
Leveraging the Task-Aware GASPI’s One-Sided
Communications in Saiph

Sandra Macià∗, Kevin Sala† and Vicenç Beltran‡
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
Email: ∗sandra.macia@bsc.es, †kevin.sala@bsc.es, ‡vbeltran@bsc.es

Abstract—Saiph is a Domain-Specific Language (DSL) that
eases the simulation of physical phenomena from the Compu-
tational Fluid Dynamics (CFD) domain in HPC environments.
Saiph offers a high level of abstraction and a numerical library
implementing parallel Finite Difference Methods (FDM) and
explicit time solvers. Internally, Saiph features multiple back-
ends to generate different parallel versions of high-level appli-
cations. There is one back-end implemented only with MPI and
another back-end implemented with MPI and OmpSs-2 tasks that
leverages the Task-Aware MPI library. The MPI-only approach
manually overlaps computations and communications using non-
blocking MPI primitives. In contrast, the hybrid TAMPI ap-
proach fully taskifies both computations and communications
using task data dependencies and the TAMPI library, allowing
the natural and automatic overlap of both phases.

In this technical report, we extend Saiph with a new back-end
that generates a hybrid task-based GASPI+OmpSs-2 variant that
leverages the one-sided communications provided by the Task-
Aware GASPI library. The one-sided (or RMA) communications
allow the user applications to reduce the communication gran-
ularity and scale better to a high number of computing nodes.

I. SAIPH

Saiph [1] [2] is a Domain-Specific Language (DSL) that
eases the simulation of physical phenomena from the Compu-
tational Fluid Dynamics (CFD) domain in HPC environments.
The tool provides a high level of abstraction and a numerical li-
brary implementing parallel Finite Difference Methods (FDM)
and explicit time solvers. Saiph automatically discretizes a
spatial domain mapping continuous field information into a
Cartesian grid of points. The temporal dimension is discretized
through a time-stepping loop at which each iteration defines
the state of a system using previous time-step states. Com-
putationally, a time-step loop encloses a spatial traversal at
which linear algebra and stencil computations occur. More-
over, the spatial loop is automatically blocked to ensure good
memory locality while providing large amounts of potential
parallel work. Since calculations befall over neighboring mesh
point values from previous time-iterations: (i) the absence of
data dependencies within time-steps ensures the spatial loop’s
embarrassingly parallelism and (ii) the distributed executions
using a domain decomposition approach involve boundaries
communications between neighboring processes at the end of
each time-step.

Saiph features multiple back-ends so that it can generate dif-
ferent parallel versions from the same high-level application.

The current back-ends are an optimized pure MPI [3] approach
and a hybrid task-based MPI+OmpSs-2 that leverages the
Task-Aware MPI library [4] [5]. The MPI-only approach
manually overlaps computations and communications using
non-blocking MPI primitives. In contrast, the hybrid TAMPI
approach taskifies with OmpSs-2 [6] both computations and
communications using task data dependencies and the TAMPI
library. This full taskification follows a data-flow execution
model and allows the natural and automatic overlap of both
phases.

II. PORTING SAIPH TO THE TASK-AWARE GASPI

We extend Saiph and develop a new back-end based on the
same taskification as the TAMPI+OmpSs-2 version but using
Task-Aware GASPI (TAGASPI) [7] [8] for communications.
The TAGASPI library works on top of the GASPI model [9],
which offers a simple API to write/read to/from other pro-
cesses’ memory directly without the intervention of the target
process. TAGASPI integrates these fine-grained RMA opera-
tions with the OmpSs-2 tasking model, allowing tasks to safely
and efficiently issuing RMA operations concurrently.

For the new TAGASPI back-end, we adapt computation
tasks to include data unpack and pack operations. After
any unpack, receivers use tagaspi_notify to send an ack
notification to the sender side allowing the sender to initiate the
next data writing. Consequently, writer tasks on the sender side
asynchronously wait for the corresponding ack notification
using the onready clause [7] before starting the remote write
operation. The ack notification prevents the overwriting of
the data sent at the previous iteration before being consumed
by the receiver. Moreover, communication tasks involve send-
ing and receiving, to and from, different neighbor processes
making use of tagaspi_write_notify to write and notify
the receiver side and using tagaspi_notify_iwait to wait
asynchronously for the remote notification of the transfer.

REFERENCES

[1] S. Macià, S. Mateo, P. J. Martı́nez-Ferrer, V. Beltran, D. Mira, and
E. Ayguadé, “Saiph: Towards a dsl for high-performance computational
fluid dynamics,” in Proceedings of the Real World Domain Specific
Languages Workshop, 2018, pp. 1–10.

[2] S. Macià, P. J. Martı́nez-Ferrer, S. Mateo, V. Beltran, and E. Ayguadé,
“Assembling a high-productivity dsl for computational fluid dynamics,”
in Proceedings of the Platform for Advanced Scientific Computing Con-
ference, 2019, pp. 1–11.

1



[3] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard. Version 3.1. University of Tennessee, Jun. 2015.

[4] K. Sala, X. Teruel, J. M. Perez, A. J. Peña, V. Beltran, and J. Labarta,
“Integrating blocking and non-blocking MPI primitives with task-based
programming models,” Parallel Computing, vol. 85, pp. 153–166, 2019.

[5] Barcelona Supercomputing Center, “Task-Aware MPI (TAMPI) Library.”
[Online]. Available: https://github.com/bsc-pm/tampi

[6] ——, “OmpSs-2 Specification,” accessed: 2021-07-28. [Online].
Available: https://pm.bsc.es/ompss-2-docs/spec/

[7] K. Sala, S. Macià, and V. Beltran, “Combining one-sided communica-
tions with task-based programming models,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2021 (In Press).

[8] Barcelona Supercomputing Center, “Task-Aware GASPI (TAGASPI)
Library.” [Online]. Available: https://github.com/bsc-pm/tagaspi

[9] GASPI Forum, “GASPI: Global Address Space Programming Interface.
Version 17.1,” February 7th 2017, available at: http://www.gaspi.de/gaspi/.
Accessed: 2021-07-28.

2


