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We're high energy particle physicists
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Goals of physics analysis at the LHC
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. .. Provide constraints on models
Search for new physics Make precision measurements

through setting best limits

All require building statistical models and fitting models to data to perform statistical inference

Model complexity can be huge for complicated searches

Problem: Time to fit can be many hours

pyhf Goal: Empower analysts with fast fits and expressive models

w
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pyhf: pure-Python HistFactory statistical models

e Pure Python implementation of ubiquitous high energy physics (HEP) ‘
statistical model specification for multi-bin histogram-based analysis ’
P : y N 2 NumPy

e Supports multiple computational backends and optimizers (defaults of NumPy
and SciPy)

e JAX, TensorFlow, and PyTorch backends can leverage hardware acceleration

(GPUs, TPUs) and automatic differentiation o
PyTorch

e Possible to outperform traditional C++ implementations that are default in
HEP

e Waysto learn more:

1 TensorFlow
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Functions as a Service natural habitat: Cloud
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e Example: Running pyhf across 1000 -

o Results being plotted as they are o
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o Fit of all signal model hypotheses in
analysis takes 3 minutes! Ale el i

No handles with labels found to put in legend.

P f I b . In [*]: for x in glob.glob('results/*.json'):
e Powerful resource, butin L e b e

cC = [{'region': 'C', 'filename': £} for f in glob.glob('RegionC/patch* 60.json')]
configs = cA[:] + cC[:]

(academic) sciences experience

import time
import concurrent.futures

is still growing

with concurrent.futures.ThreadPoolExecutor (max_workers=MAX WORKERS) as executor:
for i,  in enumerate(tqdm(executor.map(func, configs),total = len(configs))):
if i >5andi %5 ==0:

" . . " make_plot(ax,label = 'Open Likelihood (in progress)', color = 'steelblue', showPoints = True)
e "Pay for priority" model
y y time.sleep(.005)
make_plot(ax, label = 'Open Likelihood', color = 'gold', showPoints = False)

o fast a nd rel ia ble 0% | 1/259 [00:14<1:03:24, 14.75s/it]

o requires funding even with nice (GIF sped up by 8x)
support from cloud providers


http://www.cern.ch/feickert/talks/plot_countour.gif

(Fitting) FaaS with pyhf on HPCs

HPC facilities are more commonly available for
use in HEP and provide an opportunity to
efficiently perform statistical inference of LHC
data

Can pose problems with orchestration and
efficient scheduling

Want to leverage pyh f hardware accelerated
backends at HPC sites for real analysis speedup

o Reduce fitting time from hours to minutes

|dea: Deploy a pyh £ based (fitting) Function as a
Service to HPC centers

Example use cases:

o Large scale ensemble fits for statistical combinations

o Large dimensional scans of theory parameter space (e.g.
Phenomenological Minimal Supersymmetric Standard Model
scans)

o Pseudo-experiment generation ("toys")

$ nvidia-smi --list-gpus | awk 'NF{NF-=2};1'
GPU 0: GeForce RTX 2080 Ti

$ cat benchmarks/gpu/gpu_jax.txt

# time pyhf cls --backend jax HVTWZ_3500.json

{

"CLs_exp": [
0.07675154647551732,
0.17259685242090003,
0.3571957128757839,
0.6318389054097654,
0.8797833319522873

1,
"CLs_obs":

0.25668814241306653
}

real Om53.790s
user Om59.982s
Sys Om4.725s

Model that takes over an hour with traditional C++

framework fit in under 1 minute with pyhf on local
GPU



funcX: high-performance Faa$S platform

AT
funcg

e Designed to orchestrate scientific workloads e funcX SDK provides a Python APlto funcx
across heterogeneous computing resources service
(clusters, clouds, and supercomputers) and task
execution providers (HTCondor, Slurm, Torque,
and Kubernetes)

e Controlling "endpoint" and submission machine
can be totally seperate (communications routed

through Globus)

* Leverages Parsl| parallel scripting library for o Allows for "fire and forget" remote execution where you can
efficient parallelism and managing concurrent task run on your laptop, close it, and then retrieve output later
execution e Toolin a growing ecosystem of distributed

e Allows users to register and then execute Python computing
functionsin "serverless supercomputing” o Currently looking into other tools like Dask .distributed

workflow and Dask—Jobqgueue as well


https://parsl.readthedocs.io/
https://www.globus.org/
https://distributed.dask.org/
https://jobqueue.dask.org/
https://funcx.readthedocs.io/

funcX endpoints deployment

e Deployment of funcxX endpoints is straightforward

e Example: Deployment to University of Chicago's RIVER cluster with Kubernetes

git clone git@github.com:matthewfeickert/talk-scipy-2021.git && cd talk-scipy-2021 #
python -m pip install -r core-requirements.txt #

funcx-endpoint configure pyhf #

cp funcx/river-config.py ~/.funcx/pyhf/config.py #

funcx-endpoint start pyhf #

funcx-endpoint list #

YYYY-MM-DD HH:MM:SS endpoint.endpoint_manager:173 [INFO] Starting endpoint with uuid: 12345678-abcd-abcd-abcd-123456789101
YYYY-MM-DD HH:MM:SS endpoint.endpoint_manager:238 [INFO] Launching endpoint daemon process
T O - +

| Endpoint Name | Status Endpoint ID




funcX endpoints on HPC

from funcx_endpoint.endpoint.utils.config import Config
from funcx_endpoint.executors import HighThroughputExecutor
from funcx_endpoint.providers.kubernetes.kube import KubernetesProvider

° funCX endeint: |Og|ca| entlty that from funcx_endpoint.strategies import KubeSimpleStrategy

from parsl.addresses import address_by_route
represents a compute resource , ,
config = Config(

executors=]|

e Managed by an agent process allowing

HighThroughputExecutor (

the funcX service to dispatch user max_workers_per_node=i,
address=address_by_route(),
defined functions to resources for strategy=KubeSimpleStrategy (max_idletime=3600),
. container_type="docker",
exeCUtlon scheduler_mode="hard",
provider=KubernetesProvider (
e Agent handles: init_blocks=0,
min_blocks=1,
o Authentication (Globus) and authorization max_blocks=100,
init_cpu=2,
o Provisioning of nodes on the compute max_cpu=3,
resource init_mem="2000Mi",
max_mem="4600Mi",
o Monitoring and management image="bengall/pyhf-funcx:3.8.0.3.0-1",
worker_init="pip freeze",
e Through funcX endpoint config can namespacesiocrvicext,
incluster_config=True,
use expert knowledge of resource to ),
optimize for task . )


https://funcx.readthedocs.io/en/stable/endpoints.html

Execution with funcX: Define user functions

import json

from time import sleep

import pyhf
from funcx.sdk.client import FuncXClient
from pyhf.contrib.utils import download

def prepare_workspace (data, backend) :
import pyhf
pyhf.set_backend (backend)

return pyhf.Workspace (data)

def infer_hypotest (workspace, metadata, patches, backend) :
import time
import pyhf

pvhf.set_backend (backend)

tick = time.time ()
model = workspace.model(...)
data = workspace.data (model)

test_poi = 1.0
return {
"metadata": metadata,
"cls_obs": float (
pyhf.infer.hypotest (test_poi, data, model, test_stat="gtilde")
)

"fit-time": time.time() - tick,

e Asthe analyst user, define the
functions that you want the
funcX endpoint to execute

e These arerun as individual jobs
and so require all dependencies
of the function to be defined
inside the function

import numpy # Not in execution scope

def example_function () :
import pyhf # Import here

pvhf.set_backend("jax") # To use here



Execution with funcX: Register and run functions

def main (args) :

# Initialize funcX client
fxc = FuncXClient ()
fxc.max_requests = 200

with open ("endpoint_id.txt") as endpoint_file:
pyhf_endpoint = str (endpoint_file.read().rstrip())

# register functions

prepare_func = fxc.register_function (prepare_workspace)

# execute background only workspace
bkgonly_workspace = json.load(bkgonly_json)
prepare_task = fxc.run(
bkgonly_workspace, backend, endpoint_id=pyhf_endpoint, function_id=prepare_func

)

# retrieve function execution output
workspace = None
while not workspace:
try:
workspace = fxc.get_result (prepare_task)
except Exception as excep:
print (f"prepare: {excep}")
sleep (10)

With the user functions
defined, they can then be
registered with the funcX client
locally

o fx.register_function(...)

The local funcX client can then
execute the request to the
remote funcX endpoint,
handling all communication
and authentication required

o fx.run(...)

While the jobs run on the
remote HPC system, can make
periodic requests for finished
results

o fxc.get_result(...)

o Returning the output of the user
defined functions

11



Execution with funcX: Scaling out jobs

e The workflow

# register functions

infer_ func = fxc.register_function (infer_hypotest)
patchset = pyhf.PatchSet (json.load (patchset_json))

# execute patch fits across workers and retrieve them when done
n_patches = len(patchset.patches)
tasks = {}
for patch_idx in range (n_patches):
patch = patchset.patches[patch_idx]
task_id = fxc.run(
workspace,
patch.metadata,
[patch.patch],
backend,
endpoint_id=pyhf_endpoint,
function_id=infer_func,
)
tasks[patch.name] = {"id": task_id, "result": None}

while count_complete (tasks.values()) < n_patches:
for task in tasks.keys():
if not tasks[task]["result"]:

try:
result = fxc.get_result (tasks[task] ["id"])
tasks[task] ["result"] = result

except Exception as excep:
print (f"inference: {excep}")
sleep(15)

o fx.register_function(...)

o fx.run(...)

can now be used to scale out as
many custom functions as the
workers can handle

This allows for all the signal
patches (model hypotheses) in
a full analysis to be run
simultaneously across HPC
workers

o Run from anywhere (e.g. laptop)!
The user analyst has written
only simple pure Python

o No system specific configuration

files needed -



Scaling of statistical inference

feickert@ThinkPad-X1:~$ time python fit_analysis.py —-c config/1Lbb. json

e Example: Fitting all 125 models from pyhf pallet  prepare: waiting-for-ep
prepare: waiting-for-ep

for published ATLAS SUSY 1Lbb analysis "~

. <pyhf.workspace.Workspace object at 0x7fbd4cfe6l4f0>
° DOIhttps//d0|org/1017182/hepdata90607 Task CIN2_Wh_hbb_1000_0 complete, there are 1 results now
Task CIN2_Wh_hbb_1000_100 complete, there are
e Wall time under 2 minutes 30 seconds Task CIN2_Wh_hbb_1000_150 complete, there are
Task CIN2_Wh_hbb_1000_200 complete, there are

2 results now
3
4
o Downloading of pyhf pallet from HEPData (submit machine)  Task ciN2_wh_hbb_1000_250 complete, there are 5 results now
6
;
8

results now
results now
Task CIN2_Wh_hbb_1000_300 complete, there are results now
Registering functions (submit machine) Task C1N2_Wh_hbb_1000_350 complete, there are

[e]

results now

. Lo . . Task CIN2_Wh_hbb_1000_400 complete, there are results now
Sendmgserlallzatlon tofunchndpomt (remOte HPC) Task CIN2_Wh_hbb_1000_50 complete, there are 9 results now

[e]

Task CIN2_Wh_hbb_150_0 complete, there are 10 results now

[e]

funcX executing all jobs (remote HPC)

Task CIN2_Wh_hbb_900_150 complete, there are 119 results now
Task CIN2_Wh_hbb_900_200 complete, there are 120 results now
inference: waiting-for-ep

L4 Dep|0yment5 Of funcx endp0|nts Currently used Task CIN2_Wh_hbb_900_300 complete, there are 121 results now

(o]

funcX retrieving finished job output (submit machine)

H Task CIN2_Wh_hbb_900_350 complete, there are 122 results now
for testing —e T poete
Task CIN2_Wh_hbb_900_400 complete, there are 123 results now
. . . . Task CIN2_Wh_hbb_900_50 lete, th 124 1t
o University of Chicago River HPC cluster (CPU) s —THbR TR oY combrere, bhere are resuLEs now

Task CIN2_Wh_hbb_900_250 complete, there are 125 results now

o NCSABluewaters(CPU) — TTTTTTTTTTTTTTTTTTOo
o XSEDE Expanse (GPU JAX)

real 2m17.509s
user Om6.465s
sys Oml1.561s


https://www.hepdata.net/record/ins1755298
https://doi.org/10.17182/hepdata.90607

Scaling of statistical inference

e Example: Fitting all 125 models from pyh £ pallet
for published ATLAS SUSY 1Lbb analysis
o DOI: https://doi.org/10.17182/hepdata.20607

-scipy-2021$ pyenv activate talk-scipy-2021

t@ThinkPad-X1:~/Cod
talk-scipy- $ python -m pip list | grep 'pyhf\|funcx'

(base) feicke

rte d-X1:
(talk-scipy-2021) feickert@ThinkPad-X1:~
3
3

-endpoint

(talk-scipy-2021) fe ert( inkPa: talks/talk-scipy- $ time python fit_analysis.py -c config/llLbb.json -b jax

e Wall time under 2 minutes 30 seconds S S U St

<pyhf.workspace.Workspace object at 0x7eff77e5e310>

o Downloading of pyh £ pallet from HEPData (submit machine)
o Registering functions (submit machine)

o Sending serialization to funcX endpoint (remote HPC)

o funcXexecutingall jobs (remote HPC)

o funcXretrieving finished job output (submit machine)

e Deployments of funcX endpoints currently used

for testing
o University of Chicago River HPC cluster (CPU) Click me to watch an asciinemal!

o NCSA Bluewaters (CPU)
o XSEDE Expanse (GPU JAX)


https://www.hepdata.net/record/ins1755298
https://doi.org/10.17182/hepdata.90607
https://asciinema.org/a/425477?autoplay=1

Scaling of statistical inference: Results

e Remember,the returned output is just the
function's return

e Our hypothesis test user function from earlier:

def infer_hypotest (workspace, metadata, patches, backend):
import time
import pyhf

pvhf.set_backend (backend)

tick = time.time ()
model = workspace.model (...)
data = workspace.data (model)

test_poi = 1.0
return {
"metadata": metadata,
"cls_obs": float (
pyhf.infer.hypotest (
test_poi, data, model, test_stat="gtilde"
)
),
"fit-time": time.time () - tick,

e Allowing for easy and rapid serialization and

manipulation of results

e Time from submitting jobs to plot can be minutes

feickert@ThinkPad-X1:~$ python fit_analysis.py -c config/1Lbb.json

# Returned results saved in results.json

feickert@ThinkPad-X1:~$ jgq .CIN2_Wh_hbb_1000_0.result results.json

{
"metadata": {
"name": "CIN2_Wh_hbb_1000_0",
"values": [
1000,
0
]
br
"cls_obs": 0.5856783708143126,

"fit-time": 24.032342672348022

feickert@ThinkPad-X1:~$ jg .CIN2_Wh_hbb_1000_0.result

0.5856783708143126

.cls_obs results.json

15



FasS constraints and trade-offs

e The nature of FaaS that makes it highly
scalable also leads to a problem for
taking advantage of just-in-time (JIT)
compiled functions

o JITis super helpful for performing pseudo-
experiment generation

e To leverage JITed functions there
needs to be memory that is preserved
across invocations of that function

e FaaS: Each function call is self
contained and doesn't know about
global state

o funcXendpoint listens on a queue and invokes
functions

e Stillneed to know and tune funcX
config to specifics of endpoint
resource

o No magic bullet when using HPC center batch

In [1]:

In [2]:

In [3]:

import jax.numpy as jnp
: from jax import jit, random
def selu(x, alpha=1.67, lmbda=1.05):
return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
key = random.PRNGKey (0)
: x = random.normal (key, (1000000,))
: Stimeit selu(x)
+ 35.4 ps per loop (mean + std. dev. of 7 runs, 1000 loops each)
: selu_jit = jit(selu)
Stimeit selu_jit (x)

+ 105 ns per loop (mean * std. dev. of 7 runs, 100000 loops each)

50X speedup from JIT

16



Summary

e Through the combined use of the pure-Python libraries funcX and pyh £, demonstrated the ability to

parallelize and accelerate statistical inference of physics analyses on HPC systems through a (fitting) FaaS
solution

e Without having to write any bespoke batch jobs, inference can be registered and executed by analysts with a
client Python API that still achieves the large performance gains compared to single node execution that is a
typical motivation of use of batch systems.

e Allows for transparently switching workflows between provider systems and from CPU to GPU environments

e Not currently able to leverage benefits of JITed operations

o Looking for ways to bridge this

e All code used public and open source on GitHub!

vl funcyy

Pikelihoods

7


https://github.com/scikit-hep/pyhf
https://github.com/funcx-faas/funcX
https://github.com/matthewfeickert/talk-scipy-2021

Thanks for listening!

Come talk with us!

www.scikit-hep.org/pyhf
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https://scikit-hep.org/
https://github.com/scikit-hep/pyhf
https://iris-hep.org/
https://scikit-hep.org/pyhf/

Backup
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funcX endpoints on HPC: Config Example

Example Parsl HighThroughputExecutor config
(from Parsl docs) that funcX extends

from parsl.config import Config
from libsubmit.providers.local.local import Local
from parsl.executors import HighThroughputExecutor

config = Config(
executors=|[
HighThroughputExecutor (

label="local_htex"',

workers_per_node=2,

provider=Local (
min_blocks=1,
init_blocks=1,
max_blocks=2,
nodes_per_block=1,
parallelism=0.5

e block: Basic unitof resources acquired from a provider
e max_blocks:Maximum number of blocks that can be active per executor
e nodes_per_block:Number of nodesrequested per block

e parallelism:Ratioof task execution capacity to the sum of running tasks and available
tasks

#*Parsl

Tasks Initializing sites

e

e 9taskstocompute

e Tasks are allocated to the first block until its
task_capacity (here 4 tasks)reached

e Task 5: First block full and
5/9 > parallelism
so Parsl provisions a new block for executing the
remaining tasks

20


https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#elasticity
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#parallelism
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration

View of fitting Faa$S Analysis Facility Blueprint

FaaS Team

End users

Development

pyhf evolves over time.
Code on GitHub released
to PyPl and conda-forge.

New pyhf computations
that may be interesting to

expose.

GitHub

PyPI

S
CONDA-FORGE

conda-forge

Building

FuncX encapsulation of
Python functions.

Images are published to a
cloud registry (DockerHub?),
so they can be accessed.

& O

Docker

Cloud Registry

Deploying

Kubernetes is used to deploy

the functions.

High scalability plays nicely
with computational expensive

workflows.

&

Kubernetes

v1
v1.1
v2

Governance

Governance model required.

Someone needs to coordinate
new deployments across the
stack.

In addition to enable / disable
access through an auth DB.

Auth database

Continuous
effort

Ask for access Fit

Access request to the service. Users send HTTP requesis.
Given the amount of computing
power the service could use,
auth is required.

Users query the service,
with some basic auth
information.

Service validates user auth
before proceeding forward.

Some ticketing procedure must
be defined (GitHub issues?).

-
—
- g —
-
-
—~ o=
Access request =
— ." —>I®=
a4 oo
L — > 1@=
Continuous .' -
effort
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Why look at funcX when Dask is so established?

e funcX provides a managed service secured by Globus Auth

e Endpoints can be set up by a site administrator and shared with authorized users through Globus Auth
Groups

e Testing has shown that Dask may not scale well to thousands of nodes, whereas the funcX High Throughput
Executor (HTEX) provided through Parsl scales efficiently

10"
ﬁ% 103% —o— |PP
E HTEX
= 103 —o— EXEX
% : 01_; FireWorks
a Dask
S 10% ——= Ideal
©
10 -

o LN | LAY | LA | LN | ! IIA'”"I o
100 10 10° 10> 10" 10°
Number of workers 22


https://parsl.readthedocs.io/en/stable/userguide/performance.html
https://parsl.readthedocs.io/
https://parsl.readthedocs.io/en/stable/userguide/performance.html
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The end.
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