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Abstract—Emerging vehicle-to-everything (V2X) services rely
on the secure exchange of periodic messages between vehicles and
between vehicles and infrastructure. However, transmission of
false/incorrect data by malicious vehicles may pose important se-
curity perils. Therefore, it is essential to detect safety-threatening
erroneous information and mitigate potentially detrimental ef-
fects on road users. In this paper, we assess the effectiveness of a
reinforcement learning (RL) approach for misbehaviour detection
in V2X scenarios using an open-source dataset. Considering
the case of sudden-stop attacks, the performance of RL-based
detection is evaluated over commonly used detection metrics.
Our research outcomes reveal that misbehaving vehicles can be
accurately detected by exploiting real-time position and speed
patterns.

Index Terms—V2X, Misbehaviour Detection, Reinforcement
Learning.

I. INTRODUCTION

Pervasive vehicle-to-everything (V2X) connectivity and the
emergence of effective data-driven methods based on artificial
intelligence and machine learning (AI/ML) drive a paradigm
shift towards connected and automated mobility (CAM) ser-
vices and applications [1]. A key functionality that can benefit
from AI/ML is cybersecurity, which is essential for ensuring
road safety in CAM environments [2]. V2X security threats
and attacks can be originated from malicious outsiders and/or
insiders. In contrast to an outsider user, an insider possesses
valid credentials to interact with other legitimate entities in
the system [3]. Sophisticated insider attacks are often difficult
to detect and contain, particularly when attackers behave
intelligently while conforming to normal system behaviour.
Malicious/selfish behaviours from such rogue insiders are
commonly referred to as misbehaviours in V2X, and they pose
a serious threat when transmitting erroneous/incorrect data in
safety-critical situations. Ensuring the semantic correctness of
exchanged V2X information is thus of paramount importance.

In existing literature, several data-driven approaches have
been proposed to detect misbehaving vehicles, some of which
rely on statistical and conventional ML techniques [4]. Nev-
ertheless, current misbehaviour detectors are not designed to
dynamically improve their detection experience according to
evolving attack patterns in rapidly changing V2X environ-
ments. In addition, the use of security thresholds in detectors
(e.g., anomaly score-based methods) limit their applicability
to very specific V2X scenarios. To this end, reinforcement
learning (RL) can be identified as an effective approach to

deal with misbehavior detection in V2X. RL-based detection
algorithms can improve their detection experience over time
from the interactions with unknown environments without
relying on security threshold values.

In this paper, we assess the applicability and performance
of the RL-based anomaly detection method proposed in [5] for
identification of sudden-stop attacks in V2X time-series data.
Such attacks may lead to unnecessary traffic congestion and
potential road accidents due to hard braking. They can be diffi-
cult to detect due to the attacker’s erratic behaviour over time;
attacker may behave normally for a specific time-period, and
transmit repeatedly falsified information, i.e., fixed-position
coordinates and zero-speed values, in subsequent time-steps.
We adopt an ensemble approach utilizing multiple features of
the sudden-stop attack (e.g., position, speed, heading angle,
etc.) to train the RL model separately for each feature. We
further assess the detection performance of the RL-based
method for each selected feature while observing that some
features yield superior performance over others. For perfor-
mance evaluation, we have used the open-source VeReMi
dataset [6], generated with a V2X simulator and including
several V2X misbehaviour attacks, e.g., position falsification
and sudden stop.

II. REINFORCEMENT LEARNING MODEL

Time-series anomaly detection constitutes a sequential
decision-making process that can be modelled as a Markov
decision process [7]. The action of anomaly detection will
change the environment based on the decision of either normal
or anomalous behaviour at time ¢; subsequently, the next
decision at time step ¢+ 1 will be influenced by the changing
environment at previous time-step t. The application of an RL
model is thus a natural fit for time-series anomaly detection.
In the context of V2X, vehicle’s mobility data is a time-series
consisting of periodic beacon messages. Each beacon message
includes information of the vehicle’s speed, position, heading
angle, etc., and this information is evolving over time along
the vehicle’s trajectory. Hence, misbehaving vehicles can be
potentially detected by sequentially analysing their mobility
patterns using an RL model. In what follows, we briefly
discuss the components pertaining to the RL model introduced
in [5] and applied for sudden-stop attack detection.

The agent is the core part of the RL model. It takes the
time-series (i.e., vehicle’s mobility data) and prior related



decisions as inputs (i.e., state s), and generates the new
decision made (i.e., action a) as output. Each action made
by the agent is rewarded (i.e., reward r) as feedback, and the
agent subsequently updates its model in order to improve the
accuracy in decision-making. The iterative model update is
performed through @-learning [8], i.e.,

Q(st,at) < Q(s¢, ar)

+ a(ry + ’Ylgﬁ)l(Q(St-s-l, at+1) — Q(st, ar)), M
where a and ~y denote the learning rate and discount factor,
respectively.

The environment of the RL model controls the training
of the agent. It takes the action a performed by the agent
as its input, and consequently generates a reward r and the
next environment state s for the agent. The environment is a
time-series repository of vehicles’ mobility data and contains
a large population of periodic beacon messages with sudden-
stop attack labels.

The state contains two sequences: the sequence of previous
actions, denoted by Sgction =< a¢—1,0a¢, ..., G44n—1 >, and
the current vehicle’s time-series data, denoted by Siime =<
X, Xev1, o0, Xy, >, where X, is the value of a feature at
time ¢. According to the state design, the next action taken by
the agent is dependent on the previous actions and the current
vehicle’s information.

The action space is defined as A = {0,1} where 1 indi-
cates the detection of an attack and O represents the normal
behaviour. In a given state s, the agent selects the action as

a = argmax Q(s,a). 2)

The reward r is offered to the agent when an action a is
taken in state s. In particular, the agent is given a positive
reward for correctly identifying the sudden-stop attack, i.e.,
true positive (TP), or a normal state, i.e., true negative (TN);
otherwise, a negative reward is given to the agent for incorrect
identification of a normal state as an attack, i.e., false positive
(FP), or an attack as a normal state, i.e., false negative (FN). In
safety-critical V2X scenarios, FNs are more hazardous than FP
alarms; thus, an agent is penalised more for FN actions than
for FPs. The reward function can be expressed as

A if the action is a TP,
r(s, a) = B if the action is a TN, 3)
[ —C if the action is an FP,

—D if the action is an FN,

where A, B,C,D > 0, with A > B and D > C.

III. EXPERIMENTS AND RESULTS

In this section, we demonstrate the effectiveness of the RL-
based approach [5] applied for V2X misbehaviour detection
by performing experiments on specific parts of VeReMi [6]
dataset for detection of sudden-stop attacks.
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Fig. 1: Time-evolving position and speed features of sudden-stop attack
dataset. Label 1 indicates an attack and label O indicates normal operation.
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Fig. 2: Training results of the RL model where {A,B,C,.D}={5,1,1,5} deter-
mine the reward function of Eq. 3.

A. Datasets

Two datasets corresponding to traffic scenarios of
high-density (37.03 vehicles/km?) and low-density (16.36
vehicles/km?) of vehicles are utilized as input in this work.
The proportion between misbehaving and legitimate vehicles
ranges from 30% to 70%, although such high proportion of
attackers is rather unlikely in real-world scenarios. Exchanged
beacon messages among vehicles include features such as
position, speed, acceleration and heading angle, while each
feature constitutes a three-dimensional vector!. Based on fea-
ture analysis and data pre-processing, position and speed were
selected as the most relevant features related to the sudden-stop
attack detection. In particular, the Euclidean norm of the speed
vector and the z-dimension of the position vector are used. In
our experiments, a subset of the high-density dataset was used
to train the RL model with 2368 labelled attack messages from
several misbehaving vehicles. On the other hand, a subset of
the low-density dataset with 1846 labelled attack messages
was used to test the capability of the RL-based approach in
detecting sudden-stop attacks. Fig. 1 shows the time-evolving
position and speed features of the two datasets with attack
labels. The input datasets to the RL model are provided as
samples, where each sample represents a chunk of the time-
series dataset for the selected feature.

B. Results and Discussion

The detection performance of the RL model was evaluated
based on commonly used metrics, i.e., precision, recall and

11t is noted that z-dimension entries are zero-valued for all features.
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Fig. 3: Test results of the RL model.

F1 score, which are defined as

Precision = —— @)
IO = o p TP
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Recall = ———
eca TPLFN 5)

Fl — 2 - Precision - Recall

Precision + Recall ’ ©
respectively. A higher F1 score indicates a better detection
performance. Similarly, higher precision values indicate low
FP rates and higher recall values indicate low FN rates.

In Fig. 2, training performance of the RL model is illustrated
for position and speed features on a particular sample. The
training performance of the model for the position feature
(Fig. 2a) is 100%, which means that neither FPs nor FNs
were reported. However, training performance of the model
for speed feature is not as good as for position due to the
occurrences of several FP (e.g., precision is 0.7692) and FN
(e.g., recall is 0.8571) alarms (Fig. 2b). It can be observed
that the speed values of some legitimate vehicles are close to
zero due to stopped or slow-moving vehicles, which, in turn,
resemble the sudden-stop attack; thus, this behaviour tends to
mislead the RL model for an incorrect action in a state.

Regarding the RL model evaluation with the test dataset,
we hereby present only the results for the samples with the
best achieved performance due to space limitations. Fig. 3
shows the resulting performance for three sample sequences
(i.e., sample 1, sample 2 and sample 3) of test data. The
detection performance for each selected sample is shown in
Table I. From the evaluation results, it can be noticed that the
RL model performs better (except for sample 2) when using
position instead of speed feature. For example, F1 score is very
low in sample 3 when tested using speed feature. As mentioned
before, close-to-zero speed values of some legitimate vehicles
are causing the RL model to perform incorrect actions in
detection; in turn, an increased number of FP (low precision)
and FN (low recall) alarms are reported by the RL model.
Similarly, it is noted that transmission of constant or close-to-
constant positions by stopped/slow-moving legitimate vehicles
can also affect the detection performance of the RL model.
For example, low recall performance is reported for sample 2
when using the position feature, and this can be attributed to

TABLE I: Detection performance over the test dataset

Test sequence | Feature | Precision | Recall | F1
Sample 1 Position | 1.0 0.9250 | 0.9610
Speed 1.0 0.9091 | 0.9524
Sample 2 Position | 0.9915 0.7347 | 0.8440
Speed 0.9442 0.9979 | 0.9703
Sample 3 Position | 0.8558 0.8017 | 0.8279
Speed 0.6423 0.5360 | 0.5843

the increased number of FN alarms, by incorrectly identifying
attackers as stopped/slow-moving legitimate vehicles.

IV. CONCLUSION

In this paper, we have presented the evaluation of an RL-
based approach for detecting sudden-stop attacks in V2X sce-
narios. Performance results confirm that misbehaving vehicles
can effectively be detected with high accuracy by sequentially
analysing their mobility patterns, i.e., real-time position and
speed, using an RL model. In the path forward, we will
investigate the integration of multi-dimensional vehicles’ data
into RL-based misbehaviour detectors with varying proportion
of attackers.
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