been used
lately across various domains, due to lowered communication overhead and its ability to
perform duplicate detection by assigning each node to a unique thread. The latter is not
applicable in the DPLL algorithm, since nodes can only be reached by a unique path,
making duplicate detection obsolete.

These distribution mechanisms differ from the work stealing strategy, because nodes are
distributed after their generation. In contrast, work stealing lets threads steal nodes from
other threads, usually performed when their task pool is empty. This would not fulfill the
goal of having all threads working on good parts of the search space, because each thread
would only request new nodes when the local OPEN list is empty. Sharing newly generated
nodes leads to more threads working on good parts of the search tree, since newly generated
nodes are always children of previously locally optimal nodes. This property is ensured by
using priority queues for the OPEN list, in which highest priority states have the lowest
cost estimations.

Comparison of Centralized and Decentralized Parallel A* Search

Considering the search tree span by the parallel A* algorithm, both approaches are similar.
Figure shows a search tree span by using two different threads, comparable to where
different parallel SAT algorithms are visualized. The figure shows that the search tree is
similar to the presented divide-and-conquer paradigm using guiding paths. A difference is
noticeable in the granularity, parallel A* shares single nodes while guiding paths split off
longer paths.

Comparing properties of the decentralized and centralized parallel A*, the main advantage
of the former is the reduced lock contention on the shared OPEN list. With increasing
number of threads, the contention on the central data structure surges (synchronization
overhead). Hence, the decentralized parallel A* search has potential to scale better with
more processing units.

However, distributing nodes across multiple OPEN lists brings disadvantages as well.
Firstly, communication overhead is increased, because nodes are exchanged across threads
to reduce idle time and the number of suboptimal nodes expanded. Even though this thesis
primarily considers shared-memory environments, effort is introduced by moving nodes
between OPEN lists and consequently threads. Secondly, search overhead is increased
compared to the centralized approach. In general, it can be measured by comparing the
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Algorithm 4.7: PARALLEL DECENTRALIZED A* - THREAD PROCESS
Input: Clauses F', start-configuration 3, array of Priority queues Q, array of
thread waiting states TWS, array of costs for each thread RTC, set of

optimal valid configurations S, integer minCost, threadld t

1 while searchFinished = false do
2 Lock Q[t], TWS, RTC

3 n = Q[¢].poLL()

4 | Unlock Q[]

5 if n = null then

6 TWS[t] := true

7 Unlock TWS, RTC

8 Continue

9 else

10 TWS[t] := false

11 RTC[¢] := n.cosTs()
12 Unlock TWS, RTC

13 N := n.GETSUCESSORS(F', 3)
14 forall n” € N do

15 nodeCost := n’.cosTs()

16 if n’ is valid configuration & nodeCost < minCost then
17 Lock S

18 if nodeCost < minCost then

19 minCost:= nodeCost

20 L S:=90

21 S.INSERT(n’)

22 Unlock S

23 else if n’ is a contradiction then

24 \ 1’ ANALYZECONFLICT( )

25 else if nodeCost < minCost then

26 i := DETERMINETHREADTOSHARE()
27 Lock Q7]

28 Q[¢].INSERT(n’, nodeCost)

29 Unlock Q[7]

30 | RTC[t]:=0

expanded nodes in parallel to the number of its sequential implementation. Reason for this
growth is that threads potentially work on suboptimal parts of the search tree while waiting
for more promising nodes from other threads. In a centralized A* search, all threads work
on one data structure, thus promising nodes are expanded first and threads often work on
similar sections of the search tree.

In many cases, the mentioned overheads are interdependent. Reducing one overhead usually
increases another one. Therefore, advantageous and disadvantageous properties of the
centralized and decentralized parallel A* must be compared for different problems, in
this case SAT instances. The harder the SAT instance is, for instance measured by the
size of the spanned search tree, the larger becomes the synchronization overhead of the
centralized A* approach. Theoretical problems like random SAT tend to be more complex
while MinCostConf instances generated by an interactive configuration process are simpler.
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An extensive analysis and benchmark of the two concepts is shown in Chapter [5], using
different theoretical problems as well as industry cases.

4.3 Parallel Cube-and-Conquer

An introduction into Cube-and-Conquer (C&C) algorithms is presented in Section [2.4]
Summarized, it is a two-step approach to solve the SAT instances. First, the problem is
divided into subproblems (cubes) which are subsequently solved in parallel. Regarding
thread management, the Master-Worker paradigm is used, comparable to previous parallel
A* search algorithms. The master thread is entirely responsible for the first phase, thus
generating the desired amount of cubes. Afterwards, the master distributes the cubes
among all k available worker threads which process them in parallel. A detailed description
of C&C using master and worker threads is given in the following paragraphs.

Master Thread

The pseudocode in Algorithm shows how the master process works. At first, the user
wish § is applied to the Boolean formula F' containing all clauses, to ensure that the
solutions incorporate the user requirements (line 3-4). Then priority queue @ is initialized
with the root node and cubes are generated by the procedure CreateCubes (line 5-6).
In case that the problem has been solved during the sequential generation of cubes, all
optimal valid configurations S are returned (line 7-8). Otherwise, the set of subproblems
are distributed uniformly among all k threads, by preparing a list of cubes for each thread
(loop 9-11). Consequently, all worker threads are initialized and start to process the work
units (loop 12-14). While the worker threads are busy, the master thread is idling until all
workers finished their assigned cubes. Search termination detection to ensure optimality
is not performed by the master, but solely by the workers through assessments whether
a cube can be skipped or aborted. This approach is in stark contrast with the parallel
A* search algorithms presented in Section Nevertheless, other search termination
criteria can be added, for instance limiting the amount of time after which the search is
aborted (timeout). Eventually, the found configurations S are returned.

A crucial factor for effectively partitioning the search space is the cutoff heuristic, responsible
for determining the optimal amount of generated cubes. Various strategies are explained in
HKWB11], all sharing the objective to have equally complex subproblems that combined
can be solved at least as quickly as the original problem. For this work, a rather simple
cutoff heuristic is incorporated. Due to using a best-first search to generate cubes, a
priority queue ) holds all current nodes that may be expanded. The cutoff b describes the
maximum number of nodes in (). After exceeding b, the first phase is stopped and nodes
in @) represent the cubes. Therefore, it is dependent on the amount of branches performed
and nodes refuted. For example, with b = 100, the first phase generates 100 cubes that are
consequently distributed in the second phase. In case the set of optimal solutions is found
during the first phase, the second phase is not performed.

CreateCubes, shown in Procedure sequentially generates a set of subproblems. Each
subproblem represents a node (cutoff leaf) in the search tree. Therefore, a cube is a
partial assignment with a set of literals assumed to be true. All cubes combined cover all
subproblems of the Boolean formula. The generation of cubes is also performed in best-first
search, comparable to previous approaches.

During the calculation, the priority queue’s size is periodically checked to create at most
b nodes (line 3). In each loop, a node is removed from @ and processed by calling the
procedure getSuccessors shown in Procedure Afterwards, every child node is analyzed,
whether it is a valid solution, a conflict or a branching point in the tree (line 6-14). Since
the cube generation is performed sequentially in best-first search, any found configuration
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cannot be suboptimal and is added to S. Thus, a new solution cannot be of lower cost
than any previous one and S can only be expanded.

This property is also important for the search termination detection on line 15-19, showing
three criteria. Firstly, the search is aborted if the queue is empty. Secondly, if r solutions
have been found, the search can be stopped because these configurations are optimal due to
the sequential and deterministic processing. Thirdly, the head of priority queue @) is more
expensive than the currently known minimum cost solution, hence all contained nodes are
suboptimal.

Algorithm 4.8: PARALLEL CUBE & CONQUER - MASTER THREAD
Input: Start-configuration [, user wish §, thread count k, requested solutions 7,
source node n, generation cutoff b
Data: Clauses F', Priority queue Q, array of lists cubesPerThread, integer minCost
Output: Set of optimal valid configurations S

searchFinished := false
minCost := oo
forall literal € 6 do
L add literal as unit clause to F

AR W N =

o

Q.INSERT(n, 0)
6 searchFinished, S, Q:= cREATECUBES(F, 3, Q, r, b, S)

// solution may already be found during sequential search
7 if searchFinished then
8 L return S

// distribute cubes
9 for i := 0; i < length of queue Q; i++ do
10 threadld := 1 % k
11 cubesPerThread [threadld].ADD(Q.POLL())

~

/ start parallel processing with k threads
12 for i ;= 0; i < k; i++ do

13 cubes; := cubesPerThread [i]

14 t;.PROCESS(F', 3, cubes;, S, minCost, 7)

15 wait for all threads to finish
16 return S

Worker Thread

The pseudocode for processing predefined cubes is shown in Algorithm [4.10]which is executed
by multiple threads in parallel. Each worker thread is assigned a list of subproblems, ”cubes”,
that have to be processed (loop 3). For each cube, a local priority queue @ is initialized
with the cube, a partial assignment, as the root node (line 2-3). Subsequently, a best-first
search is executed for the current cube (line 4-19), constructing a sub-tree of the original
search space. Thus, nodes are removed from the priority queue iteratively and successor
nodes are generated by the procedure getSuccessors (shown in Procedure . Essentially,
unit propagation and the choice process for the next decision literal ljecision is performed,
resulting in up to two child nodes, one for each truth value of lgecision- The handling
of a successor node, shown on lines 7-17, corresponds to the previous parallel A* search
algorithms. In essence, covering the three possible outcomes: a valid currently optimal
configuration, a conflicting assignment or a branching point. Furthermore, to reduce search
overhead, cube termination detection is performed (line 18-19). On condition that the

42



4.3. Parallel Cube-and-Conquer

Procedure 4.9: CreateCubes
Input: Clauses F', start-configuration 5, Priority queue Q, requested solutions r,
cutoff b, set of optimal valid configurations S
Output: set of optimal valid configurations S, priority queue Q

1 minCost := oo
2 searchFinished:= false

3 while Q.s1zE() <= b do

4 n := Q.poLL()

5 N := n.GETSUCESSORS(F', 3)

6 forall n” € N do

7 nodeCost := n’.cosTs()

8 if n’ is valid configuration & nodeCost < minCost then
9 minCost := nodeCost

10 L S.INSERT(n”)

11 else if n’ is a contradiction then

12 \ 1" ANALYZECONFLICT( )

13 else if nodeCost < minCost then

14 ‘ Q.INSERT(n’, nodeCost)
15 if Q is empty | |C| >=r | Q.PEEK().cOSTS() > minCost then
16 searchFinished:= true

17 break

18 return searchFinished, S, Q

head of priority queue @) has accumulated costs that exceed the costs of any found solution,
given by minCost, the cube can be aborted. The reason being that the cube cannot lead
to a valid optimal solution.

Comparison of Cube-and-Conquer and Parallel A* Search

In the following, the different approaches of cube-and-conquer and parallel A* Search
are compared. Considering cube-and-conquer, it is a two-phase method that is suited for
hard SAT instances. For such CNF formulas, cube-and-conquer approaches can generate
between thousand and a million cubes, evaluated extensively in [HKWB11] and [BKB*13].
The first phase is executed sequentially, followed by parallel processing of subproblems.
Distributing cubes in phase two among all worker threads results in a relatively clear search
space partitioning and thus little communication overhead. Worker threads only check the
currently known minimum cost solution to decide whether a cube can be aborted. Using
local information also reduces the synchronization overhead, especially by not using a global
OPEN list. Overall, these advantages lead to a simpler approach with less complexity.
However, the used method partitions the original search tree into sub-trees. These cubes
are processed iteratively, which potentially leads to larger search overhead. The reduced
communication and iterative processing of cubes can increase the time threads spend on
expanding suboptimal parts of the overall search space. This disadvantage is enhanced in
SAT instances that are not very hard, for instance a configuration step within a configuration
system. Due to the underlying optimization problem (MinCostConf) and lower instance
hardness, the search trees usually have a small height and width. Two reasons are that
many paths can be pruned and only few conflicts are encountered. Having hard SAT
instances, search trees tend to be of greater height and width, reducing potential search
overhead.
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Algorithm 4.10: PARALLEL CUBES & CONQUER - THREAD PROCESS
Input: Clauses F, start-configuration 3, linked list of nodes cubes, set of optimal
valid configurations S, integer minCost, threadld t
Data: local priority queue Q of nodes

1 while cubes is not empty do
2 Q:= initialize queue
3 Q.INSERT (cubes.REMOVEFIRST())

// process single cube
4 while Q is not empty do

5 n := Q.poLL()

6 N := n.GETSUCESSORS(F', [3)

7 forall n” € N do

8 nodeCost := n’.cosTs()

9 if n’ is valid configuration & nodeCost < minCost then
10 Lock S

11 if nodeCost < minCost then
12 minCost:= nodeCost

13 L S:=190

14 S.INSERT(n’)

15 Unlock S

16 else if n’ is a contradiction then
17 | n’ANALYZECONFLICT()

18 else if nodeCost < minCost then
19 ‘ Q.INSERT(n’, nodeCost)

// check for early cube termination
20 if Q.PEEK().cosTs() > minCost then
21 L break

In contrast to this, the parallel A* Search uses more complex search space splitting
strategies, by extensively sharing data. On the one hand, regarding communication and
synchronization overhead, Cube-and-conquer introduces the smallest efforts. On the other
hand, this benefit leads to the drawback of higher search overhead, especially compared to
the centralized A* Search approach. These properties affect the performance depending on
the considered CNF formula’s complexity.

Summarized, cube-and-conquer potentially performs well on hard SAT instances, for
example for Random SAT and Random 3-SAT benchmarks. Regarding industry cases,
the performance is dependent on the size of the constructed search tree. Full evaluation,
analysis and comparison of the different methods is presented in Chapter 5|

4.4 Parallel Portfolio

An introduction into portfolio solvers is presented in Section The main motivation
to apply a portfolio solver is the strong performance of this approach in various SAT
competitions. One reason for the success of portfolio is given in [HJS10]. The authors state
that the portfolio solvers exploit the sensitivity of modern SAT solvers to configuration
settings and parameters. Therefore, in the following, two portfolio based solvers are
proposed.
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4.4.1 Parallel Portfolio Solver

The first portfolio approach combines several instances of a sequential solver (base solver).
Each instance has its own set of configuration settings, consisting of several parameters.
In the following, important parameters are described and different sets thereof to use in
portfolios is shown.

Branching Heuristic

The branching heuristic is responsible to choose an unassigned variable during DPLL, if
no unit clauses are available. In cases with many unassigned variables, the function has
to choose the most promising variable and corresponding assignment (literal) to let the
algorithm find a solution quickly. Many different branching heuristics exist in literature,
often focused on modern CDCL solvers. These solvers are conflict driven, thus heuristics
focus on literals that often occur in contradictions. A good overview of modern heuristics
for CDCL solvers is given in [LGZ¥15].

In the domain of product configuration, SAT instances are significantly simpler regarding
runtime and occurring conflicts. Additionally, helper variables are used to encode use-case
specific and complex expressions, for instance to activate feature variables for the user on
the interface. For that reason, different score-based branching heuristics are used which
are comparable to the One-Sided (OS) and Two-Sided (TS) Jeroslow-Wang Rules (JW) by
Jeroslow and Wang in [JW90).

Furthermore, a second component is added as a parameter which influences the priority of
choosing variables that have a positive cost (i.e. are not special variables with zero cost).
Due to the underlying optimization problem, it can be beneficial to preferably branch over
variables with positive cost to limit the search tree growth. Especially the mentioned helper
literals are often costless and thus are of lower priority.

Priority Criteria of OPEN list

The used base solver is a sequential A* search algorithm that uses a priority queue @ to
store all nodes that may be expanded. To ensure optimality, the first priority criteria of @)
is the cost evaluation f(n) = g(n) + h(n), with n being a node. However, in case multiple
nodes in () are of equal cost, additional priority criteria are necessary. These criteria have
an impact on the search behavior, defining which parts of the search space are expanded
first. Hence, the instances in the portfolio use different strategies to prioritize nodes within
Q.

As secondary priority criteria, two different ones are used. The first ones evaluates the
current depth of each node within the search tree. This criteria can prefer nodes that
are either have a small depth or high depth. The former encourages exploration within
the search space, the latter assumes that solutions tend to be further down in the search
tree. The second criteria assesses the number of unresolved clauses in node n. Again, the
assumption is that a node with few unresolved clauses is closer to a valid assignment than
a node with many unresolved clauses, considering that both nodes have equal costs.

Clause Learning

Clause learning is a prominent improvement used in many modern SAT solvers. A short
overview is given in Section [2.2.3\ The goal is to prune paths within the search tree
that lead into already encountered conflicts. The reduced complexity of common SAT
instances within product configuration reduce the effectiveness of clause learning compared
to instances such as Random SAT. Additionally, most configuration steps are satisfiable,
only few require to prove unsatisfiability. Lastly, the employed base solver is based on the
A* search algorithm, which expands the search tree in best-first manner. This reduces
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the effectiveness of non-chronological backtracking. Thus, the main benefit is utilizing the
learned clause.

Conclusively, clause learning is not always beneficial in this environment, due the introduced
overhead. Regarding the parallel portfolio, some instances utilize clause learning and others
do not.

Portfolio Configuration

With various defined parameters, a portfolio can be constructed by combining solvers with
different configuration sets. The diversification’s purpose is to have a portfolio with solvers
that have little search space overlap to reduce search overhead and the solver’s sensitivity
to parameters. A summary of preconfigured base solvers to use in a portfolio is shown in
Table The set of settings is handcrafted, due to strong impact and domain-specific
knowledge. A similar approach is used for solvers such as ManySAT in [HJS10].

Strategies Instance 1 | Instance 2 Instance 3 | Instance 4
Branching Heuristic | OS-JW OS-JW TS-JW TS-JW

Prefer Cost Literals | true false true false

Secondary Max Minimal Max Minimal

Priority Criteria Tree Depth | Unresolved clauses | Tree Depth | Unresolved clauses
Clause Learning false true false true

Table 4.1: Different strategies used for a parallel portfolio solver. Parameters are focused
on the branching heuristic, ordering of the OPEN list and clause learning. The
abbreviation OS-JW and TS-JW stand for "One-sided Jeroslow-Wang” and
"Two-sided Jeroslow-Wang”, respectively. Objective is to configure the different
instances with settings that reduce the amount of search space overlap.

Comparison between Parallel Portfolios and Divide-and-Conquer

Comparing parallel portfolios to divide-and-conquer approaches, several distinctions can
be drawn. A major advantage is the robustness of parallel portfolios against the impact of
configuration parameters that SAT solvers generally face. By using multiple complementary
instances of a base solver with varying parameter sets, peaks that result from suboptimal
parameters are reduced. Having many instances increases the likelihood of utilizing good
settings. The presented divide-and-conquer approaches use the same parameters across
all processing cores, thus being more sensitive. Furthermore, parallel portfolios are less
complex than divide-and-conquer strategies. Not working on larger central data structures
reduces the required synchronization and communication efforts.

However, considerable disadvantages exist, especially for industrial use cases. The main
problem is that the parallel portfolio does not partition the search space into disjunct
portions, but rather duplicates the Boolean formula for each instance. As a result, the
memory consumption increases approximately proportionally to the number of cores. For
industry cases and production systems, resources are limited. This duplication also results
in a lot of search overhead, since multiple instances work on the same portion of the search
space, looking for the optimal assignment. Divide-and-conquer fosters more cooperation
between the cores, lessening the search overhead. Lastly, the shown portfolio configuration is
chosen manually. Potential scalability is limited, which requires an automated approach to
find good parameter sets, also pointed out in [HJS10]. An in-depth performance comparison
is shown in Chapter

4.4.2 Parallel Portfolio A*

An alternative strategy is to adapt the parallel A* search algorithm presented in The
main motivation is to avoid the Boolean formula duplication that is performed by the
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previously shown parallel portfolio. Instead, the search space is divided but multiple threads
work cooperatively on the same instance. To adopt the benefit of being less sensitive
to parameter tuning, each thread uses different settings but work on the same formula.
Regarding parameters, changing the branching heuristic and related settings such as the
"Prefer Cost Literals” can be changed for each processing unit (for comparison, see Table
. Hence, when a thread processes a node and has to choose the next decision literal for
that path, a thread specific heuristic is utilized. Usually, these parameters have a strong
impact on the search behavior with respect to the order of path expansions.

This strategy can be applied to both, centralized and decentralized parallel A* search.
Despite using varying parameters, no other changes are required for these algorithms.

4.5 Deterministic Search

Sequential SAT solvers can deliver reproducible results, as long as the core functions such
as unit propagation, usage of heuristics (e.g. branching decision) etc. are deterministic. In
contrast, most current parallel SAT solvers are not capable of producing stable results, due
to their architectures relying on weak synchronization ([HJPS11]).

Nevertheless, reproducibility of configuration processes is a key requirement for a con-
figuration system, because the result is not only ”SAT” or "UNSAT” but an optimal
assignment, for which even minor differences can be discovered by the user. Therefore,
during a configuration process, a user expects deterministic behavior in cases where entire
configuration processes or only steps are performed repetitively. This section presents
problems introduced by parallel SAT algorithms, their influence on the optimality of
configurations as well as measures to ensure deterministic behavior for the user.

Given a configuration process, modeled by a chain of configuration steps, every execution of
this chain should return the exact same assignments for each step. Elementary scenarios are
undo and redo functionalities which have to result in reproducible outcomes. Offering non-
deterministic configurations to the user may lead to confusion and frustration. Although
the presented algorithms always return a set of up to r configurations, it is not guaranteed
that any two executions of the parallel algorithms return the exact same solutions, i.e. the
exact same set of variable assignments. For example, multiple valid configurations exist
but the user only requests one. If non-deterministic behavior is introduced, e.g. by parallel
algorithms, different valid assignments are returned when repeating the configuration step
numerous times.

Considering a configuration step, the number of optimal (lowest cost) solutions can vary.
Therefore, the user can decide how many optimal solutions should be returned (in case more
optimal solutions exist). Generally, if several solutions are returned, they are presented as
alternatives to the user to choose from. Hence, useful values for r are usually one to five to
not overwhelm the user with alternatives.

To ensure that the computed set of solutions with size m (m < r) always contains the same
ones, i.e. deterministic behavior for the user, the configurations need an order among them.
For instance, the user requests up to three solutions for a configuration step, but five optimal
ones exist, the configuration system has to return the same three solutions consistently.
The following multiple criteria are used to order configurations as the foundation to achieve
reproducible configuration steps:

1. Cost of the configuration using the delta-cost function shown in
2. Number of decision literals (tree-depth, ascending)
3. Number of literals contained in the solution (ascending)

4. Hash of literals contained in the solution
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The first deciding factor is the solution’s cost. Between two configurations with unequal
costs, the one with lower costs is prioritized, because the changes made to the start-
configuration are evaluated as smaller. Thus, additional sorting criteria are only used
between equal-cost solutions. All criteria are sorted from lowest to highest (ascending). An
important factor for all criteria is the stability across several executions, which is fulfilled
for the enumerated ones.

During parallel search in the search tree, solutions can be found in varying order across
several executions. An execution describes the computation of a specific configuration
step. Main reason for this nondeterminism is that parallel working threads expand nodes
in inconsistent time, which leads to a potentially different order of node visits for each
execution. Due to the unstable expansions, solution can be found in varying order. To
accommodate this instability, the termination criteria from is adapted to ensure that
previously returned solutions are not skipped through early termination in another execution
of the same configuration step. Therefore, two alterations are presented in the following,
both aiming at ensuring deterministic behavior as well as minimizing the amount of search
overhead.

4.5.1 Tree-depth Depending Termination

In previously shown algorithms, two search termination criteria are used. Firstly, the search
is aborted in case all other nodes are more expensive than an already found configuration.
Secondly, if the requested amount of solutions has been found (all of equal cost) and all
other nodes are at least equal-cost, the search can be terminated.

Especially the second criteria is unstable due to the varying sequence of finding solutions.
Using this termination strategy, always the first m reached solution states are collected which
prevents reproducibility. A naive strategy is to not use this secondary early-termination
criteria, but it is important to improve the performance by avoiding unnecessary node
expansions (search overhead).

The first approach exploits the number of decision variables in any obtained solution. As
soon as the requested amount of alternative configurations r has been found, the maximum
tree-depth (number of decision variables) j is extracted from all found solutions. This
indicates the solution that is ordered last among all solutions, thus it can be used to prune
unexplored nodes. Consequently, only paths within the search tree that either have lower
costs than already known valid assignments or are equal-cost and have a tree-depth less
or equal to j are expanded. For subsequently found equal-cost solutions, the maximum j
may be updated to reflect the new upper bound, in case it has fewer decision variables.
This procedure incrementally reduces the depth of j and consequently the number of paths
that may be expanded. As soon as no viable nodes can be processed, because all are more
expensive or equal-cost and at deeper levels, the search can be terminated. This strategy
ensures that always the same m solutions are returned, because all paths are expanded
that contain the m optimal solutions with the smallest number of decision literals.

Figure shows an explanatory abstract DPLL search tree for a configuration step. In this
example, the user requests two alternative solutions (r = 2), but four valid optimal solutions
exist (green nodes). To ensure deterministic behavior for repeating executions, the same
set of solutions has to be returned consistently. Using the multiple-criteria sorting order
shown in Section node ng and ni; have to be returned as the optimal configurations,
because they have the lowest tree-depths (with two and three decision literals, indicated by
the edges) of all optimal solutions.

During parallel search, the best-first-search does not guarantee to find the optimal assign-
ments in correct order. With r = 2, three explanatory scenarios are discussed to explain
the procedure:
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Figure 4.5: A DPLL search tree for a configuration step. White nodes indicate explored
states, red nodes display conflicts, green nodes are valid solutions and orange
nodes indicate states that are not further expanded due to their costs. The
weighted edges indicate added literal costs through unit propagation.

Given a user wish and a requested amount of solutions » = 2, the objective
of the search termination algorithm is to ensure that always the same two
configurations of the four possible ones are returned. The correct nodes to
return in this example are nodes ng and n;; due to lowest tree-depths (two
and three decision literals, respectively) among the four equal-cost solutions.
Depending on the order in which optimal assignments are found, specific paths
that are equal-cost to the current optimum can be pruned, when 7 solutions
have been found. The requirement for pruning is that the current node of the
path has a higher depth than all currently hold solutions. Thus, in case that
nodes ng and nip are expanded first, which result in two solutions, nodes that
have equivalent costs (= 10) and are on tree level four or larger can be pruned.

1. Nodes ng and ni; are expanded first
2. Nodes ng and nyo are expanded first
3. Nodes nis and nig are expanded first

The first scenario is the best-case behavior, in which the desired solutions are found first
through expansion of nodes ng and ny;. Afterwards, the maximum tree-depth j is set to
3 and paths are only further explored up to a tree-depth of 3, as long as they are less or
equal in cost. In this example, nodes in the range of ni2-nig are not expanded, if they
have not been processed already. Node ng is not expanded as soon as a solution is found,
because the costs (cg = 20) succeed the currently known minimum costs (¢g = ¢11 = 10).

In the second scenario, j is set to 4, due to the valid configuration of node ni2. The
maximum depth has to be used, otherwise solution n1; would be missed through pruning.
Paths with less or equal to four decision literals have to be extended before the search can
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be terminated. Thus, n11 has to be expanded which leads to a new solution. This solution
is favored against nis owing to requiring fewer decision literals. Therefore, n1; replaces
the solution n19, j is set to 3 and paths are only extended up to a length of three decision
literals as long as the cost is equivalent to the currently known solutions. Paths with lower
costs are always extended.

Finally, case 3 displays the worst-case, in which all solutions are explored. Firstly, nodes
ni1z and nig are processed which sets j = 5. All nodes that are cheaper or equal-cost and
have at most five decision literals are expanded. Subsequently, node ng or ni; are found
which will update j accordingly. Independent of the order of ng and ni1, j = 4 is set due
to the solution nio which replaces nig. This ensures that the two preferred solutions are
returned.

This example shows that for any case with several optimal solutions, the same configu-
rations can be returned for repetitive executions using parallel search. The requirement
of reproducibility is fulfilled. Furthermore, this strategy enables pruning techniques, by
updating the maximum tree-depth j, speeding up the search in cases in which multiple
optimal solutions are prevalent. Strong benefit of this technique is its applicability for
all presented parallel algorithms, i.e. parallel A* search, cube and conquer, and parallel
portfolios.

Advanced Tree-depth Depending Termination

This strategy can further be improved by not only utilizing the tree-depth (vertical), but
also the position within one level of the search tree (horizontal). For instance, all z optimal
solutions share the same tree-depth, but only at most r alternative configurations are
requested. Using the presented tree-depth depending termination, all z solutions have to be
computed, since the sequence of finding them is unstable using multiple threads. The larger
z is, the higher is the search overhead (in worst case z — r avoidable nodes are expanded).
To circumvent this, the multiple-criteria order of solutions shown in is adapted by
adding the number of left edges in the path from root to the node n. The number of left
edges in a path is abbreviated with ”left-branches” in the following.

After having found r solutions, the minimum tree-depth as well as the maximum number
of left-branches on that level are shared with all threads to prune paths. The value can
be updated after having found another solution on a smaller or equal level. In the former
case, the value is always updated because the new solution has a smaller tree-depth. In
the latter case, the value is only updated if the number of left-branches is larger than the
minimum of all currently hold solutions on that level. This strategy reduces the number of
expanded nodes, when several solutions are on the same level.

Implementation of Tree-depth Depending Search Termination

Implementation wise, two methods to facilitate the adapted search termination detection
are described. First, the priority queue @, holding all nodes that can be expanded, uses
a sorting criteria. This criteria can be extended to use the cost as well as the depth and
number of left-branches. The search can be terminated if the head of the queue is more
expensive than known solutions. Furthermore, given that r solutions have been found
already, the procedure can be aborted if the head of @) is equal-cost and ranked behind the
least preferred known solution, using the adapted multiple-criteria order.

This approach is valid, because priority queue and solutions share the same sorting criteria.
However, the approach has one major drawback. It changes the order of nodes within the
priority queue @), which strongly influences the parts of the search tree that are explored
first. Using the described criteria, nodes that are further up in the search tree are expanded
first, which translates to nodes with fewer decision literals. Under the assumption that
solutions are found within less node expansions at lower levels (more decision literals

50



4.5. Deterministic Search

added), due to a simplified Boolean formula, the performance can be influenced negatively.
Tests show that the changed sorting criteria leads to more expansions by exploring larger
portions of the tree, resulting in increased overall computation time. Thus, the priority
queue’s sorting criteria should not be changed.

Alternatively, the termination criteria is simplified to only abort if the next node on the
queue has a higher cost evaluation than any found solution. Additionally after having
found r solutions and the search not being terminated, every node that is taken from the
queue is checked whether the path can be pruned to stop further expansions. To prune a
path, the current node has to have equal-cost to the currently known minimum as well as
a greater or equal path length compared with the shortest path of any currently optimal
found solution. In case the path length is equal, it is additionally required to have less
left-branches than any known solution on the minimum depth level.

4.5.2 Limited Node Expansion Termination

For the presented cube-and-conquer approach , a simpler deterministic search ter-
mination detection can be used as well. The distribution of cubes after the first phase
consistently assigns a set of work to each thread. Each worker thread processes the cubes
in the same order without exchanging them, hence the initial search space partitioning is
consistent for repeating configuration steps.

This property can be exploited to terminate cubes early, by limiting the amount of nodes
each thread is processing after r solutions have been found. For this, the sorting criteria
shown in Section is changed. Having two equal-cost solutions, the one that originated
from an earlier cube is preferred (each cube has a position within its thread, indicating the
cube processing order):

1. Cost of the configuration using the delta-cost function shown in
2. Cube position within a thread (ascending)

3. Number of literals contained in the solution (ascending)

4. Hash of literals contained in the solution

Each cube can be terminated in case it has higher costs than any found assignment
(Algorithm line 18). Now, a cube is also aborted given two conditions: Firstly, r valid
assignments have been found. Secondly, the head of the priority queue used for the current
cube is equal-cost and the cube’s position (indicating its processing order within the specific
thread) is higher than of all found assignments. For example, with r = 2, the respective
solutions are found by processing cube 2 and 4. Consequently, threads can terminate cubes
earlier starting with the fifth cube, whenever the most promising node is equal-cost to
currently known solutions. However, this approach is not applicable to parallel A* search,
because threads are sharing nodes which lead to unstable node processing order.
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5. Experiments

This chapter presents an evaluation and comparison of the developed algorithms in Chapter
As a baseline, the existing CAS Configurator Merlin ([CAS20]) is used. The presented
parallel algorithms have been implemented into the existing application to compare them
to the sequential algorithm included in the current version.

At first, the test setup is explained including test data and test environment. Afterwards,
the experimental results are shown with focus on wall clock time (elapsed real time),
scalability and resource consumption. Lastly, a discussion of the experimental results is
presented.

5.1 Test Setup
Test Algorithms

The experiments include all parallel algorithms presented in Chapter |4 as well as the
sequential algorithm as baseline. A short summary is given:

1. Centralized Parallel A* Search (CA*) (4.2.1): Extension of the sequential A* search
using multiple threads on a single OPEN list.

2. Decentralized Parallel A* Search (DA*) (4.2.2): Extending the A* search by assigning
an OPEN list to each thread. Nodes are exchanged among the workers.

3. Parallel Cube-and-Conguer (C&C) (4.3): Two-phase approach. Firstly, the problem
is decomposed into subproblems. Afterwards, the cubes are processed in parallel.

4. Parallel Portfolio (PP) (4.4.1): Combining multiple sequential base solvers with
different configurations.

5. Parallel Portfolio A* (PPA*) (4.4.2): Extending parallel A* search by using different
settings for each worker thread.

Test Data

The data used for the experiments consists of various real industry cases as well as random
SAT and random 3-SAT instances.

Concerning the industry cases, different rule sets are used, whereby each rule set reflects one
configuration model. Furthermore, the algorithms are developed for interactive configuration
processes. Thus, a set of configuration processes is available to perform measurements.
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Each configuration process consists of a chain of configuration steps, each step is triggered
by a user change. Random SAT and random 3-SAT are also used to have a comparison
on well known problem instances used in literature. For random 3-SAT, the instances
"Random-3-SAT Instances with Controlled Backbone Size” by Josh Singer are used, which
are obtained from SATLIB || The random SAT instances are part of the ”JNH” benchmark
by John Hooker, also taken from SATLIB.

Table shows a comparison of the different rule sets. It contains key properties of the
used rule sets, including the number of clauses, variables, ratio of clauses to variables, and
average clause length. For the industry cases, an empirical domain complexity is stated.
A major difference between industry cases and random SAT instances are the number
of variables and clauses. The rule sets derived from configuration models show a high
number of clauses and variables, because they represent complex product knowledge bases.
Furthermore, additional clauses and variables are required to control product configuration
specific logic, for instance helper variables to activate specific features to be editable for the
user. Considering the average clause length, the configuration models and random tests
have comparable numbers. In most cases, the random SAT instances have a significantly
larger clause to variable ratios. The assumption is that instances with higher ratios are
harder to solve, because more clauses have to be fulfilled. Additionally, fewer satisfying
assignments exist. This is not entirely applicable to the MinCostConf task, due to the
following reasons:

e An optimization problem is solved. Less clauses imply that more valid assignments
exist that could be optimal.

e By using a preexisting valid start-configuration and a user wish, only small changes
are usually required to find a valid assignment.

Rule Set | Domain Complexity | # Clauses | # Variables | Ratio | Avg. clause length
RS1 High 17157 8483 2.02 3.98
RS2 Medium 4803 8318 0.58 3.34
RS3 Low 8023 1722 4.66 4.70
R3SAT - 449 100 4.49 3
RSAT - 850 100 8.50 5.8

Table 5.1: Comparison of different rule sets (Boolean formulae). RS1 to RS3 show formulae
of industry cases. R3SAT are random 3-SAT instances and RSAT stands for
random SAT instances. Ratio describes the clause to variable ratio of the
resulting Boolean formulae.

Hardware and Software

For this work, all algorithms are implemented into the existing configuration system. This
is based on Java 11% and Java Enterprise Edition (JEE) 7[°| All benchmarks are run on
the application server WildFly 1 The application is run on the following system:

Computer: Intel Core i7-7820HQ, 16 GB RAM, Windows 10 (64-Bit)

! Aailable from https://www.cs.ubc.ca/ hoos/SATLIB/benchm.html

2 Available from https://www.oracle.com /java/technologies/javase-downloads.html
3 Available from https://docs.oracle.com/javaee,/7/index.html

4 Available from https://wildfly.org/
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Test Procedure

The entire system is tested using automated simulation of configuration processes. Each
test for a rule set consists of n configuration steps. Every configuration step is repeated
three times to have more accurate mean wall clock times. Therefore, for each rule set 3n
data points are available. The usage of simulated configuration steps yields a mixture of
small and larger configuration changes with varying response times. Considering randomly
generated tests, 23 random SAT and 57 random 3-SAT instances are used (hence 80 data
points). For each tested algorithm configuration, a warm-up phase is executed for the Java
Virtual Machine (JVM). Despite measuring different metrics, the usage of automated tests
also ensures the correctness of all implemented algorithms.

5.2 Experimental Results

The experimental results are split into three paragraphs. First the calculation times are
compared, secondly the scalability using different number of threads is analyzed, and lastly
the search overhead is shown.

5.2.1 Calculation Time

The results of measuring the wall clock time for different rule sets are shown in Figure
and Each figure compares the parallel algorithms using 4 threads to
the sequential solver (baseline). The y-axis shows the wall clock time required for each
configuration step, using a logarithmic scale. The x-axis displays the problem instances
sorted in ascending order with respect to the time required to solve them.

Considering the results of the real industry cases (RS1, RS2, RS3), several observations
can be made. In all three cases, the two parallel A* search approaches perform best on
demanding configuration steps. Of the two parallel A* strategies, the centralized one using
a single OPEN list performs better across the various rule sets. The cube-and-conquer
(C&C) approach performs worse than parallel A* search but better than the parallel
portfolio (PP). Comparing the C&C results, it performs best on RS1 which is the most
complex one. On the "medium’ complexity rule set RS2, C&C does not outperform the
sequential solver consistently. The presented PP solver performs worst on all three cases.
For most problem instances, it performs worse than the sequential solver, only on some
problem instances in RS1 it outperforms the baseline.

The graphs also point out that the parallel A* algorithms add overhead, especially on
the low complexity problem instances measured by required response time. For example,
on RS2 the break-even point is around 20-25 milliseconds (ms). Up to this point, the
parallel A* algorithms perform worse than the baseline. The added overhead is larger for
the decentralized approach than for the centralized one. The results are similar for RS1
and RS3. C&C and PP do not introduce this overhead on simple instances, due to using a
sequential solver in the first phase (C&C) or as a base solver (PP).

Following the break-even point, the speedups of the parallel algorithms over the sequential
solver are increasing. Parallel centralized A* search (CA*), the best performing algorithm,
reaches consistent speedups of 2 to 3 for hard configuration tasks.

For RS1 shown in Figure 5.1 the maximal speedup is around 2.8 to 3.2, achieved for the
hardest problem instances in which the sequential solver requires 4000-8000 ms. In the
range of 100-3000 ms (baseline) the speedup is between 2 and 2.5. The speedup using the
decentralized A* search ranges from 2 to 2.65 over the range of 600-8000 ms. The results
of C&C show a maximum speedup of 1.89, however the speedup for large portions of the
problem instances is between 1.2 and 1.5. Lastly, the portfolio solver has a maximum
speedup of 1.32. The values are between 1.1 and 1.3 in the range up to 80 ms baseline
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time. Subsequently, the speedup is decreasing quickly and it is performing worse than the
sequential solver for many problems.
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Figure 5.1: Per task time comparison of parallel algorithms using 4 threads on the high
complexity rule set RS1.

The speedup for the "medium” result set RS2 (Figure is lower across all parallel
algorithms. CA* search reaches a reduction factor of up to 2.6. For a wide range, from
80-1000 ms the speedup is between 2 and 2.5. The other approaches perform significantly
worse. DA* search peaks at a speedup of 2.17. In the range from 80-1000 ms is varies
between 1.2 and 1.8. C&C does not achieve consistent speedups, only smaller portions of
tasks have a speedup of up to 1.25. Again, the portfolio solver does not outperform the
sequential algorithm.

Considering the rule set with the lowest complexity, RS3 in Figure the results are
two-sided. On the one hand, the parallel algorithms perform worse than the sequential
solver for the short running configuration steps (<30 ms). Especially parallel A* approaches
add a noticeable amount of overhead. On the other hand, for configuration tasks that
require more than 100 ms on the baseline, the two parallel A* variants outperform all
other solvers. Consequently, the average per task speedups are lower. CA* achieves a peak
speedup of 2.57 but for many tasks performs worse than the baseline. The DA* strategy
peaks at a speedup of 2.15 but has even more overhead than its centralized version on easier
instances. C&C and the PP solver achieve a speedup of up to 1.64 and 1.53 respectively.
However, their overhead is much smaller overall. Summarized, it shows that a considerable
improvement is achieved over a large variety of configuration steps. Additionally, a detailed
comparison is shown in Table The table also displays overall speedup and the average
per task speedup for tasks that require more than 100 ms, which is a threshold after which
users might experience a slow down in their configuration process.
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Figure 5.2: Per task time comparison of parallel algorithms using 4 threads on the medium
complexity rule set RS2.
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Figure 5.3: Per task time comparison of parallel algorithms using 4 threads on the low
complexity rule set RS3.
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Rule Set Speedup CA* | DA* | C&C PP
Max 3.20 2.66 1.89 1.32

RS Overall 2.50 2.08 1.44 0.83
Avg. per task 1.63 1.35 1.32 1.07

Avg. per task >100 ms | 2.44 1.97 1.46 0.84

Max 2.61 2.17 1.25 1.00

RS2 Overall 2.06 1.55 1.05 0.63
Avg. per task 1.61 1.20 1.05 0.76

Avg. per task >100 ms 2.31 1.70 1.09 0.63

Max 2.57 2.15 1.64 1.53

RS3 Overall 1.13 0.90 1.33 1.24
Avg. per task 0.47 0.37 0.94 0.96

Avg. per task >100 ms | 2.16 1.87 1.48 1.37

Max 2.76 3.23 3.27 1.24

R3SAT /RSAT Overall 1.72 2.06 2.46 0.97
Avg. per task 1.78 2.21 2.51 1.00

Avg. per task >100 ms 1.78 2.22 2.54 1.00

Table 5.2: Comparison of achieved speedups for parallel algorithms running 4 threads
using different rule sets. Overall speedup compares the cumulative time over
all configuration steps. ”Avg. per task >100 ms” only considers configurations
steps that require more than 100 ms using the sequential solver (baseline).

Comparing parallel algorithms using random SAT instances, a contrasting ranking is shown
in Figure and On both problem types, the C&C performs well. The DA* search
performs comparably to C&C and outperforms its centralized version. Similarly to the
industry cases, the worst performing parallel algorithm is the portfolio solver.

Due to the relatively long baseline computation time, compared to configuration tasks,
the parallel algorithms do not show a significant overhead on the simpler random SAT
instances. Regarding the achieved speedups, detailed in Table the C&C peaks at 3.27
with an per instance average of 2.51. DA* ranks second with max speedup of 3.23 and
averaging 2.22 per task. CA* is considerably slower with a maximum of 2.76 and average of
1.78. No consistent improvement is gained by the portfolio solver with an average speedup
of 1.

58



5.2. Experimental Results

2048 : . . . .
——Baseline
——4T CA* /
——4T DA™
1024 - ——4T C&C
4T PP //’_/
512
8
<
o
g
T 256
£
[«5)
€
E
128
64 |
32 1 1 1 1 1
0 10 20 30 40 50 60

Problems

Figure 5.4: Per task time comparison of parallel algorithms using 4 threads on R3SAT.
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Figure 5.5: Per task time comparison of parallel algorithms using 4 threads on RSAT.

Lastly, due to the mediocre results of the presented parallel portfolio, the results of the
proposed Parallel Portfolio A* (PPA*) as an adaptation of CA* are compared as well.
Table shows all metrics for the different algorithms. "CA*” and "CA* Generalized”
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differ in the used settings. For all prior tests, each rule set provided a set of parameters
used for the different algorithms that are supposed to fit the problem instances well. Using
a portfolio approach, varying settings are used for the different threads. Thus, the manual
process can be avoided. To have a comparable result from the regular CA* search, another
test was performed without using the rule set specific settings but rather using one setting
across all tests (CA* Generalized).

The results indicate the PPA* performs significantly better than the regular PP algorithm.
This can be explained by the fact that the A* portfolio is an adaption of CA* search.
Furthermore, comparing the results to CA* and CA* generalized, the portfolio performs
very similar to the CA* search with constant parameters, depending on the rule set. The
benefit of the PPA* is the fact that no parameter preselection is required.

Rule Set Speedup CA* CA* PP PPA*
Generalized

Max 3.20 3.20 1.32 2.95

RS1 Overall 2.50 2.50 0.83 2.40

Avg. per task 1.63 1.63 1.07 1.59

Avg. per task >100 ms 2.44 2.44 0.84 2.43

Max 2.61 2.40 1.00 2.44

RS2 Overall 2.06 1.81 0.63 1.94

Avg. per task 1.61 1.33 0.76 1.46

Avg. per task >100 ms 2.31 2.12 0.63 2.16

Max 2.57 2.93 1.53 3.04

RS3 Overall 1.13 0.97 1.24 1.00

Avg. per task 0.47 0.36 0.96 0.37

Avg. per task >100 ms | 2.16 2.51 1.37 2.64

Max 2.76 2.76 1.24 2.77

R3SAT /RSAT Overall 1.72 1.72 0.97 1.72

Avg. per task 1.78 1.78 1.00 1.78

Avg. per task >100 ms 1.78 1.78 1.00 1.78

Table 5.3: Comparison of portfolio based solvers and the CA* search. ”Generalized” de-
scribes the fact that one parameter set was used for all tests. All solvers utilized
4 threads.

Impact of Determinism

All before presented results include the deterministic versions of the algorithms. To
determine the approximate impact of the stricter search termination criteria, the best
performing algorithm is considered, centralized parallel A* search. For the evaluation, the
most complex benchmark RS1 is used which contains a wide variety of configuration tasks.
The impact is measured by the overall speedup of the non-deterministic version over the
deterministic version of CA* search. The results are shown in Table Summarized, the
added overhead is approximately between 2-3% measured on RS1. The overall performance
cost is 2.4%, if only long runnings tasks (>100 ms) are considered the cost is measured
with 3.8% in this test.

60



5.2. Experimental Results

i Overall | Speedup | Runtime | Speedup
Algorithm
Runtime | Overall | >100 ms | >100 ms
Deterministic CA* 226.1 s 1 190.5 s 1
Non-Deterministic CA* | 220.8 s 1.024 183.5 s 1.038

Table 5.4: Comparison of deterministic and non-deterministic CA* search using RS1. Each
solver utilized 4 threads. Deterministic CA* is the reference, thus the speedup
is 1. "Runtime/Speedup >100 ms” only account configuration steps that require
more than 100 ms on the reference solver.

5.2.2 Scalability

One goal of this thesis is to conceptualize approaches that scale well with increasing
numbers of processing units. In Table the speedup of the different parallel algorithms
is displayed using varying numbers of threads.

Most noticeably is the overall scalability with rule set complexity. Largest improvements
are attained on RS1 with an overall speedup of 2.5 for CA*. On the easier problem domains
RS2 and RS3, the improvements decrease to 2.06 and 1.13. Especially the latter is explained
by the numerous short running configuration tasks in RS3 that lead to overhead using CA*
search. Results of DA* search show very similar effects, scaling well on complex rule sets but
suffering from overhead on simpler ones like RS3. On RS3, the search algorithms performs
better with two threads (0.91) than with four (0.90) due to the added synchronization and
communication overhead. C&C’s results do not show a clear pattern, it scales best on RS1
and RS3, less so on the "medium” rule set RS2. However, the addition of more threads
shows larger diminishing returns. On RS1 the difference between three and four threads is
only a speedup of 0.06 compared to the baseline. Furthermore, the table shows that the
portfolio solver scales negatively in many cases with the number of processing units. An
exception is the less complex rule set RS3. Hence, the scaling issues of the PP solver is
related to the complexity of the problem instance. A in-depth discussion is given in Section

Rule Set CA* | DA* | C&C PP
2 Threads 1.63 1.58 1.22 0.91

RS1 3 Threads 2.07 1.98 1.37 0.88

4 Threads 2.50 2.08 1.44 0.83

2 Threads 1.58 1.40 0.94 0.86

RS2 3 Threads 2.03 1.43 1.01 0.72

4 Threads 2.06 1.55 1.05 0.63

2 Threads 0.89 0.91 1.12 1.07

RS3 3 Threads 1.01 0.90 1.27 1.15

4 Threads 1.13 0.90 1.33 1.24

2 Threads 1.40 1.49 1.91 1.02

R3SAT/RSAT | 3 Threads 1.55 1.86 2.26 0.99
4 Threads 1.72 2.06 2.46 0.97

Table 5.5: Comparison of overall speedup for parallel algorithms using varying numbers of
threads.

61



5. Experiments

5.2.3 Search Overhead

To compare the efficiency of the developed parallel algorithms, search overhead (SO) is
measured. The authors of [JE16] define it as the ratio of expanded nodes in parallel to the
number of expanded nodes during sequential search.

lexpanded nodes in parallel|

SO

= — 5.1
lexpanded nodes in sequential search| (5:1)

An overview of the comparison is shown in Table [5.61 Two metrics are collected for each
rule set. "Overall SO” describes the search overhead of the cumulated node expansions
over all configuration steps compared to the sequential solver (baseline). ”Avg. SO per
task” calculates the average search overhead per configuration step.

Considering overall search overhead, CA* expands between 20-45% more nodes, depending
on the rule set. On more complex problem instances the overhead is on the lower end. DA*
search increases the overhead to 39-104%, again strongly dependent on the rule set. C&C
shows a large variance due to having a SO of 7% on RS1 but 51% on RS2. The portfolio
solver shows an increase between 140% and 232%. Each solver expands its own search tree,
hence the overhead becomes significantly larger. Regarding the average SO per click, the
values change a bit. Both parallel A* algorithms show significantly higher average search
overheads with respect to all configuration steps (e.g. CA* with 210% on RS1), while C&C
achieves lower values.

The reason for this discrepancy is visualized in Figure taking RS1 as an example. Most
noticeable is the search overhead of parallel A* search on configuration tasks that require
very few node expansions on the sequential solver. Parallel C&C does solve those instances
in the first phase which is performed sequentially, thus search overhead is non-existent. This
changes for harder configuration steps in which C&C has a larger overhead compared to
the parallel A* approaches. Thus, the relative average per task overhead stays in contrast
to the overhead based on all tasks. The amount of expanded nodes is related to the wall
clock time, therefore the problem instances with many expansions are of higher interest for
the overall performance improvement.

The tested random SAT instances show smaller differences between the parallel algorithms,
except for the portfolio solver due to its search tree duplication. Overall, C&C shows a
slightly higher SO on the randomized SAT instances compared to parallel A* search.

Rule Set Search Overhead | CA* | DA* | C&C PP
RS1 Overall 0.20 0.39 0.07 2.07

Avg. per task 2.10 2.98 0.00 2.07

RS2 Overall 0.21 0.52 0.51 2.32

Avg. per task 1.07 1.98 0.33 2.33

RS3 Overall 0.45 1.04 0.22 1.40

Avg. per task 1.56 3.19 0.00 2.14

R3SAT/RSAT Overall 0.00 0.01 0.02 2.17
Avg. per task 0.00 0.01 0.01 2.10

Table 5.6: Comparison of search overhead (SO) for parallel algorithms using different rule
sets and 4 threads.
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Figure 5.6: Comparison of the number of expanded nodes (logarithmic scale) for different
parallel algorithms using 4 threads on RS1.

5.3 Discussion

This section provides detailed explanations for the key points of the previously presented
results.

A general observation is the increasing performance improvement on more complex rule
sets. A main reason for this is the share of short running configuration tasks on less
complex formulae (e.g. RS3). Having instances that can be solved very fast (in less than 50
ms), it is difficult to achieve significant improvements through additional processing units.
The added overhead due to initialization and synchronization outweighs the benefits of
solving the instance in parallel. Additionally, the requirement of deterministic results lead
to stricter search termination detection mechanisms. These are not used during sequential
search, because the order of found solutions is stable. The impact is clearly shown in
Figure where a large portion of configuration steps require less than 20 ms and the
parallel algorithms perform worse than the baseline. A good visualization is also shown in
Figure and comparing search trees from a simple configuration step using sequential
and parallel A* search. The figures display search overhead added by introducing parallel
search.

On the other hand, Figure displays a complex rule set, in which most configuration tasks
require more than 50 ms and many of them more than 100 ms. Therefore, the majority of
problem instances are solved faster by using parallel A* search. This also explains why
C&C outperforms parallel A* search on RS3, because a sequential algorithm is used during
the first phase, consequently adding no search overhead. On rule sets R2 and R3, the
performance is mainly dependent on the search overhead for complex configuration tasks.
For steps with long run times, the CA* search adds less than 5% of search overhead, DA*
search approximately 10% and C&C 25% (see Figure [5.6). CA* search is most efficient at
exploring nodes that belong to promising parts of the search tree. C&C and to a lesser

63



5. Experiments

PN
A 'é\ A
%\ A A A
\ A A
/\ A 7‘\A A
/ A A
N A A %
AN A A
\ A A A A
A A
L A A

Figure 5.7: Example of a constructed
search tree during a simple
configuration step using the
sequential solver. Gray nodes

Figure 5.8:
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extend DA* search expand parts of the search tree that are suboptimal, owing to reduced
communication between threads. This can also be seen on Figure and comparing
the constructed search trees of the sequential solver and parallel C&C. The figures show
that C&C does span a larger tree for complex configuration tasks which severely prolongs
computation time. Overall, the tests conclude that the single OPEN list of CA* search is
not a severe bottle neck for the given configuration steps. The number of nodes maintained
in one queue is too small in comparison to the added time required for exploring additional
suboptimal nodes, like in DA* search and C&C.

Figure 5.9: Example of a constructed search tree during a configuration step (RS1) using
the sequential solver. Gray nodes have not been expanded.
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Figure 5.10: Example of a constructed search tree during a configuration step (RS1) using
the parallel C&C solver. Each color represents a thread. Gray nodes have not
been expanded.

In addition to the severe search overhead of parallel C&C, the implementation also
suffers from its two phased approach. The first phase is always performed in sequence.
Consequently, the scalability effects only benefit the second phase which is performed in
parallel. Thus, even on rule sets that suit this approach, the scalability is limited. It also
emphasizes the importance of finding a good cutoff heuristic that determines appropriate
numbers of cubes that reduce the complexity sufficiently to start the parallel phase. Both
problems lead to lower speedups through additional threads compared to parallel A* search,
shown in Table

Regarding the parallel portfolio, the solver performs worst on many industry cases. More-
over, it partly scales negatively with increasing thread pools. For each sequential base
solver, the Boolean formula is duplicated. Performing k separate A* searches, with k
being the number of threads, escalates the memory consumption due to the search tree
construction. In most tests, the increased load on the system outweighs the benefits of
having separate solver configurations that reduce the sensitivity to parameter tuning. Thus,
the alternative portfolio approach PPA*, which applies different sets of parameters to
parallel A* search, achieves more consistent and better results. Moreover, it does not rely
on manually selecting fitting settings.
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6. Conclusion and Future Work

This chapter summarizes the results of this work. Furthermore, an outlook is given for
potential future work in the domain of parallel algorithms for product configuration.

6.1 Conclusion

The scope of this thesis was to conceptualize and develop parallel algorithms that can
be applied to the interactive configuration process seen in modern product configuration
systems. The goal was to find search algorithms that can exploit the capabilities of common
multi-core processors while maintaining their completeness and determinism with respect
to found solutions. To define the problem occurring in interactive configuration, the
MinCostConf problem was introduced which extends the SAT and MinCostSAT problems
and belongs to the class of NP-hard problems. It describes the task of finding minimal-cost
solutions given a start-configuration, an user wish, and pinned attributes. Additionally,
different custom cost functions were shown to model distinctive behaviors that evaluate
configuration changes with respect to the start-configuration.

Subsequently, various parallel algorithms were presented that aim to solve the MinCostConf
problem. As a baseline, the existing sequential A* search algorithm was introduced with a
custom cost function that prefers to keep prior user selections. Three major strategies for
parallel search were implemented.

Firstly, two versions of parallel A* search were conceptualized. Centralized parallel A*
search extends the existing sequential baseline algorithm by sharing a single OPEN list
across multiple threads. Moreover, new search termination detection mechanisms were
required as well as efficient locking mechanisms to reduce synchronization overhead. The
shown decentralized parallel A* search adapts this approach by assigning an OPEN list to
each thread and using inter-thread communication for load balancing. Secondly, a parallel
cube-and-conquer algorithm was presented. It is a two-phase approach that simplifies
the problem sequentially into cubes followed by parallel processing of these subproblems.
Lastly, a parallel portfolio approach was proposed that starts several base solvers in parallel,
each supplied with a unique set of parameters to reduce the sensitivity to such settings. To
avoid search space duplication, an alternative was shown which applies portfolio concepts
to parallel A* search. The introduction of parallel algorithms for MinCostConf added
nondeterminism with regard to the order of found solutions. This cannot be present
in a production environment, such as a configuration system, in which users expect
reproducibility. This has been addressed by designing robust search termination detection
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strategies which ensure that the search is only terminated when the expected configurations
are found while maintaining pruning techniques.

Finally, experiments were performed to compare the implemented algorithms using real
industry cases as well as random SAT instances. Regarding the industry cases, three different
rule sets with varying complexity were analyzed. Besides the completeness, ensured by
using automated integration tests, additional metrics comprising speedup, break-even
point, and search overhead were considered. The results of the existing sequential solver
and all parallel algorithms were compared. Depending on the complexity, the parallel
algorithms showed different strengths and weaknesses. Nevertheless, the centralized parallel
A* search produced the most convincing results with respect to required time to solve the
configuration tasks. The achieved speedup varied depending on the rule set, but for critical
configuration tasks with longer response times, a consistent speedup between 2 and 3 was
attained utilizing 4 worker threads. This resembles a convincing speedup. Furthermore,
good scalability with the number of threads as well as a relatively small search overhead
showed the algorithm’s applicability to a wide variety of MinCostConf tasks. Lastly, the
experiments displayed that deterministic behavior is achieved with a reasonable amount of
effort.

6.2 Future Work

There are several aspects in this thesis that can be extended and further improved upon.
Firstly, the evaluation was performed on a limited selection of rule sets using up to four
threads. Thus, the presented algorithms can be optimized to utilize a larger number
of processing units, although diminishing returns are expected. Secondly, the presented
algorithms are only a subset of possible approaches. Other algorithms that have been used
in the literature can be adopted and changed to fit the presented problem. For instance, to
limit the memory footprint the iterative deepening A* (IDA*) algorithm can be adapted
([Kor85]). This can also improve the presented parallel portfolio approach which is limited
by its resource consumption.

Furthermore, the presented MinCostConf problem defines solutions as minimal-cost config-
urations. In some domains with very complex configuration models, this criteria may be
loosened and only good but suboptimal solutions are requested. This could be performed
for example with a parallel and deterministic version of beam search.

Lastly, parallel SAT related algorithms may also be used in other areas of interactive prod-
uct configuration. Besides a valid configuration, additional information can be calculated,
for example the attributes that are not possible to select without changing the pinned
attributes. Therefore, these attributes may be grayed out for the user. To accelerate this
calculation, a parallel algorithm can be applied. Another area of interest is multi-product
configuration. Given several loosely coupled products, a user wish in one product can cause
changes in other dependent ones, possibly causing a chain reaction. The calculation of this
impact can be performed in parallel, by analyzing the impact of the user with the help of a
dependency graph and performing independent sub-configurations in parallel.
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